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ABSTRACT This paper is concerned with the problem of robust decentralized output-feedback control
for a class of continuous-time large-scale nonlinear systems. Each nonlinear subsystem, described by a
Takagi–Sugeno model, involves in the interconnections and parametric uncertainties of the large-scale
systems. The main focus of this paper is to design a robust decentralized static output-feedback (SOF)
fuzzy controller, such that the resulting closed-loop system is asymptotically stable with a prescribed
H∞ disturbance attenuation level. Based on some matrix inequality linearization techniques and the
descriptor system approach, sufficient conditions for the existence of a robust decentralized SOF H∞
fuzzy controller are presented in terms of linear matrix inequalities. From different perspectives, the desired
controller is designed to analyze the degree of conservatism induced by considering various limitations.
The effectiveness and superiority of the proposed method are finally demonstrated by two numerical
examples.

INDEX TERMS Decentralized control, static output-feedback (SOF) control, descriptor system, large-scale
systems, robust control, Takagi-Sugeno (T-S) model.

I. INTRODUCTION
Many practical systems, for example, communication net-
works, transportation systems, industrial processes, and
power systems, are increasingly large in the dimensional-
ity and strongly interconnected in the structure, and such
complex systems can be considered as a class of large-scale
systems [1]–[4]. Generally speaking, a large-scale system is
comprised of several subsystems with evident interconnec-
tions, and two essential difficulties: high dimensionality and
strong interconnections. A natural way is to decompose the
overall system into several subsystems as well as their inter-
connections, such that the control of the overall system can be
implemented by a cluster of independent controllers instead
of a single controller, which referred as decentralized control
approach [5]. During the past few decades, as an effective
control approach of large-scale systems, the decentralized

control has attracted a great deal of attention from con-
trol communities, and a large number of results have been
reported for large-scale systems. See for instance [6]–[9] and
the references therein.

On the other hand, it has been confirmed that
Takagi-Sugeno (T-S) model is a powerful tool to approxi-
mate any smoothly nonlinear systems with arbitrarily high
accuracy [10]–[13]. The main advantage of T-S fuzzy models
is that the fuzzy logic theory can be combined with linear
system theory as an unified framework. Firstly, the T-S fuzzy
model makes use of a family of IF-THEN fuzzy rules to
describe the local linear input-output information about a
nonlinear system. The global dynamics of the nonlinear sys-
tem can be represented by these local linear models that are
smoothly blended in virtue of fuzzy membership functions.
Then, a variety of linear control methods are developed
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to fulfill the control design of the presented T-S fuzzy
model. Up to now, the T-S fuzzy approach has been exten-
sively studied in the literature [14]–[20]. More recently, the
T-S fuzzy method has been extended to the area of
large-scale nonlinear systems, and some significant results
have been reported in the open literature [21]–[27]. To
mention a few, the problem of decentralized state-feedback
controller design for large-scale T-S fuzzy systems has been
investigated in [21]–[24]. The authors in [25] and [26] pre-
sented the delay-dependent stability criterion and decentral-
ized H∞ filtering design result for large-scale T-S fuzzy
systems with time-varying delay, respectively. Moreover,
the decentralized H∞ filtering design for large-scale T-S
fuzzy systems with multiple constant time delays has been
conducted in [27].

In addition, it is well-known that usually only the mea-
surement output information, rather than the full state infor-
mation, is available for feedback control design of dynamic
systems [28]. Thus, the static output-feedback (SOF) con-
troller is more realistic and useful than the state-feedback
one in practical applications. There have been, however, sur-
prisingly few attempts to address the robust decentralized
SOF H∞ fuzzy controller design for the large-scale T-S
fuzzy systems, which is the first motivation of this study.
Moreover, it is also noted that the SOF control design is often
formulated as a nonconvex problem representing the form
of bilinear matrix inequalities (BMIs) or nonlinear matrix
inequalities, which is, in general, difficult to solve using
the existing numerical software. Recently, there have been
some valuable results on the SOF H∞ controller design
for T-S fuzzy dynamic systems in the form of linear matrix
inequalities (LMIs) [29]–[32]. However, these results given
in [29]–[32] are obtained by imposing some constraints on
the systematic input or output matrices. For instance, it is
assumed that all local linear models share a common output
matrix in [29] and [30]. In [31], the strict limitation that
the output matrices are common is relaxed, while the out-
put matrices must satisfy some matrix-equality constraints.
It seems that the problem of SOF controller design for
T-S fuzzy dynamic systems can be solved efficiently
via LMIs technique in [32], nevertheless, the proposed
approaches are not applicable to the case when uncer-
tainties emerge in the system input and output matrices.
Hence, it remains an open issue on how to obtain LMI
conditions for robust decentralized SOF fuzzy controller
design without making any restrictive assumptions on sys-
tem matrices, which is the second motivation of the present
study.

In this paper, we focus on the problem of robust
decentralized SOF H∞ control for a class of continuous-
time large-scale nonlinear systems. Each nonlinear subsys-
tem is of interconnections and parametric uncertainties in the
large-scale systems, and can be represented by a T-S model.
First, we will make use of some constraints on the system
matrices, and the decentralized SOF H∞ fuzzy controller

design issue will be reformulated in the form of LMIs using
some linearization techniques of matrix inequalities. Then, in
order to relax all restrictive assumptions as much as possible,
the descriptor system approach is used in this paper such
that the closed-loop fuzzy control system could be repre-
sented in the form of descriptor systems, the corresponding
LMI conditions will be derived to design the robust decentral-
ized SOF H∞ fuzzy controller for the large-scale T-S fuzzy
system under consideration. Finally, two numerical exam-
ples are given to illustrate the effectiveness of the proposed
method.

The remainder of this paper is organized as follows.
Section II formulates the problem under consideration. The
main results for the robust decentralized SOF H∞ fuzzy
controller design are given in Section III. Two numerical
examples are presented in Section IV to demonstrate the
effectiveness of the proposed methods, which is followed by
some conclusions in Section V.
Notations: The notations used in this paper are standard.
<
n and <n×m are the n-dimensional Euclidean space and the

set of n × m matrices, respectively. The matrix P ∈ <n×n,
P > 0 (≥ 0) denotes P being positive definite (or positive
semidefinite). Sym{A} denotes A + AT . In and 0m×n are
the n × n dimensional identity matrix and m × n dimen-
sional zero matrix, respectively. The subscripts n and m × n
could be omitted when the size can be directly determined in
accordance with the context. For a matrix A ∈ <n×n, A−1

and AT denote the inverse and transpose of the matrix A,
respectively. diag{· · ·} is a block-diagonal matrix. L2[0,∞)
denotes the space of square integrable vector functions over
[0,∞). The notation ? indicates the terms that can be induced
by symmetry.

FIGURE 1. Large-scale interconnected systems.

