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ABSTRACT For a seamless deployment of the Internet of Things (IoT), there is a need for self-organizing
solutions to overcome key IoT challenges that include data processing, resource management, coexistence
with existingwireless networks, and improved IoT-wide event detection. One of themost promising solutions
to address these challenges is via the use of innovative learning frameworks that will enable the IoT devices
to operate autonomously in a dynamic environment. However, developing learning mechanisms for the
IoT requires coping with unique IoT properties in terms of resource constraints, heterogeneity, and strict
quality-of-service requirements. In this paper, a number of emerging learning frameworks suitable for
IoT applications are presented. In particular, the advantages, limitations, IoT applications, and key results
pertaining to machine learning, sequential learning, and reinforcement learning are studied. For each type
of learning, the computational complexity, required information, and learning performance are discussed.
Then, to handle the heterogeneity of the IoT, a new framework based on the powerful tools of cognitive
hierarchy theory is introduced. This framework is shown to efficiently capture the different IoT device
types and varying levels of available resources among the IoT devices. In particular, the different resource
capabilities of IoT devices are mapped to different levels of rationality in cognitive hierarchy theory, thus
enabling the IoT devices to use different learning frameworks depending on their available resources. Finally,
key results on the use of cognitive hierarchy theory in the IoT are presented.

INDEX TERMS Internet of things, machine learning, learning.

I. INTRODUCTION
The Internet of Things (IoT) is a complex ecosystem
that will interconnect smartphones, tablets, machine type
devices (MTDs), people, and mundane objects into a large-
scale interconnected network [1], [2]. Such a pervasive
ecosystem will deliver innovative applications and ser-
vices including drone-based services [3]–[5], smart grid
features [6]–[8], and new healthcare applications [2].
An effective delivery of such IoT services requires a
reliable wireless infrastructure that can enable communi-
cations within the heterogeneous IoT environment. Such
wireless systems can range from the popular wireless cel-
lular network to the emerging long-range wide-area net-
work (LoRaWAN) [9]. However, there are many challenges
in incorporating the IoT devices into wireless systems that
include processingmassive volumes of data, coexistence with
existing systems, stringent resource constraints, new quality-
of-service (QoS) requirements, and heterogeneity in traffic
patterns and device types [1].

These challenges motivate the deployment of novel
resource management mechanisms using which the scarce
wireless resources, such as power and frequency, can be
properly managed while being cognizant of the unique nature
of communications in the IoT [1]. IoT devices, such as
MTDs, will inherently exhibit stringent resource constraints
in terms of memory, energy, and computation. The coex-
istence of human-to-human (H2H) communications with
machine-to-machine (M2M) communications must also be
properly managed so as not to jeopardize the QoS of exist-
ing H2H services while also meeting the QoS of new
IoT services. Moreover, while conventional H2H services
typically seek to maximize data rates, IoT services may be
more concerned with reliability or latency [10], [11], thus
bringing forward new QoS challenges for resource manage-
ment. Furthermore, unlike in conventional systems, the IoT
will have a communication bottleneck in the uplink, because
typical IoT applications, such as smart sensing or wearable
communications, will mostly be uploading collected data to
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a base station (BS) rather than downloading information from
the BS [1].

To develop resource management mechanisms tailored
to the IoT, different approaches, such as optimization
theory [12]–[14] or game theory [15], have been applied.
In this regard, optimization techniques are often central-
ized, which can incur unnecessary overhead and will thus
require constant, energy-consuming communication between
the energy limited IoT devices and BS. Moreover, most
optimization frameworks cannot naturally handle the hetero-
geneity of IoT devices without significant additional over-
head. One recently proposed solution was via the use of
multi-objective optimization [16], however, such an approach
is often suboptimal and may not scale well as the net-
work size increases. One other promising resource manage-
ment approach for the IoT is via the use of game-theoretic
solutions [15]. However, to achieve such game-theoretic solu-
tions, there is a need for distributed algorithms that can con-
verge to an equilibrium in a timely manner. Indeed, the design
of such algorithms is essential to practically deploy any game-
theoretic construct within a real-world wireless system, such
as the IoT.

One effective approach to overcome the aforementioned
challenges and enable self-organizing operation of the IoT
is via the use of learning frameworks. Learning will allow
the IoT devices to adapt to their dynamic environment, adjust
their performance parameters, learn and process statistical
information gathered from the users and other IoT devices,
and optimize the overall system performance [17]–[20]. For
the IoT, learning frameworks are particularly useful for man-
aging limited resources and handling the aforementioned IoT
properties [21]–[23]. Indeed, learning techniques are inher-
ently distributed, thus enabling the IoT devices to operate
without draining their limited energy by communicating con-
stantly with a centralized controller. Furthermore, if properly
designed, learning can be computationally simple, and the
IoT devices can learn their resource management parameters
in a timely manner to meet QoS requirements. Moreover,
learning enables the IoT devices to adapt to the dynamic envi-
ronment autonomously with minimal human intervention.
Despite the promising outlook of using learning techniques
in the IoT, it is necessary to carefully design such techniques
to account for various unique IoT properties, such as the
resource limitations of the devices and the heterogeneity of
the system.

To allow IoT devices with heterogeneous resource capabil-
ities to use different suitable learning frameworks, cognitive
hierarchy theory [24], [25] can be used to capture the hetero-
geneity in available resources, such as computation, memory,
and energy, in a hierarchy of devices ranging from sensors to
smartphones. Cognitive hierarchy theory is a mathematical
framework that captures different levels of agent rationality,
which, in the IoT, correspond to different levels of resources
available to the IoT devices. Since IoT devices with more
resources available will be able to performmore sophisticated
optimization, the use of cognitive hierarchymodels will allow

these devices to use different learning techniques depending
on their resources and thus provide more realistic model
of IoT.

The main contribution of this article is to provide a com-
prehensive overview on the use of learning techniques within
the scope of the IoT. Despite some recent surveys on the
challenges of wireless communications in the IoT, such as
in [26] and [27], none of these works have investigated
the potential of developing learning techniques for the IoT.
As such, to our best knowledge, this will be the first com-
prehensive tutorial on this topic. First, we discuss the various
types of learning frameworks that are suitable to address a
number of key challenges of the IoT. Then, for each learning
approach, we outline the basic concepts, main challenges,
potential applications, and key results. Subsequently, to han-
dle system heterogeneity, we introduce the basics of cognitive
hierarchy theory and its application to the IoT. Then, we draw
the key connections between cognitive hierarchy theory and
the different classes of learning algorithms overviewed. We
conclude by summarizing the potential of learning in the IoT.

The rest of this paper is organized as follows. In Section II,
we present the motivations and challenges of applying learn-
ing frameworks in the IoT. Section III discusses the advan-
tages, limitations, and applications of the learning frame-
works within the scope of the IoT. In Section IV, we introduce
cognitive hierarchy theory and analyze its implementation
with learning frameworks in the IoT. Finally, we summarize
our key findings in Section V.

II. LEARNING IN THE IoT: MOTIVATION
AND CHALLENGES
A. MOTIVATION
The sheer scale of the IoT makes it impractical to manage the
devices manually, and, hence, it is essential to operate the
devices in a self-organizing manner, with minimal human
intervention. Moreover, the devices will be deployed in vari-
ous environments depending on their applications. Examples
include deployments in an urban area with many diverse
devices, a distant forest with few sensors for environmental
monitoring, an indoor environment for home automation, or a
rural area with devices spread across a large field for agricul-
tural applications. Furthermore, the deployment environment
for the IoT will be highly dynamic due to unpredictable
events, such as weather conditions, power outages, or medical
emergencies. Such unpredictable events will trigger uplink
transmission links that must be serviced with low latency
and high reliability due to their urgent nature [22]. However,
satisfying the QoS requirements of such uplink transmissions
is challenging, because existing wireless networks have been
designed primarily for H2H communications and the sheer
scale of the IoT will strain their resources, thus requiring new
approaches for enhancing network operation.

The adaption of learning techniques will provide an effec-
tive solution for enabling the IoT devices to adapt to dynamic
environments, manage their limited resources, and satisfy
the stringent QoS requirements. To manage its resource
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consumption, an IoT device can learn about its environment,
devices, users, and their usage patterns. For instance, MTDs
can learn about their usage patterns in terms of peak workload
intervals to adjust their status, such as active or sleep, to
minimize the energy consumption [21]. Moreover, learning
can be used to coordinate the usage of limited radio resources
among the IoT devices and human type devices (HTDs).
For example, unpredictable events may trigger uplink com-
munication links with stringent QoS requirements. Here, by
using a proper learning framework, the uplink communica-
tion resources can be allocated for the IoT devices that are
sending the data pertaining to the unpredictable events in a
way to minimize the effects, such as throughput reduction
or increased latency, on the normal uplink communications
of IoT. Furthermore, learning can also enable the IoT to
process and learn from the massive volume of data collected
from the IoT devices. Indeed, learning is a key enabler for
big data analytics that will be used to process the data related
to the IoT, its human users, and its environment. Therefore,
learning techniques in the IoT can be used to extend the
lifetime of IoT devices, to mitigate the uplink communication
bottleneck, to promote a coexistence of IoT and pre-existing
systems, and to process the massive data from IoT.

B. CHALLENGES
To effectively use learning for solving IoT-centric problems,
several challenges that stem from the unique characteristics
and requirements related to the IoT and its devices must be
met, as described next.