II. MODEL DESCRIPTION AND PROBLEM FORMULATION
In this section, we consider a class of continuous-time
large-scale nonlinear systems, which is composed of N
nonlinear subsystems with interconnections and parametric
uncertainties, as shown in Fig. 1. Here, the i-th nonlinear
subsystem could be represented by the following T-S fuzzy
model:
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Plant RuleRl
i : IF ζi1(t) isF l

i1, ζi2(t) isF l
i2, · · · , and ζig(t)

is F l
ig, THEN

ẋi(t) = Ãilxi (t)+
∑N

k=1,k 6=i Āiklxk (t)+ B̃ilui (t)
+Dilwi (t)

yi(t) = Cilxi(t)+Milwi (t)
zi(t) = Lilxi(t)+ Filui (t) , l ∈ Li := {1, 2, . . . , ri}

(1)

where Ãil := Ail + 1Ail , B̃il := Bil + 1Bil , i ∈ N :=

{1, 2, . . . ,N }. For the i-th nonlinear subsystem, Rl
i denotes

the l-th fuzzy inference rule; ri is the number of inference
rules; F l

iφ (φ = 1, 2, . . . , g) are fuzzy sets; xi(t) ∈ <nxi
denotes the system state; ui(t) ∈ <nui is the control input;
yi(t) ∈ <nyi is the measurement output; zi(t) ∈ <nzi is the reg-
ulated output; wi(t) ∈ <nwi is the disturbance input belong-
ing to L2[0,∞); ζi(t) := [ζi1(t), ζi2(t), . . . , ζig(t)] are some
measurable variables; the pair (Ail,Bil,Dil,Cil,Mil,Lil,Fil)
denotes the l-th local model; Āikl denotes the intercon-
nection matrix between the i-th and the k-th subsystems;
1Ail and 1Bil denote the uncertainty terms of the l-th local
model satisfying[

1Ail 1Bil
]
= H1il1il(t)

[
H2il H3il

]
, l ∈ Li

(2)

where H1il,H2il, and H3il are known real matrices with
appropriate dimensions. As studied in [33], 1il(t) ∈ <s1×s2
are unknown time-varying matrix functions with Lebesgue
measurable elements satisfying

1T
il (t)1il(t) ≤ Is2 , l ∈ Li. (3)

Remark 1: In this paper, for brevity, we only consider
the uncertainty terms 1Ail and 1Bil, l ∈ Li. However,
the methods proposed in this paper can be easily extended
to the case where the uncertainty terms simultaneously
appear in the system matrices Āikl,Dil,Cil,Mil,Lil, and
Fil, l ∈ Li.

Defining the inferred fuzzy set F l
i :=

∏g
φ=1F

l
iφ and

the normalized membership function µil [ζi(t)] , it yields
that

µil [ζi(t)] :=

∏g
φ=1µilφ

[
ζiφ(t)

]∑ri
ς=1

∏g
φ=1µiςφ

[
ζiφ(t)

] ≥ 0, (4)

where µilφ
[
ζiφ(t)

]
is the grade of membership of ζiφ(t) in

F l
iφ , and

∑ri
l=1 µil [ζi(t)] = 1. In the following we will

denote µil := µil [ζi(t)] for the sake of convenience.
By fuzzy blending, the global T-S fuzzy dynamic

model of the i-th subsystem can be obtained as
follows:

ẋi(t) = (Ai(µi)+1Ai(µi)) xi (t)+
N∑

k=1,k 6=i
Āik (µi)xk (t)

+ (Bi(µi)+1Bi(µi)) ui (t)+ Di(µi)wi (t)
yi(t) = Ci(µi)xi(t)+Mi(µi)wi (t)
zi(t) = Li(µi)xi(t)+ Fi(µi)ui (t) , i ∈ N

(5)

where

Ai(µi) :=
ri∑
l=1
µilAil, 1Ai(µi) :=

ri∑
l=1
µil1Ail,

Āik (µi) :=
ri∑
l=1
µil Āikl, Bi(µi) :=

ri∑
l=1
µilBil,

1Bi(µi) :=
ri∑
l=1
µil1Bil, Di(µi) :=

ri∑
l=1
µilDil,

Ci(µi) :=
ri∑
l=1
µilCil, Mi(µi) :=

ri∑
l=1
µilMil,

Li(µi) :=
ri∑
l=1
µilLil, Fi(µi) :=

ri∑
l=1
µilFil .

(6)

Given the large-scale T-S fuzzy system in (5), a class of
decentralized static-output-feedback (SOF) fuzzy controller
is considered in the following:
Controller Rule Rl

i : IF ζi1(t) is F l
i1, ζi2(t) is F l

i2, · · · ,
ζig(t) is F l

ig, THEN

ui (t) = Kilyi(t), l ∈ Li (7)

where Kil ∈ <nui×nyi , l ∈ Li, i ∈ N are controller gains to
be determined.

Similarly, the overall SOF fuzzy controller of the i-th sub-
system can be inferred as follows:

ui (t) = Ki(µi)yi(t), i ∈ N (8)

where Ki(µi) :=
ri∑
l=1
µilKil , i ∈ N .

Let z̃ (t) =
[
zT1 (t) z

T
2 (t) · · · z

T
N (t)

]T
, and w̃ (t) =[

wT1 (t) w
T
2 (t) · · · w

T
N (t)

]T
. The robust decentralized

SOF H∞ fuzzy control problem of the large-scale T-S fuzzy
system (5) to be addressed in this paper can be formulated as:

Given the large-scale T-S fuzzy system in (5), and for a
prescribed disturbance attenuation level γ > 0, design a
decentralized SOF fuzzy controller in the form of (8) such
that the closed-loop fuzzy control system is asymptotically
stable, and under zero initial conditions the H∞ disturbance
attenuation level γ satisfies∫

∞

0
z̃T (t)z̃(t)dt < γ 2

∫
∞

0
w̃T (t)w̃(t)dt (9)

for any nonzero w̃ ∈ L2 [0∞).

III. MAIN RESULTS
In this section, a series of results on robust decentralized
SOF H∞ fuzzy controller design are presented for the
continuous-time large-scale T-S fuzzy system in (5) by using
different approaches.

In order to facilitate the SOF fuzzy controller design, we
first consider a special case of the large-scale T-S fuzzy
system (5), in which the assumptions on the measurement
output of each subsystem are given as follows.