• A key property of low-cost, low-capability MTDs is low
computational capability as discussed in [1] and [18].
However, existing learning frameworks, such as decision
trees [18] or reinforcement learning [13], [28], can be
computationally complex to be adapted by the resource-
constrained MTDs.

• Energy limited MTDs are expected to have extended
lifetimewithminimal human intervention as pointed out
in [2], [12], and [29]. Since a centralized learning frame-
work will require a constant communication with the BS
and potentially cause an excessive energy consumption,
learning for the IoT devices must be distributed. More-
over, the MTDs may be deployed in adverse locations
in which the BS is not always accessible to deploy a
centralized framework. Therefore, a distributed learning
technique is needed to lower energy consumption and
enable the IoT devices to be self-organizing.

• To implement distributed learning methods in the IoT,
the necessary information, such as the actions of other
IoT devices, may need to be collected via resource con-
suming M2M communication links. However, with a
lack of radio resources in the IoT and energy constraints
of the IoT devices as pointed out in [1], [2], and [18], a
frequent M2M communication to collect the necessary
information for learning is not viable for the IoT devices,
and thus they may have limited information available.
Therefore, any deployed learning framework must be

able to accurately adjust the performance parameters
with limited information.

• Certain IoT applications, such as industrial control or
health monitoring, are of critical importance, and thus
such applications require ultra-reliable, low-latency
communication as discussed in [10], [11], and [30].
To satisfy such QoS requirements, the IoT devices must
quickly learn to adjust their performance parameters.
Therefore, the time necessary to converge to a steady
state must be short.

• The IoT may be deployed using an existing wireless
network, and thus M2M communication will coexist
with pre-existing communication links as pointed out
in [1] and [27]. In particular, the IoT is likely to be
deployed over awireless cellular network inwhichM2M
communications will have to coexist with H2H com-
munications. For harmonious coexistence, the learning
techniques for the IoTmust consider both existing traffic
and the new traffic potentially stemming from the IoT.
This is due to the fact that coexisting wireless networks
will inevitably impact each other due to factors, such
as interference, and it is necessary to not disrupt the
existing network and its services.

To address the aforementioned challenges, next, we intro-
duce different classes of learning techniques, while providing
a key overview on their applicability to the IoT.

III. CLASSIFICATION OF LEARNING
FRAMEWORKS FOR THE IoT
Learning has been developed for many disciplines ranging
from socioeconomic to mathematical modeling which has
led to a variety of learning frameworks having different
properties, objectives, and capabilities, such as in [17], [18],
[20], [22], [23], and [31]. For the IoT, there is no single
learning framework that can be used to overcome all of
its aforementioned challenges, and, thus, it is necessary to
characterize the key learning frameworks that can be useful
for various IoT applications. For each such framework, one
needs to identify the main advantages and limitations. For
example, a learning framework that is computationally simple
but requires a long time to converge is suitable for the delay-
tolerant IoT applications involving simple sensors, however,
this will not be viable for critical applications requiring low
latency.

To this end, we propose to classify the rich literature
on learning into three classes of learning frameworks that
include: a) machine learning, b) sequential learning, and c)
reinforcement learning. This classification will allow us to
discuss the main benefits of implementing each class in the
IoT and to determine the learning frameworks that are suit-
able for a given aspect of the IoT. Indeed, machine learning,
sequential learning, and reinforcement learning are proven
to be particularly useful to address problems pertaining to
big data analytics, enhanced event detection, and resource
management, respectively, as in [18], [22], and [23]. For
each class of learning, we will identify the main advantages,
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challenges, IoT applications, and key results. In addition,
we will identify their inherent properties, in terms of com-
putations, information requirement, and capabilities. Here,
we note that, although learning has been very popular for
wireless networks [28], there has not been yet any compre-
hensive overview on applicability and limitations of learning
in the IoT.

A. MACHINE LEARNING
1) KEY CONCEPTS OF MACHINE LEARNING
Machine learning (ML) techniques were originally developed
for allowing computers to autonomously learn information
from existing data sets and, subsequently, build suitable
models to make a decision on future actions and behaviors
as discussed in [17] and [18]. ML techniques are typically
categorized into supervised and unsupervised learning [17].
Supervised learning requires a labeled training data, while
unsupervised learning, such as clustering, does not require
labels. However, unsupervised learning is more computa-
tionally complex than supervised learning. Furthermore, for
certain ML techniques, there may be specific requirements
for the training data set. For instance, decision trees require
the data set to be linearly separable [17].

Using the training data set,ML techniques can build regres-
sion models to determine the relationship between the vari-
ables, divide the feature space to classify the unlabeled data
points, cluster the data points to divide into different groups,
or lower the dimensionality of feature space by removing
the correlated features as discussed in [2], [17], and [32].
However, ML techniques may be computationally complex
and implicitly require a central entity with significantly high
computational capabilities. Therefore, ML techniques are
often centralized.