A1. The measurement outputs yi(t) are noisy-free,
i.e., Mil = 0, l ∈ Li;

A2. the output matrices Cil, l ∈ Li are common,
i.e., Cil = Ci;
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A3. the parametric uncertainties do not appear in the output
matrices Ci;
A4. the output matrices Ci are of full row rank.
For i ∈ N , since the output matrices Ci are of full row rank

for each subsystem, there exist nonsingular transformation
matrices Tci ∈ <nxi×nxi satisfying [34]

CiTci =
[
Inyi 0nyi×(nxi−nyi)

]
. (10)

Based on the above assumptions, and by combining the
large-scale T-S fuzzy system in (5), with the decentralized
SOF fuzzy controller in (8), the closed-loop fuzzy control
system can be expressed as
ẋi(t) = Ai(µi)xi (t)+

N∑
k=1,
k 6=i

Āik (µi)xk (t)+ Di(µi)wi (t)

zi(t) = Ci(µi)xi(t), i ∈ N

(11)

where
Ai(µi) = Ai(µi)+1Ai(µi)+ (Bi(µi)+1Bi(µi))

×Ki(µi)Ci
Ci(µi) = Li(µi)+ Fi(µi)Ki(µi)Ci.

(12)

Now, on the basis of the closed-loop fuzzy control system
in (11), we will present the following synthesis result.
Theorem 1: Consider the large-scale T-S fuzzy system

in (5) with the assumptions A1-A4. A decentralized SOF
fuzzy controller in the form (8) exists, and can guarantee
the asymptotic stability of the closed-loop fuzzy control sys-
tem (11) with anH∞ disturbance attenuation level γ, if there
exist matrices 0 < Xi(1) = XTi(1) ∈ <

nyi×nyi , 0 < Xi(2) =

XTi(2) ∈ <
(nxi−nyi)×(nxi−nyi), K̄il ∈ <nui×nyi , and scalars

0 < τ0 ≤ τil, 0 < εilj, such that for all i ∈ N the following
LMIs hold:

8̄ill < 0, 1 ≤ l ≤ ri, (13)
8̄ilj + 8̄ijl < 0, 1 ≤ l < j ≤ ri (14)

where

8̄ilj =

[
8
(1)
ilj + εiljH1ilHT

1il HT
2ilj

? −εiljI

]
,

8
(1)
ilj =


−τi0 (N − 1)−1 E 0 ĀkiTciXiT Tci

? −γ 2I 8
(22)
ilj

? ? 8
(33)
ilj

,
HT

1il =

[
0 0 HT

1il

]
,8

(22)
ilj = LilTciXiT Tci + FilKijT Tci ,

H2ilj =

[
0 0 H2ilTciXiT Tci + H3ilKijT Tci

]
,

8
(33)
ilj = Sym

{
AilTciXiT Tci + BilKijT Tci

}
+ τilI+ DilDTil ,

E = diag
{
Inxi · · · Inxi

}︸ ︷︷ ︸
N−1

,Kij =

[
K̄ij 0

]
,

Xi =

[
Xi(1) 0
0 Xi(2)

]
, Āki =

[
ĀT1i · · · Ā

T
ki,k 6=i · · · Ā

T
Ni

]
︸ ︷︷ ︸

N−1

T
.

(15)

Moreover, the corresponding controller gains are given by

Kil = K̄ilX
−1
i(1), l ∈ Li, i ∈ N . (16)

Proof: Consider the following Lyapunov function,

V (t) =
N∑
i=1

Vi(t) =
N∑
i=1

xTi (t)Pixi (t) (17)

where 0 < Pi = PTi ∈ <
nxi×nxi , i ∈ N .

Taking the time derivative of Vi(t) along the trajectories of
the closed-loop fuzzy control system in (11), one has

V̇ (t) =
N∑
i=1

2


Ai(µi)xi (t)+

N∑
k=1
k 6=i

Āik (µi)xk (t)

+Di(µi)wi (t)


T

Pixi (t)


=

N∑
i=1

{
2 [Ai(µi)xi (t)+ Di(µi)wi (t)]T Pixi (t)

}

+

N∑
i=1

2
 N∑
k=1
k 6=i

Āik (µi)xk (t)


T

Pixi (t)

. (18)

Note that

2x̄T ȳ ≤ κ−1x̄T x̄ + κ ȳT ȳ (19)

where x̄, ȳ ∈ <n and the scalar κ > 0.
In addition, define Āik ≥

∥∥Āik (µi)∥∥ . Then, by using
Lemma 1 as given in the Appendix, we also have

N∑
i=1


 N∑
k=1
k 6=i

Āik (µi)xk (t)


T  N∑

k=1
k 6=i

Āik (µi)xk (t)




≤

N∑
i=1


 N∑
k=1
k 6=i

Āikxk (t)


T  N∑

k=1
k 6=i

Āikxk (t)




=

N∑
i=1


 N∑
k=1
k 6=i

Ākixi(t)


T  N∑

k=1
k 6=i

Ākixi(t)




≤

N∑
i=1

(N − 1)
N∑
k=1
k 6=i

xTi (t)Ā
T
kiĀkixi(t)

. (20)

Based on the inequalities (19) and (20), and by introducing

scalar parameters 0 < τ0 ≤ τi(µi), τi(µi) :=
ri∑
l=1
µilτil ,
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i ∈ N , it yields

V̇ (t) ≤
N∑
i=1

{
2 [Ai(µi)xi (t)+ Di(µi)wi (t)]T Pixi (t)

}

+

N∑
i=1

τ−1i (µi)

 N∑
k=1
k 6=i

Āik (µi)xk (t)


T

×

 N∑
k=1
k 6=i

Āik (µi)xk (t)




+

N∑
i=1

{
τi(µi)xTi (t)PiPixi (t)

}
≤

N∑
i=1

{
2 [Ai(µi)xi (t)+ Di(µi)wi (t)]T Pixi (t)

}

+

N∑
i=1

τ−10 (N − 1)
N∑
k=1
k 6=i

xTi (t)Ā
T
kiĀkixi(t)


+

N∑
i=1

{
τi(µi)xTi (t)PiPixi (t)

}
. (21)

Consider the following performance index

J (t) =
N∑
i=1

Ji(t)

=

N∑
i=1

∫
∞

0

{
γ−2zTi (t)zi(t)− w

T
i (t)wi (t)

}
dt. (22)

Under zero initial conditions, we have Vi(0) = 0 and
Vi(∞) ≥ 0. Then, it follows from (21) and (22) that

J (t) ≤
N∑
i=1

Ji(t)+ Vi(∞)− Vi(0)

=

N∑
i=1

∫
∞

0

{
V̇i(t)+ γ−2zTi (t)zi(t)− w

T
i (t)wi (t)

}
dt

≤

N∑
i=1

∫
∞

0
x̃Ti (t)

[
2i(µi) PiDi(µi)
? −I

]
x̃i (t) dt, (23)

where x̃i (t) =
[
xTi (t) w

T
i (t)

]T , and
2i(µi) = Sym {PiAi(µi)} + τ

−1
0 (N − 1)

N∑
k=1
k 6=i

ĀTkiĀki

+ τi(µi)PiPi + γ−2C T
i (µi)Ci(µi). (24)