2) LIMITATIONS AND OPPORTUNITIES OF ML FOR THE IoT
The biggest limitation of applying ML in IoT scenarios is
that ML requires an extensive data set, such as the informa-
tion of sensor locations and corresponding sensor measure-
ments [18], for good performance. Such a data set needs to
be quickly processed for the IoT devices to learn the envi-
ronment, but the resource-constrained IoT devices may not
be able to store and process the data set given that they have
limited resources in terms of computation and memory [32].
Furthermore, supervised learning requires a labeled training
data set, which can require human intervention to provide the
correct labels. This is due to the fact that assuming that the
IoT devices are able to label the data points correctly and
autonomously would imply that their learning is already done
a priori. Therefore, the use of ML must be properly tailored
to such IoT features and device limitations.

Nonetheless, ML has been recently used in the IoT as
a centralized framework as in [18] and [33]–[35]. This is
because a cloud-based centralized processing unit can be
used to implement effective ML schemes. Since ML has a
great potential in processing and analyzing the massive data

collected in an IoT environment as discussed in [2] and [33],
such a cloud-based processing unit will allow the IoT to
run the ML techniques for big data analytics purposes [2].
The challenges of implementing a cloud-based processing
unit for the IoT are designing a scalable wireless architec-
ture with many cooperating wireless access points, develop-
ing advanced antenna technologies to boost throughput and
reliability, and ensuring the confidentiality and security of
data [33]. However, with a cloud-based processing unit, it is
possible to determine spatial, temporal, and social correla-
tions of the data traffics to reduce communication overheads,
increase energy efficiency, and provide user-oriented services
as discussed in [33] and [34].

3) APPLICATIONS OF ML IN THE IoT
One of the key applications of ML in the IoT is big data
analytics as massive data will be accumulated at either BS or
local data aggregators [2]. The key function of ML in the IoT
is to eliminate the correlated information and to reduce the
dimensionality of big data in the IoT [18]. This will make the
data transmission from the data aggregators to BS less costly
and the data processing at BS more efficient [18]. However,
it is necessary to maintain the key information in the data.

Principle component analysis (PCA) has been used to
intelligently compress the collected data by reducing the
dimensionality, while keeping the key features of the data as
discussed in [18], [33], and [35]. PCA uses an orthogonal
transformation to output a set of linearly uncorrelated data
from possibly a correlated input data. PCA has been shown
to be effective in reducing the resource consumption by com-
pressing the data. For instance, PCA based query reduces the
energy consumption by at least 25% compared to the normal
query [34]. Therefore, PCA is particularly useful for the data
aggregators and the BS for data processing. However, PCA is
computationally complex and can require a significant time
to process [18]. Although the high computational complexity
may be feasible for a BS with sufficient resources, it will be
challenging to deploy at the level of a data aggregator, which
is often a typical IoT device with limited resources.

Since data aggregation is one of the popular solutions
to mitigate the lack of radio resources in the IoT as dis-
cussed in [18] and [35], it would be worthwhile to investigate
using different PCA-based approaches to analyze the trade-
off between computational complexity, data compression,
and resource consumption. Moreover, analyzing different
PCA-based approaches will help choosing an optimal data
aggregation method for a given IoT application. For instance,
PCA-based data aggregation with small delay can be used
for the low latency IoT applications. Additionally, emerging
ML techniques, such as echo state networks, can be useful to
develop predictive approaches for resource allocation in the
IoT as discussed in [36]. Finally, ML has been recently shown
to be effective in deploying new security techniques for the
IoT, such as IoT device authentication [37] or static malware
analysis [38].
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B. SEQUENTIAL LEARNING
1) KEY CONCEPTS OF SEQUENTIAL LEARNING
In an environment with an underlying binary state, a number
of autonomous agents can learn what the true underlying state
of the environment is by using sequential learning (SL) as dis-
cussed in [19] and [39]. Here, such agents are intelligent enti-
ties that are capable of learning from a given information, and
they would potentially correspond to the IoT devices if SL is
implemented in the IoT. Here, the underlying state describes
the current state of the IoT environment in which the agents
are located, and it corresponds to events of interest, such as
a medical status, fire alarm, or other environment-triggered
events, within the IoT [22]. Using SL, the agents learn the
state of the system by following a given order while observing
the environment and the actions or observations of previous
agents in the sequence. Moreover, the agents will eventually
converge to a consensus on the true underlying state with
repeated hypothesis testing as explained in [19] and [39]. For
different agents, the observations of the environment, which
are also known as the private signals, are independent and
equally informative about the underlying state as pointed out
in [19] and [31]. Such private signals are typically modeled
as independent binary signals whose distribution depends on
the underlying state such as in [22] and [31]. Furthermore, a
private signal cannot fully reveal the underlying state of the
system, which means that the likelihood ratio cannot be zero
or infinity [31].