It is easy to see from (23) that the resulting closed-loop
system in (11) is asymptotically stable with an H∞ distur-
bance attenuation level γ under zero initial conditions for any

nonzero w̃ ∈ L2 [0∞), if the following inequalities hold:[
2i(µi) PiDi(µi)
? −I

]
< 0, i ∈ N . (25)

By applying Schur complement to (25), we have−τ0 (N − 1)−1 E 0 Āki
? −γ 2I Ci(µi)
? ? 2(3, 3)

 < 0, (26)

where

2(3, 3) = Sym {PiAi(µi)} + τi(µi)PiPi + PiDi(µi)

×DTi (µi)Pi,

Āki =

[
ĀT1i · · · Ā

T
ki,k 6=i · · · Ā

T
Ni

]
︸ ︷︷ ︸

N−1

T
,

E = diag
{
Inxi · · · Inxi

}︸ ︷︷ ︸
N−1

. (27)

Then, by defining 0 := diag
{
E I P−1i

}
and performing a

congruence transformation to (26) by 0, it yields−τ0 (N − 1)−1 E 0 ĀkiP
−1
i

? −γ 2I Ci(µi)P
−1
i

? ? ϒ(3, 3)

 < 0. (28)

whereϒ(3, 3) ,Sym
{
Ai(µi)P

−1
i

}
+τi(µi)I+Di(µi)DTi (µi).

For ∀i ∈ N , to carry out the SOF fuzzy controller design,
we specify P−1i as

P−1i = TciXiT Tci (29)

with

Xi =
[
Xi(1) 0
0 Xi(2)

]
, (30)

where 0 < Xi(1) = XTi(1) ∈ <
nyi×nyi , 0 < Xi(2) = XTi(2) ∈

<(nxi−nyi)×(nxi−nyi), and Tci are defined in (10).
Now, by substituting P−1i given by (29) into (28) and

extracting the fuzzy basis functions, the inequality (28) can
be rewritten as

ri∑
l=1

µ2
il8ill +

ri−1∑
l=1

ri∑
j=l+1

µilµij
[
8ilj +8ijl

]
< 0, (31)

where

8ilj =

−τ0 (N − 1)−1 E 0 ĀkiTciXiT Tci
? −γ 2I CiljTciXiT Tci
? ? 8ilj(3, 3)

 ,
Ailj = Ail +1Ail + (Bil +1Bil)KijCi,
8ilj(3, 3) = Sym

{
AiljTciXiT Tci

}
+ τilI+ DilDTil ,

Cilj = Lil + FilKijCi.

(32)

It follows from (10), (30), and (32) that

KijCiTciXi = Kij
[
I 0

] [Xi(1) 0
0 Xi(2)

]
8254 VOLUME 4, 2016
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=
[
KijXi(1) 0

]
=
[
K̄ij 0

]
= Kij, j ∈ Li, i ∈ N . (33)

Substituting (33) into 8ilj given by (32), together
with (2) and (3), it gets

8ilj = 8
(1)
ilj + Sym

{
H1il1il(t)H2ilj

}
, (34)

where

8
(1)
ilj =


8
(1)
ilj (1, 1) 0 ĀkiTciXiT Tci

? −γ 2I 8
(1)
ilj (2, 3)

? ? 8
(1)
ilj (3, 3)

 ,
8
(1)
ilj (3, 3) = Sym

{
AilTciXiT Tci + BilKijT Tci

}
+ τilI

+DilDTil ,8
(1)
ilj (2, 3) = LilTciXiT Tci + FilKijT Tci ,

HT
1il =

[
0 0 HT

1il

]
,Kij =

[
K̄ij 0

]
,

8
(1)
ilj (1, 1) = −τ0 (N − 1)−1 E ,

H2ilj =

[
0 0 H2ilTciXiT Tci + H3ilKijT Tci

]
,

E = diag
{
Inxi · · · Inxi

}︸ ︷︷ ︸
N−1

, Āki =

[
ĀT1i · · · Ā

T
ki,k 6=i · · · Ā

T
Ni

]
︸ ︷︷ ︸

N−1

T
.

(35)

In addition, by introducing scalar parameters εilj > 0,
(l, j) ∈ Li, i ∈ N and using Schur complement lemma and
Lemma 2 given in theAppendix, the inequalities (13) and (14)
can be obtained, thus completing this proof.
It is noted that the LMI conditions given by Theorem 1

are based on some assumptions on the measurement output
of the large-scale T-S fuzzy system (5). We can also make
the following assumptions on the input of each subsystem to
derive the LMI conditions similar to Theorem 1.

A5. The regulated outputs zi(t) do not contain the input
signal information, that is Fil = 0, l ∈ Li;
A6. the input matrices Bil, l ∈ Li are common,

i.e., Bil = Bi;
A7. the parametric uncertainties do not appear in the input

matrices Bi ;
A8. the input matrices Bi are of full column rank.
Due to the assumption that the input matrices Bi, i ∈ N are

of full column rank, there exist nonsingular transformation
matrices Tbi ∈ <nxi×nxi , i ∈ N satisfying [32]

TbiBi =
[

Inui
0(nxi−nui)×nui

]
, i ∈ N . (36)

It follows from the assumptions in A5-A8 that the closed-
loop fuzzy control system consisting (5) and (8) can be
expressed as,{
ẋi(t) = ˆAi(µi)xi (t)+

∑N
k=1,k 6=i Āikxk (t)+ B̂i(µi)wi (t)

zi(t) = Li(µi)xi(t), i ∈ N
(37)

where{
ˆAi(µi) = Ai(µi)+1Ai(µi)+ BiKi(µi)Ci(µi)

B̂i(µi) = BiKi(µi)Mi(µi)+ Di(µi).
(38)

Based on the closed-loop control system in (37), it is
easy to derive the LMI-based results similar to Theorem 1.
Due to the page length consideration, the corresponding
results are omitted here.
Remark 2: It is noted that the assumptions A1-A8 on the

system matrices are very restrictive in practical applications,
such as a well-known fuzzy model, i.e., inverted pendulum on
a cart, do not share a common input matrix. Thus, apart from
assumptions A1-A8, the method considering these system
matrix constraints is inapplicable to the decentralized SOF
fuzzy controller design.

In order to relax all restrictive assumptions on the system
matrices, a descriptor system approach [35], [36] is developed
to derive the LMI-based results for the robust decentralized
SOF H∞ fuzzy controller design.

By introducing virtual dynamics in the measurement
output, and using the descriptor system approach, the
closed-loop system consisting of (5) and (8) can be rewritten
as

ẋi(t) = (Ai(µi)+1Ai(µi)) xi (t)+
N∑

k=1,k 6=i
Āik (µi)xk (t)

+ (Bi(µi)+1Bi(µi))Ki(µi)yi(t)+ Di(µi)wi (t)
0 · ẏi(t) = Ci(µi)xi(t)− yi(t)+Mi(µi)wi (t)
zi(t) = Li(µi)xi(t)+ Fi(µi)Ki(µi)yi(t), i ∈ N .