Another information necessary for SL is the observation of
previous agents and specifically their estimates of the under-
lying state. Depending on the number of previous estimates
required, SL can be classified into infinite and finite memory
as discussed in [19], [31], and [39]. In infinite memory SL,
agents must observe all previous agents in the sequence,
and thus the memory of previous estimates grows infinitely.
In finite memory SL, agents only observe a fixed number
of previous agents, and thus the memory of previous esti-
mates is fixed [22]. SL with finite memory requires much
less information than infinite memory SL at the expense
of higher probability of error in estimating the underlying
state [22].

One of the favorable properties for implementing SL
approaches in the IoT is that SL can converge to the correct
underlying state by only observing two previous agents as
discussed in [19] and [31]. UnlikeML, SL does not require an
extensive data set, but it relies on the sequential propagation
of information among the agents. Moreover, SL can be imple-
mented using distributed mechanisms, while the majority
of ML techniques are centralized. Furthermore, SL is more
suitable for enhancing event detection, while ML techniques
are more suitable for data analytics.

2) LIMITATIONS AND OPPORTUNITIES OF SL FOR THE IoT
The majority of information necessary for SL stems from
other agents, and, thus, SL must rely on the use of direct
M2M communication links as illustrated in Fig. 1, which
can consume additional network resources. Moreover, in SL,

FIGURE 1. Sequential learning in the IoT.

the IoT devices that are not able to communicate with any
other device will not be able to learn. For infinite memory
SL, the amount of necessary information will increase indef-
initely as learning progresses. This implies that the size of the
M2M communication packets may grow infinitely, which can
become prohibitive in an IoT environment. However, finite
memory SL will only require the packets of fixed size to
be transmitted using M2M links, thus making it much more
viable for IoT.

Another limitation of SL is that it is typically limited
to learning a binary state. Although there are practical IoT
scenarios that only have two states, such as whether to go to
sleep mode to conserve energy or not in minimizing power
consumption, many IoT scenarios will involve more than two
states, such asmultiple levels of transmit power. Furthermore,
the private signals in the IoT may not be equally informative
as the IoT devices can have different observations of the
environment as shown in Fig. 1. However, one can overcome
this private signal assumption by introducing additional infor-
mation about previous IoT devices [22].

The biggest advantage of applying SL in the IoT is its
flexibility with memory requirements. For finite memory SL,
the IoT devices can observe different number of previous
agents, and the SL will still converge [22]. Therefore, the IoT
devices can optimize the amount of information to use for
SL depending on the available resources. However, there is a
lower bound on the number of observations of previous agents
necessary for the convergence [31].

3) APPLICATIONS OF SL IN THE IoT
SL is particularly useful in enhancing the IoT event detection,
and it can be used for distributed resource allocation in the
IoT. For instance, there may be urgent events, such as a med-
ical emergency, that trigger uplink communications requiring
low latency. However, satisfying the QoS requirements of
such communications is not trivial due to the uplink com-
munication bottleneck caused by the IoT devices regularly
reporting their data. In such a case, the IoT devices using SL
can collectively and autonomously detect the urgent events
and then allocate necessary radio resources for the event-
triggered communications. Since periodic data reporting to
the BS is also important, resource allocation for the event-
triggered communications must be done in a way to minimize
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the amount of resources that need to be re-allocated from the
devices that have periodic data to send.

Finite memory SL has been shown to be effective in
autonomously allocating the radio resources to reduce the
delay for the urgent, event-triggered communications in the
IoT with limited uplink communication resources in [22].
Using our proposed approach based on finite memory SL
in [22], the IoT devices transmitting delay-tolerant messages
can collectively reallocate uplink communication resources
for the IoT device transmitting urgent messages, while min-
imally affecting the system throughput and significantly
reducing the delay of the urgent message. In [22], it is shown
that the delay of urgent communication can be further reduced
at the cost of bigger memory size for SL and greater through-
put reduction of the periodic communications. A key feature
of finite memory SL is that the memory size can be optimized
to satisfy a given QoS requirements. Fig. 2, based on our SL
model in [22], shows that more devices will learn the correct
state of the network and the delay will be reduced more with
bigger memory sizes. However, bigger memory sizes will
require more radio and energy resources to be consumed to
transmit and to process the information. Therefore, the mem-
ory size must be chosen appropriately considering the perfor-
mance improvements and available resources. Furthermore,
Fig. 2 shows that the finite memory SL is more effective with
higher device deployment density. This is due to the fact that,
in a dense IoT environment, there will be a few devices that
cannot communicate with any other device, which prevents
such devices from learning. This also shows that SL-based
techniques will generally be M2M communication reliant.

FIGURE 2. Effectiveness of SL for different memory sizes and device
densities.