(39)

Define x̄i (t) =
[
xTi (t) y

T
i (t)

]T , the closed-loop dynamics
in (39) can be expressed as the following descriptor system:

E1 ˙̄xi(t) = ¯Ai(µi)x̄i (t)+ R1
∑N

k=1,k 6=i Āik (µi)xk (t)

+ B̄i(µi)wi (t)
zi(t) = C̄i(µi)x̄i (t) , i ∈ N

(40)

where

¯Ai(µi) =

[
Ai(µi)+1Ai(µi) ¯A (1,2)

i (µi)
Ci(µi) −I

]
,

E1 =

[
I 0
0 0

]
, R1 =

[
I
0

]
, B̄i(µi) =

[
Di(µi)
Mi(µi)

]
,

C̄i(µi) =
[
Li(µi) Fi(µi)Ki(µi)

]
,

¯A (1,2)
i (µi) = (Bi(µi)+1Bi(µi))Ki(µi).

(41)

In accordance with the descriptor system in (40), we have
the following synthesis result.
Theorem 2: Consider the large-scale T-S fuzzy system in

(5). Then, given matrices Ji ∈ <nyi×nxi , i ∈ N , a decen-
tralized SOF fuzzy controller in the form (8) exists, and can
guarantee the asymptotic stability of the closed-loop fuzzy
control system with an H∞ disturbance attenuation level γ,
if there exist matrices 0 < X̄i(1) = X̄Ti(1) ∈ <

nxi×nxi , X̄i(2) ∈

VOLUME 4, 2016 8255



Z. Zhong et al.: Robust Decentralized Static Output-Feedback Control Design

<
nyi×nyi , K̄il ∈ <nui×nyi , and scalars 0 < η0 ≤ ηil, 0 < εilj,

such that for all i ∈ N the following LMIs hold:

9̄ill < 0, 1 ≤ l ≤ ri (42)

9̄ilj + 9̄ijl < 0, 1 ≤ l < j ≤ ri (43)

where

9̄ilj =

[
9
(1)
ilj + εiljH̄1ilH̄T

1il H̄T
2ilj

? −εiljI

]
,

9
(1)
ilj =


−η0 (N − 1)−1 E 0 Āki

[
X̄i(1) 0

]
? − γ 2I 9

(11)
ilj

? ? 9
(12)
ilj

,
9
(11)
ilj =

[
Lil X̄i(1) + FilK̄ijJi FilK̄ij

]
,

9
(12)
ilj =

[
DilDTil + ηilI DilMT

il

? MilMT
il + ηilI

]

+Sym

{[
Ail X̄i(1) + BilK̄ijJi BilK̄ij
Cil X̄i(1) − X̄i(2)Ji −X̄i(2)

]}
,

H̄T
1il =

[
0 0 H̄T

1il

]
, H̄T

1il =

[
HT
1il 0

]
,

H̄2ilj =
[
0 0 H̄2ilj

]
, E = diag

{
Inxi · · · Inxi

}︸ ︷︷ ︸
N−1

,

H̄2ilj =
[
H2ilXi(1) + H3ilK̄ijJi H3ilK̄ij

]
,

Āki =

[
ĀT1i · · · Ā

T
ki,k 6=i · · · Ā

T
Ni

]
︸ ︷︷ ︸

N−1

T
. (44)

Moreover, the corresponding controller gains are given by

Kil = K̄il X̄
−1
i(2), l ∈ Li, i ∈ N . (45)

Proof: Consider the following Lyapunov function,

V (t) =
N∑
i=1

Vi(t) =
N∑
i=1

x̄Ti (t)E
T
1 P̄ix̄i (t) (46)

with

P̄i =
[
P̄i(1) 0
P̄i(2) P̄i(3)

]
, i ∈ N (47)

where 0 < P̄i(1) = P̄Ti(1) ∈ <
nxi×nxi , P̄i(2) ∈ <nyi×nxi , P̄i(3) ∈

<
nyi×nyi , i ∈ N .
Then, by taking the time derivative of Vi(t) along the

trajectory of the descriptor system in (40), one has

V̇ (t) =
N∑
i=1

{
˙̄xTi (t)E

T
1 P̄ix̄i (t)+ x̄

T
i (t)E

T
1 P̄i ˙̄xi (t)

}

=

N∑
i=1

2


 ¯Ai(µi)x̄i (t)+ R1

N∑
k=1
k 6=i

Āik (µi)xk (t)

+ B̄i(µi)wi (t)T P̄ix̄i (t)




=

N∑
i=1

{
2
[
¯Ai(µi)x̄i (t)+ B̄i(µi)wi (t)

]T
P̄ix̄i (t)

}

+

N∑
i=1

2
R1 N∑

k=1
k 6=i

Āik (µi)xk (t)


T

P̄ix̄i (t)

. (48)
Introducing scalar parameters 0 < ηi0 ≤ ηi(µi), ηi(µi) :=

ri∑
l=1
µilηil , i ∈ N , and follows (19) and (20) that (48) can be

rewritten as

V̇ (t) ≤
N∑
i=1

{
2
[
¯Ai(µi)x̄i (t)+ B̄i(µi)wi (t)

]T
P̄ix̄i (t)

}

+

N∑
i=1

η−1i (µi)

R1 N∑
k=1
k 6=i

Āik (µi)xk (t)


T

[R1

×

N∑
k=1
k 6=i

Āik (µi)xk (t)




+

N∑
i=1

{
ηi(µi)x̄Ti (t) P̄

T
i P̄ix̄i (t)

}
≤

N∑
i=1

{
2
[
¯Ai(µi)x̄i (t)+ B̄i(µi)wi (t)

]T
P̄ix̄i (t)

}

+

N∑
i=1

η−10 (N − 1)
N∑
k=1
k 6=i

xTi (t)Ā
T
kiĀkixi(t)


+

N∑
i=1

{
ηi(µi)x̄Ti (t) P̄

T
i P̄ix̄i (t)

}
. (49)

Furthermore, it follows a similar line as the proof process
in Theorem 1, we have

J (t) ≤
N∑
i=1

Ji(t)+ Vi(∞)− Vi(0)

=

N∑
i=1

∫
∞

0

{
V̇i(t)+ γ−2zTi (t)zi(t)− w

T
i (t)wi (t)

}
dt

≤

N∑
i=1

∫
∞

0
x̃Ti (t)

{[
2̄i(µi) P̄Ti B̄i(µi)
? −I

]}
x̃i (t) dt,

(50)

where x̃i (t) =
[
xTi (t) w

T
i (t)

]T , and
2̄i(µi) = Sym

{
¯A T
i (µi)P̄i

}
+ η−10 (N − 1)