C. REINFORCEMENT LEARNING
1) KEY CONCEPTS OF REINFORCEMENT LEARNING
Reinforcement learning (RL) is a learning technique in which
a number of agents learn how to act by interacting with
the environment as discussed in [18] and [20]. An RL algo-
rithm is typically composed of a number of agents with their

corresponding sets of actions, an environment with a set
of states, a state transition function, an immediate reward
function, and an initial observation function [20]. At the
beginning of each time period, each agent observes the
environment and takes an appropriate action to maximize
the immediate or future reward. At the end of each time
period, each agent will receive an immediate reward, and
the state of the environment will change according to the
state transition function. The agents iterate according to this
process to learn and to converge to a steady state as explained
in [18] and [20].

One of the unique features of RL is the use of action-
reward combination as a feedback to the agents. For instance,
using the future rewards as a feedback, RL can be used to
maximize their long-term rewards as pointed out in [18], [20],
and [23]. Furthermore, the function used for choosing the
current action can be computationally simple. For instance,
the well-knownQ-function, which is purely algebraic, can be
used [18].

Although RL can be computationally simple, it can take
significant time to converge to a steady state as discussed
in [23] and [40]. This is because RL learns by exploring
different states. Although RL does not require an extensive
training data, it requires its agents to know the state tran-
sition function as pointed out in [18] and [20]. The slow
convergence and the requirement to know the state transition
function are key challenges facing the use of RL in an IoT
environment, however, the unique design of having actions
and rewards between the agents and the environment makes
RL very useful to treat a number of IoT problems as men-
tioned in [41]–[43].

2) LIMITATIONS AND OPPORTUNITIES OF RL FOR THE IoT
The assumption that the state transition function is known is
generally needed for many RL algorithms, however, such an
assumption may not hold true in the IoT. Indeed, the envi-
ronment in which the IoT devices are deployed is subject to
unpredictable events and uncertainties, such as abnormal sen-
sor readings due to sudden increase in noise, device failures,
and unexpected obstacles preventing normal device operation
as discussed in [23] and [40]. As such, it is possible for
the IoT devices to experience an incomplete state transition
function. Moreover, it is impractical to account for all pos-
sible scenarios that the IoT devices may face in designing
the state transition function. Therefore, there may be hidden
or unknown states, which the IoT devices can reach at some
point. These hidden states are critical to RL as they hinder
with determining the reward maximizing action as pointed
out in [23] and [40].

The hidden or unknown states in RL can be mitigated
by introducing a memory of previous actions [23]. In this
case, the IoT devices can combat uncertainties in choosing
an action at the cost of higher computational complexity and
slower convergence [23]. Therefore, RL may not be directly
applicable to low latency IoT applications due to its poten-
tially slow convergence.
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TABLE 1. Summary of the proposed learning frameworks.

Although RL may have a slower convergence than SL, it
does not require significant interactions between the devices
over M2M links, which will save significant amount of
energy, and it can be used to find the equilibrium solutions for
game-theoretic models [28]. Moreover, RL does not require
the devices to be globally synchronized and to engage in the
learning process at the same rate, which is advantageous in
a distributed system such as the IoT [18]. Furthermore, RL
can be computationally simple for low-capability devices in
IoT [18]. Due to its aforementioned, desirable properties, RL
has been one of the most popular learning frameworks in the
IoT [41]–[43].

3) APPLICATIONS OF RL IN THE IoT
RL can be used for IoT resource management, because the
components of RL, such as actions and states, can be eas-
ily mapped to the corresponding components of resource
management in the IoT [41]–[43]. For example, for power
management application, the states can be mapped as energy
policies, the actions can be mapped as choosing the next best
energy policy, and the rewards can be mapped as amount of
energy saved [21]. More recently, the use of RL has been
investigated in [41] as a mean to provide optimized resource
management for an IoT system that relies on drones to deliver
communications to disaster affected areas using both licensed
and unlicensed bands. Here, the drones are the agents, and
their actions pertain to choosing the proper duty cycle to
enable a co-existence between cellular andWiFi communica-
tions via the drones [41]. Therefore, the key step in applying
RL in IoT scenarios is finding appropriate counterparts to
each component of RL.

The state transition function is the most challenging to
define in the IoT, because it is typically required for all
devices to know this function. In the given example of power
management, the state transition function is defined such
that the next state only depends on the current action [21].
However, for other resource management applications in

the IoT, the state transition function may be complex and
dependent on other devices as well. For instance, in radio
resource management, the actions may be choosing a channel
to use for uplink communication, and the state can be signal-
to-interference-plus-noise ratio of the selected channel [44].
In this application, the state transition function depends on
other devices, and the next state is uncertain as the actions
of other devices are unknown. Although the use of memory
improves the performance of RL by allowing the uncertain
states to exist [23], it is necessary to investigate the tradeoffs
associated with having a memory.