N∑
k=1
k 6=i

R1ĀTki

×ĀkiRT1 + γ
−2C̄ T

i (µi)C̄i(µi)+ ηi(µi)P̄Ti P̄i. (51)
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It is clear to see from (50) that the closed-loop fuzzy control
system consisting of (5) and (8) is asymptotically stable with
a prescribed H∞ disturbance attenuation level γ under zero
initial conditions for any nonzero w̃ ∈ L2 [0∞), if the
following inequalities hold:[

2̄i(µi) P̄Ti B̄i(µi)
? −I

]
< 0, i ∈ N . (52)

By applying Schur complement, the inequality in (52) can
be rewritten as−η0 (N − 1)−1 E 0 ĀkiRT1

? −γ 2I C̄i(µi)
? ? 0(3, 3)

 < 0, (53)

where

0(3, 3) = Sym
{
¯A T
i (µi)P̄i

}
+ P̄Ti B̄i(µi)B̄T

i (µi)P̄i

+ ηi(µi)P̄Ti P̄i,

Āki =

[
ĀT1i · · · Ā

T
ki,k 6=i · · · Ā

T
Ni

]
︸ ︷︷ ︸

N−1

T
,

E = diag
{
Inxi · · · Inxi

}︸ ︷︷ ︸
N−1

. (54)

In addition, it follows from (41) and (47) that

¯A T
i (µi)P̄i =

[
Ai(µi)+1Ai(µi) B̃i(µi)

Ci(µi) −I

]T
(55)

×

[
P̄i(1) 0
P̄i(2) P̄i(3)

]
=

[
ÃTi (µi) C

T
i (µi)P̄i(3)

K̃T
i (µi) −P̄i(3)

]
. (56)

where B̃i(µi) = (Bi(µi)+1Bi(µi))Ki(µi), ÃTi (µi) =(
ATi (µi)+1A

T
i (µi)

)
P̄i(1) + CT

i (µi)P̄i(2), K̃T
i (µi) =

KT
i (µi)

(
BTi (µi)+1B

T
i (µi)

)
P̄i(1) − P̄i(2).

Then, it is not hard to get from (55) that the inequality (53)
implies −P̄i(3) − P̄Ti(3) < 0, thus the Lyapunov matrices P̄i,
i ∈ N are nonsingular. Now, defining 0̄ := diag

{
E I P̄−Ti

}
,

and performing the congruence transformation to (53) by
0̄ and 0̄T , respectively, it yields−η0 (N − 1)−1 E 0 ĀkiRT1 P̄

−1
i

? −γ 2I C̄i(µi)P̄
−1
i

? ? 4(3, 3)

 < 0. (57)

where 4(3, 3) = Sym
{
P̄−Ti ¯A T

i (µi)
}
+ B̄i(µi)B̄T

i (µi) +
ηi(µi)I.

In order to cast the inequality (56) into LMI conditions, we
define X̄i = P̄−1i , and it follows from (47) that X̄i is specified
as

X̄i =
[
X̄i(1) 0
X̄i(2)Ji X̄i(2)

]
, i ∈ N (58)

where 0 < X̄i(1) = X̄Ti(1) ∈ <
nxi×nxi , Ji ∈ <nyi×nxi , X̄i(2) ∈

<
nyi×nyi , i ∈ N .

Now, by substituting X̄i given by (57) into (56) and extract-
ing the fuzzy basis functions, the inequality (56) can be
rewritten as

ri∑
l=1

µ2
il9ill +

ri−1∑
l=1

ri∑
j=l+1

µilµij
[
9ilj +9ijl

]
< 0, (59)

where

9ilj =

−η0 (N − 1)−1 E 0 ĀkiRT1 X̄i
? −γ 2I C̄iljX̄i
? ? 9ilj(3, 3)

,
¯Ailj =

[
Ail +1Ail (Bil +1Bil)Kij

Cil −I

]
,

B̄il =

[
Dil
Mil

]
, C̄ilj =

[
Lil FilKij

]
.

(60)

where 9ilj(3, 3) = Sym
{
X̄Ti ¯A T

ilj

}
+ B̄ilB̄T

il + ηilI.

It can be seen from (57) and (59) that the matrix X̄i(2)
can be absorbed by the controller gain variable Kij by
introducing

K̄ij = KijX̄i(2), j ∈ Li, i ∈ N . (61)

Then, by introducing scalar parameters εilj > 0, (l, j) ∈
Li, i ∈ N , and it follows a similar line as in the proof of
Theorem 1 that the inequalities (42) and (43) can be obtained,
thus completing this proof.

In the followings, motivated by [37], we will introduce an
alternative descriptor representation to the robust decentral-
ized SOFH∞ controller design. An auxiliary system is firstly
given by

0 · ẋi(t) = xi (t)− xi (t) . (62)

Combining with (39) and (61), we can also obtain the
following descriptor representation,

ẋi(t) = (Ai(µi)+1Ai(µi)) xi (t)+
N∑

k=1,k 6=i
Āik (µi)xk (t)

+ (Bi(µi)+1Bi(µi))Ki(µi)yi(t)+ Di(µi)wi (t)
0 · ẋi(t) = xi (t)− xi (t)
0 · ẏi(t) = Ci(µi)xi(t)− yi(t)+Mi(µi)wi (t)
zi(t) = Li(µi)xi(t)+ Fi(µi)Ki(µi)yi(t), i ∈ N .

(63)

Define x̃i (t) =
[
xTi (t) x

T
i (t) y

T
i (t)

]T
, the closed-loop

dynamics in (62) is rewritten as
E2 ˙̃xi(t) = ˜Ai(µi)x̃i (t)+ R2

∑N
k=1,k 6=i Āik (µi)xk (t)

+ B̃i(µi)wi (t)
zi(t) = C̃i(µi)x̃i (t) , i ∈ N

(64)
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where

˜Ai(µi) =

 0 ˜Ai(µi)(1, 2) ˜Ai(µi)(1, 3)
I −I 0

Ci(µi) 0 −I

,
˜Ai(µi)(1, 2) = Ai(µi)+1Ai(µi),

R2 =
[
I 0 0

]T
,

˜Ai(µi)(1, 3) = (Bi(µi)+1Bi(µi))Ki(µi),

E2 =

 I 0 0
0 0 0
0 0 0

, B̃i(µi) =

 Di(µi)
0

Mi(µi)

,
C̃i(µi) =

[
0 Li(µi) Fi(µi)Ki(µi)

]
.