There are different types ofmemory that RL algorithms can
adapt to mitigate the effects of having unknown states [23].
Moreover, the different approaches of using memory require
different amounts of information and introduce varying lev-
els of computational complexity [23]. Furthermore, different
approaches have different properties in terms of scalability,
convergence time, and quality of steady state [23]. Therefore,
similar to SL, it is necessary to choose a type of memory for
RL that is most suitable considering the available resources
and QoS requirements. This will make RL much more appli-
cable for the IoT.

In summary, the IoT provides an environment that is
ripe for applying a variety of learning algorithms. However,
such algorithms must be properly designed and tailored to
the intrinsic properties of the IoT. The various challenges,
opportunities, and applications of learning are summarized
in Table 1. Next, we discuss how learning approaches can be
designed in a way to cope with the heterogeneity of the IoT
environment.

IV. MANAGING IoT HETEROGENEITY USING
COGNITIVE HIERARCHY THEORY
A. MOTIVATION
The aforementioned learning frameworks exhibit different
resource requirements and can achieve varying levels of accu-
racy in the learned parameters. For instance, the agents using
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SL can have more observations of previous agents in the
sequence with more memory, thus having more information
about the underlying state [22]. Therefore, SL schemes with
more memory will allow the IoT devices to more accurately
learn the underlying state, thus achieving lower probability of
estimation error. On the other hand, the IoT devices can also
have different available resources. For example, smartphones
will be able to do advanced learning methods as they are
computationally capable and have extensive memory, while
simple sensors with limited resources available must resort to
elementary learning methods. Therefore, the difference in the
available resources among the IoT devices will cause them
to reach different learning outcomes. Although most existing
learning frameworks typically assume that the agents have
the same available resources, it is necessary to capture and
exploit the heterogeneity in available resources among the
IoT devices.

In this regard, cognitive hierarchy theory (CHT) [24], [45],
[46], is a promising tool to accurately model the IoT, because
it provides a modeling framework that can properly capture
the heterogeneity among the agents. CHT divides a number
of agents into different groups of varying rationality levels.
Different rationality levels can be interpreted as different
levels of available resources among the IoT devices. Thus,
CHT will allow each group of agents (devices) at a given
rationality level to choose a learning framework that is most
appropriate based on their available resources. Therefore,
CHT will make it possible to integrate different learning
frameworks at different levels in the IoT, thus maximizing the
overall usage of the resources and providing a more realistic
model for a heterogeneous IoT system.

B. PRELIMINARIES AND KEY CONCEPTS
CHT is a branch of behavioral game theory and is based
on the concept of bounded rationality [45], [46]. In general,
bounded rationality means that each agent finds the best strat-
egy based on its accessible information, its computational
capacity, and the time available. In CHT, it is assumed that
the agents are distributed into discrete levels of rationality.
Agents belonging to the lowest level 0 are completely irra-
tional and choose their strategy randomly. Agents at any
higher level k ≥ 1 believe that all others belong to the levels
lower than k and choose their optimal strategy based on their
beliefs. Therefore, to find the optimal strategy, any agent
at level k ≥ 1 starts by computing the strategy of level 1
agents then level 2 agents up to level k − 1 agents and finally
computes its optimal strategy, hence performing k levels of
thinking.

The most popular CHT model is the Poisson model [46].
It relies on the following considerations. First, it consid-
ers that the agents are distributed into the rationality lev-
els according to a Poisson distribution f with rate τ . The
Poisson distribution has been shown in [24] to be a good
model for the situations in which, as the rationality level k
grows larger, fewer agents will be at a higher level than k .
The second assumption is that level 0 agents choose their

strategies randomly according to a uniform distribution. This
is commonly known as the overconfidence assumption. The
last assumption is that each agent at level k ≥ 1 knows the
true proportions f (0), f (1), . . . , f (k − 1) of agents at lower
rationality levels.

CHT is useful for the IoT because the different rationality
levels of CHT can correspond to the different resources avail-
able for the IoT devices. Hence, by grouping the devices into
the rationality levels based on their available resources, the
CHT framework allows each IoT device to find its optimal
strategy based on its own, individual computational capa-
bility. Note that the CHT model is different from classical
hierarchical approaches, such as Stackelberg game and its
variants. In such approaches, it is assumed that all agents are
fully rational and that the hierarchy is defined based on the
roles of the agents (leaders vs. followers) and not in terms of
the rationality.

The concept of CHT can be further extended beyond the
existing models, such as [24] and [45], to provide a learning
scheme for the heterogeneous IoT devices. In this case, the
devices at each rationality level can adapt a learning frame-
work that matches their available resources and application.
For example, a data aggregator will use ML to compress
data, resource-constrained sensors will use finite memory
SL with small memory for event detection, and smartphones
will used sophisticated RL with relatively large memory
for resource management. Moreover, resource-constrained
sensors can use simple RL with small memory as they are
low rationality, while smartphones would use SL with big
memory as they are high rationality. Therefore, the mem-
ory size and the computational complexity associated with
learning will depend on the rationality level of the device.
Applying a hierarchical approach to learning was previously
considered in [47], however, this approach cannot capture
heterogeneity as it assumed that all the agents use the same
learning framework.

C. APPLICATIONS OF CHT FOR THE IoT
CHT can be applied to IoT problems that involve distributed
optimization at the IoT devices, such as distributed multiple
access, resource allocation, and secure transmissions. For
example, we have proposed a CHT based approach in [25]
to address the problem of distributed uplink multiple access
in an IoT network composed of MTDs and HTDs. TheMTDs
have different characteristics, such as packet sizes, transmis-
sion powers, or queue buffer size. In this model, a random
access is used for multiple access. In this scheme, a colli-
sion occurs if two or more devices transmit simultaneously.
Furthermore, the QoS requirement of each device is defined
depending on its type. For many IoT devices, such as health
care sensors and alarm systems, it is necessary to deliver each
packet within a strict deadline while minimizing their energy
consumption. HTDs, on the other hand, are more interested
in maximizing their transmission rates while keeping their
energy consumed within a certain budget. Also due to col-
lisions, the choice of transmission probability of each device
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affects the performance of all other devices, which motivates
to use the game theoretic approaches.

Further, since the IoT devices have different resources
available, different rationality levels are used to correspond to
the heterogeneous resource availabilities of the IoT devices.
A device at rationality level k doesmore thinking than devices
at lower levels and hence should be more computationally
capable. Fig. 3 shows an example on how some IoT devices
can be distributed according to CHT rationality levels.

FIGURE 3. Distribution of IoT devices in different CHT levels.

Here, the Poisson model is chosen as it is suitable to model
the distribution of devices in the IoT network. This is because
there is a limit on the computational capability of the devices
especially in terms of memory and processing power. In fact,
devices with higher computational capability are more expen-
sive and hence are fewer in number. The second assump-
tion of the Poisson model related to level-0 devices also
holds in the IoT network for resource-constrained devices
(e.g., MTDs), whose most feasible strategy is to pick ran-
domly. However, in the approach that we proposed in [25],
the overconfidence assumption is modified so that an agent
at rationality level k is aware of the presence of agents at
the same rationality level. The overconfidence assumption
is suitable for games in which the agents are humans, how-
ever, in the studied IoT scenario, the agents are IoT devices
that can observe other devices of the same computational
capabilities.

Using this CHT model, in [25], we have shown that any
device at level k needs to solve a nonlinear, nonconvex
optimization problem to find its optimal strategy. Also, the
strategy of the device at rationality level k is dependent on the
strategies of agents at lower rationality levels. Hence, a device
at level k needs to solve k nonlinear optimization problems to
find its optimal strategy. This result illustrates the connection
between the CHT rationality levels and the computational
capabilities of the MTDs as an IoT device at level k needs
to do more computations than the devices at lower levels.
It is further shown that the proposed CHT approach brings

FIGURE 4. Expected energy consumed at the cognitive hierarchy
equilibrium (CHE) solution vs. CHT level.

considerable performance improvements. Fig. 4 shows that
starting from CHT level 1, the energy consumed by an MTD
decreases as its CHT level increases and becomes consid-
erably lower than the energy consumed resulting from the
classical Nash equilibrium (NE) approach, which shows that
the proposed CHT approach provides a fair tradeoff between
the achieved performance and the computational capability
of the device.

Clearly, CHT is a promising modeling framework within
which one can naturally capture the heterogeneity of the
IoT and integrate different learning approaches that are
directly mapped to the resource limitations of the IoT
devices.

V. SUMMARY
In this article, we have provided a comprehensive overview
on the use of a variety of learning techniques within a wide
range of applications in the IoT. First, we have discussed
the general properties needed for learning techniques to be
applied and developed for the purpose of IoT optimiza-
tion and resource management. Then, we have reviewed
the advantages and the limitations of three popular learn-
ing frameworks: machine learning, sequential learning, and
reinforcement learning. For each such framework, we have
identified the inherent properties, such as computational com-
plexity, memory requirements, and learning performance.
Furthermore, we have introduced the fundamentals of cog-
nitive hierarchy theory, which can be used to categorize the
IoT devices into different levels of rationality, depending
on their capabilities, thus providing a more realistic model
of the IoT with heterogeneous devices. For each level of
rationality, CHT makes it possible to determine which learn-
ing frameworks are most suitable given the requirements for
learning and the available resources of the IoT devices in
that level of cognitive hierarchy. In summary, this article pro-
vides a comprehensive reference on developing and applying
several classes of learning techniques within well-defined
IoT applications.
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