(65)

In terms of the descriptor system in (63), we consider the
following Lyapunov function:

V (t) =
N∑
i=1

Vi(t) =
N∑
i=1

x̃Ti (t)E
T
2 P̃ix̃i (t) (66)

with

P̃i =

 P̃i(1) 0 0
P̃i(2) P̃i(3) P̃i(4)
P̃i(5) P̃i(6) P̃i(7)

, i ∈ N (67)

where 0 < P̃i(1) = P̃Ti(1),
{
P̃i(1), P̃i(2), P̃i(3)

}
∈ <

nxi×nxi ,

P̃i(4) ∈ <nxi×nyi ,
{
P̃i(5), P̃i(6)

}
∈ <

nyi×nxi , P̃i(7) ∈ <nyi×nyi ,
i ∈ N .
Similarly, it can be known that the Lyapunov matrices

P̃i, i ∈ N are nonsingular. Now, in order to derive an
LMI-based result, we define X̃i = P̃−1i , and specify X̃i as

X̃i =

 X̃i(1) 0 0
X̃i(2) X̃i(3) X̃i(4)
X̃i(5)J̄i X̃i(5)J̄i X̃i(5)

, i ∈ N (68)

where 0 < X̃i(1) = X̃Ti(1),
{
X̃i(1), X̃i(2), X̃i(3)

}
∈ <

nxi×nxi ,

X̃i(4) ∈ <nxi×nyi , J̄i ∈ <nyi×nxi , X̃i(5) ∈ <nyi×nyi , i ∈ N .
Based on (63)-(67), and following a similar line as the

derivations in Theorem 2, we can readily obtain the suc-
ceeding results on the decentralized robust SOF H∞ fuzzy
controller design for the large-scale T-S fuzzy system (5).
Theorem 3: Consider the large-scale T-S fuzzy system in

(5). Then, given matrices J̄i ∈ <nyi×nxi , i ∈ N , a decen-
tralized SOF fuzzy controller in the form (8) exists, and can
guarantee the asymptotic stability of the closed-loop fuzzy
control system with an H∞ disturbance attenuation level
γ, if there exist matrices 0 < X̃i(1) = X̃Ti(1) ∈ <

nxi×nxi ,{
X̃i(2), X̃i(3)

}
∈ <

nxi×nxi , X̃i(4) ∈ <nxi×nyi , X̃i(5) ∈ <nyi×nyi ,

K̄il ∈ <nui×nyi , and scalars 0 < ρ0 ≤ ρil , 0 < νilj, such that
for all i ∈ N the following LMIs hold:

�̄ill < 0, 1 ≤ l ≤ ri (69)

�̄ilj + �̄ijl < 0, 1 ≤ l < j ≤ ri (70)

where

�̄ilj =

[
�
(1)
ilj + νiljH̃1ilH̃T

1il H̃T
2ilj

? −νiljI

]
,

�
(1)
ilj =


�
(1)
ilj (1, 1) 0 Āki

[
X̃i(1) 0 0

]
? −γ 2I �

(11)
ilj

? ? �
(12)
ilj

,
�
(1)
ilj (1, 1) = −ρ0 (N − 1)−1 E ,

�
(11)
ilj =

[
�
(11)
ilj (1, 1) �(11)ilj (1, 2) Lil X̃i(4) + FilK̄ij

]
,

�
(11)
ilj (1, 1) = Lil X̃i(2) + FilK̄ijJ̄i,

�
(11)
ilj (1, 2) = Lil X̃i(3) + FilK̄ijJ̄i,

�
(12)
ilj =

DilD
T
il + ρilI 0 DilMT

il

? ρilI 0
? ? MilMT

il + ρilI


+Sym


 �

(12)
ilj (1, 1) �

(12)
ilj (1, 2) �

(12)
ilj (1, 3)

X̃i(1) − X̃i(2) −X̃i(3) −X̃i(4)
�
(12)
ilj (3, 1) −X̃i(5)J̄i −X̃i(5)


,

�
(12)
ilj (1, 1) = Ail X̃i(2) + BilK̄ijJ̄i,

�
(12)
ilj (1, 2) = Ail X̃i(3) + BilK̄ijJ̄i,

�
(12)
ilj (1, 3) = Ail X̃i(4) + BilK̄ij,

�
(12)
ilj (3, 1) = Cil X̃i(1) − X̃i(5)J̄i,

H̃T
1il =

[
0 0 H̃T

1il

]
, H̃T

1il =

[
HT
1il 0 0

]
,

H̃2ilj =

[
0 0 H̃2ilj

]
,

H̃2ilj(1, 1) = H2il X̃i(2) + H3ilK̄ijJ̄i,

H̃2ilj(1, 2) = H2il X̃i(3) + H3ilK̄ijJ̄i,

H̃2ilj(1, 3) = H2il X̃i(4) + H3ilK̄ij,

H̃2ilj =

[
H̃2ilj(1, 1) H̃2ilj(1, 2) H̃2ilj(1, 3)

]
,

E = diag
{
Inxi . . . Inxi

}︸ ︷︷ ︸
N−1

, Āki =

[
ĀT1i . . . Ā

T
ki,k 6=i . . . Ā

T
Ni

]
︸ ︷︷ ︸

N−1

T
.

(71)

Moreover, the corresponding controller gains are given by

Kil = K̄il X̃
−1
i(5), l ∈ Li, i ∈ N . (72)

Remark 3: Compared with the conditions obtained in The-
orem 2, more variables are considered in Theorem 3 due
to the introduction of (67), which implies that the results
obtained via solving (68)-(71) offer more freedom and will be
accordingly less conservative in achieving a better H∞ dis-
turbance attenuation performance. The explicit verification
on it will be achieved in the next section.

IV. NUMERICAL EXAMPLES
In this section, two illustrative numerical examples are uti-
lized to verify the effectiveness of the developed robust
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decentralized SOF H∞ fuzzy controller design methods in
this paper.
Example 1: Consider a double-inverted pendulums system

connected by a spring, the modified equations of the motion
for the interconnected pendulum are given by [26]:

ẋi1 = xi2

ẋi2 = −
kr2

4Ji
xi1 +

kr2

4Ji
sin(xi1)xi2 +

2
Ji
xi2 +

1
Ji
ui

+

2∑
j=1,j 6=i

kr2

8Ji
xj1, i = {1, 2}

where xi1 denotes the angle of the i-th pendulum from the
vertical; xi2 is the angular velocity of the i-th pendulum.

FIGURE 2. A concise framework on the decentralized SOF control.

The objective here is to design a robust decentralized SOF
fuzzy controller in the form of (8) such that the resulting
closed-loop system is asymptotically stable with an H∞
disturbance attenuation level γ. A concise framework on the
decentralized SOF control is shown in Fig. 2. In this simula-
tion, the masses of two pendulums are chosen as m1 = 2 kg
and m2 = 2.5 kg; the moments of inertia are J1 = 2 kg ·m2

and J2 = 2.5 kg·m2; the constant of the connecting torsional
spring is k = 8 N/m; the length of the pendulum is r = 1
m; the gravity constant is g = 9.8 m/s2. We choose two
local models, i.e., by linearizing the interconnected pendulum
around the origin and xi1 = (±88◦, 0), respectively, each
pendulum can be represented by the following T-S fuzzy
model with two fuzzy rules.

Plant Rule Rl
i : IF xi1(t) is F l

i1, THEN
ẋi(t) = Ailxi (t)+

2∑
k=1
k 6=i

Āikxk (t)+ Bilui (t)+ Dilwi (t)

yi(t) = Cilxi(t)
zi(t) = Lilxi(t)+ Filui (t) , l = {1, 2} , i = {1, 2}

where[
A11 A12 Ā12 B1l

]
=

[
0 1 0 1 0 0 0

8.81 0 5.38 0 0.25 0 0.5

]
D1l =

[
0
0.5

]
, C1l =

[
1 1

]
,

L1l =
[
1 0

]
, F1l = 1

for the first subsystem, and[
A21 A22 Ā21 B2l

]
=

[
0 1 0 1 0 0 0

9.01 0 5.58 0 0.20 0 0.5

]
D2l =

[
0
0.5

]
, C2l =

[
1 1

]
,

L2l =
[
1 0

]
, F2l = 1

for the second subsystem.

FIGURE 3. Membership functions in Example 1.

The normalized membership functions are shown in Fig. 3,
where ri = 88◦. The parameter uncertainties are assumed to
be the form of (2) as follows:

1Ail =
[

0
0.1

]
sin(t)

[
0.2 0

]
, l = {1, 2} , i = {1, 2} .

For the control design result given in Theorems 1-3, des-

ignating the transformation matrices Tc1 = Tc2 =
[
1 1
0 −1

]
,

J1 = J2 =
[
1 1

]
, J̄1 = J̄2 =

[
1 1

]
, and the measurement

noises Mil = 0.1, (i, l) = {1, 2}, considering the measure-
ment noises or not, the minimum H∞ performance γmin and
the corresponding controller gains are calculated respectively
as listed in Table 1.

Given the initial conditions x1(0) = [1.2, 0]T , x2(0) =
[0.8, 0]T , Fig. 4 shows that the double-inverted pendulums
system is not stable in the open-loop case. Taken the con-
troller gains resolved by Theorem 3, Fig. 5 shows the state
responses for the closed-loop large-scale system. Then, con-
sidering the external disturbances w1(t) = 0.8e−0.2t sin(0.2t)
and w2(t) = 0.6e−0.2t sin(0.2t), it can be observed from
Fig. 6 that the desired H∞ performance is satisfactory under
zero initial conditions, which fully demonstrates the effec-
tiveness of the developed decentralized SOF H∞ fuzzy con-
troller design method.
Example 2: Consider a continuous-time large-scale

T-S fuzzy system in the form of (1) with two interconnected
subsystems as follows:
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TABLE 1. Values of minimum H∞ performance indexes and controller gains for different cases in Example 1.

FIGURE 4. State responses for open-loop double-inverted pendulums
system.

Plant Rule Rl
i : IF xi1(t) is F l

i1, THEN
ẋi(t) = (Ail +1Ail) xi (t)+

∑2
k=1,k 6=i Āiklxk (t)

+Bilui (t)+ Dilwi (t)
yi(t) = Cilxi(t)
zi(t) = Lilxi(t)+ Filui (t) , l = {1, 2} , i = {1, 2}

where [
A11 A12 B11 B12 H11l
Ā121 Ā122 D11 D12

]

=


a 1.8 a 1.6 0.4 0.3 0
0 0 0 0 0.5 0.4 0.1

0.15 0 0.14 0 0 0
0 0 0 0 0.5 0.4



FIGURE 5. State responses for closed-loop double-inverted pendulums
system based on Theorem 3.[

C1l L1l F1l H21l
]

=
[
1 0 0.8 0 1 0.2 0

]
for the first subsystem, and[

A21 A22 B21 B22 H12l
Ā211 Ā212 D21 D22

]

=


a 1.6 a 1.4 0.3 0.4 0
0 0 0 0 0.5 0.6 0.2

0.14 0 0.13 0 0 0
0 0 0 0 0.5 0.4


[
C2l L2l F2l H22l

]
=
[
1 0 0.8 0 1 0.3 0

]
for the second subsystem.
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TABLE 2. Values of minimum H∞ performance indexes and controller gains for different cases in Example 2.

TABLE 3. Comparison of minimum H∞ performance indexes for different cases of Example 2.

FIGURE 6. Response of H∞ performance based on Theorem 3.

It is straightforward to see that these two open-loop sub-
systems are not asymptotically stable. The objective here is
to design a decentralized robust SOF fuzzy controller in the
form of (8) such that the closed-loop fuzzy control system
is asymptotically stable with an H∞ disturbance attenuation
level γ. Given a = 0.1, J1 = J2 =

[
1 1

]
, J̄1 = J̄2 =

[
1 1

]
,

and the measurement noises Mil = 0.1, (i, l) = {1, 2}, the
values of optimal H∞ disturbance attenuation level γmin and
the desired controller gains are obtained in Table 2 consider-
ing the cases with measurement noises or not, respectively.

For the system with Mil = 0.1, designating J1 = J2 =[
1 1

]
and J̄1 = J̄2 =

[
1 1

]
, a more detailed comparison

between the obtained minimum H∞ performance indexes,
which based on different methods, is summarized in Table 3
for different parameters a. It can be seen from Table 3 that
Theorem 3 gives much better results than the ones calculated
via Theorem 2, which clearly verifies the conjecture given in
Remark 3.

V. CONCLUSIONS
In this paper, the robust decentralized SOF H∞ fuzzy
controller design has been investigated for a class of

continuous-time large-scale T-S fuzzy systems. A descriptor
system approach by considering different virtual dynamics is
adopted to derive the results with less conservatism. Through
some matrix inequality linearization techniques, it has been
shown that the SOF fuzzy controller gains can be calculated
by solving a set of LMIs, and the resulting closed-loop fuzzy
control system is asymptotically stable under a prescribed
H∞ disturbance attenuation level. Two illustrative examples
have been provided to verify the effectiveness of the devel-
oped methods. An interesting problem for future research
is to deal with the robust decentralized SOF control design
for large-scale systems with the aid of non-deterministic
switched system approach including dwell time switching
[38], average dwell time switching [39] and persistent dwell
time switching [40].

APPENDIX
Lemma 1 (Jensen’s Inequality [41]): For any constant

positive semidefinite symmetric matrix W ∈ <n×n, W T
=

W ≥ 0, two positive integers d2 and d1 satisfy d2 ≥ d1 ≥ 1,
the following inequality holds d2∑

k=d1

x (k)

T

W

 d2∑
k=d1

x (k)

 ≤ d̄ d2∑
k=d1

xT (k)Wx (k) ,

where d̄ = d2 − d1 + 1.
Lemma 2 [42]: Let matrices M = MT , S, N , and 1(t) be

real matrices of appropriate dimensions, the inequality

M + Sym {S1(t)N } < 0

holds for all 1T (t)1(t) ≤ I if and only if for some positive
scalar ε > 0 such that

M + εSST + ε−1NTN < 0.
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