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ABSTRACT This paper presents the first Keystroke Biometrics Ongoing Competition (KBOC) organized
to establish a reproducible baseline in person authentication using keystroke biometrics. The competition
has been developed using the BEAT platform and includes one of the largest keystroke databases publicly
available based on a fixed text scenario. The database includes genuine and attacker keystroke sequences
from 300 users acquired in four different sessions distributed in a four month time span. The sequences
correspond to the user’s name and surname, and therefore, each user comprises an individual and personal
sequence. As baseline for KBOC, we report the results of 31 different algorithms evaluated according
to accuracy and robustness. The systems have achieved EERs as low as 5.32% and high robustness to
multisession variability with accuracy degradation lower than 1% for probes separated by months. The entire
database is publicly available at the competition website.

INDEX TERMS Keystroke, biometrics, authentication, web-biometrics, behavioral recognition,
competition, BEAT.

I. INTRODUCTION
Biometric technologies are usually divided into physiological
(e.g. fingerprint, face, iris) and behavioral (e.g. signature,
gait, keystroke) according to the nature of the biometric
characteristic used. Behavioral biometrics have boosted the
interest of researchers and industry because of their ease
of use, transparency and large number of potential appli-
cations [1]. Biometric applications have been investigated
over the past decades, attracting both academics and prac-
titioners. Biometric recognition systems validate the subject
identity by comparing the subject template (pre-stored in a
database) with a captured biometric sample [2]. Keystroke
biometrics refers to technologies developed for automatic
user authentication/identification based on the classification
of their typing patterns. These technologies present several
challenges associated to modeling and matching dynamic
sequences with high intra-class variability (e.g. samples from
the same user show large differences) and variable perfor-
mance (e.g. human behavior is strongly user-dependent and
varies significantly between subjects [3]).

From the industry’s point of view, keystroke technolo-
gies offer authentication systems capable of improving
the security and trustworthiness of web services

(e.g. banking, mail), digital contents (e.g. databases) or new
devices (e.g. smartphones, tablets). The online authentica-
tion is a real need and platforms such as Coursera use
keystroke dynamics to certify the completion of its courses.1

The number of companies offering keystroke authentica-
tion services is large, namely: KeyTrac (www.keytrac.net),
Behaviosec (www.behaviosec.com), AuthenWare (www.
authenware.com), bioChec (www.biochec.com), ID-Control
(www.idcontrol.com), BioValidation (www.biovalidation.
com), among other.

Given the wide range of potential practical applications
mentioned above, a heterogeneous community of researchers
from different fields has produced in the last decade a very
large number of works studying different aspects of keystroke
recognition. Those contributions have been compiled in sev-
eral surveys [1]–[6] that analyze the technology in terms of
performance, databases, privacy and security. The techniques
are usually divided into:
• Fixed text: the text used to model the typing behav-
ior of the user and the text used to authenticate is
the same. This scenario usually considers small text

1https://goo.gl/n8BWGR
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TABLE 1. Survey of some of the most popular publicly available databases for fixed text keystroke dynamics recognition.

sequences as those employed in password authentication
services.

• Free text: the text used to model the typing behavior and
the text used to authenticate do not necessarily match.
This scenario is usually related with long text sequences
and continuous authentication services.

As a behavioral biometric trait, the performance of
keystroke biometrics systems is strongly dependent on the
application (e.g. fixed or free text) and databases (e.g.
different users show very different performances). Public
benchmarks have been proposed, offering the opportunity to
compare different systems using the same datasets [7]–[15].
Table 1 summarizes some of the most popular keystroke
dynamics public datasets based on fixed text sequences.
Even though these benchmarks represent valuable resources,
they suffer from two important limitations: (i) The databases
available rarely surpass one hundred users. These limited
databases decrease the statistical significance of the results
and make difficult to establish clear differences between
algorithms and methods. (ii) Some of the most popular
databases assume that all users share the same password
(e.g. ‘‘.tie5Roanl’’ and ‘‘greyc laboratory’’ for CMU [9]
and GREYC [10] respectively). In real applications, the
assumption of different passwords for each user is a more
likely scenario. In addition, previous studies suggest that
the complexity of the password has a large impact on the
performance [18]. A performance analysis based on a unique
password limits the applicability of the results.

The aforementioned limitations in the performance assess-
ment of keystroke recognition, can be addressed to a large
extent through the organization of technological evaluations.
These evaluations are usually presented as competitions in
which systems provided by different groups can be com-
pared according to common frameworks proposed by third
parties. Biometric traits such as fingerprint [19], face [20],
speaker [21] or iris [22] have a large tradition of competitions
and evaluations with active participation of both the research
community and the industry. To the best of our knowledge,
there is only one previous keystroke recognition com-
petition: ‘‘One-handed Keystroke Biometric Identification

Competition’’ [23]. In that competition, keystroke technolo-
gies were evaluated in a free text scenario involving the
response of 63 students to three online exams. The com-
petition analyzed the performance of person authentication
algorithms under challenging conditions, in which users were
forced to type using only one hand instead of the more natural
two-handed typing.

Traditional biometric competitions are only operative dur-
ing a short window of time and this way they only give a
static snapshot of the state-of-the-art in a specific research
area. One problem with this approach is that it is difficult
to encourage researchers to invest their resources and time
to participate in these competitions. Without the participa-
tion of the main players, the snapshot may be incomplete.
In contrast, ongoing competitions provide a dynamic view
constantly updated by the community. The FVC-onGoing
competition [19] is a successful example with more than
900 participants and more than 4000 algorithms evalu-
ated since 2009 for fingerprint technologies. On the other
hand, the absence of platforms to facilitate reproducibility
among the keystroke research community has motivated a
widespread variety of experimental protocols and evaluation
methodologies [5].

As an attempt to move a step forward from the general con-
texts of keystroke recognition and of biometric competitions
described above, the current paper presents the Keystroke
Biometrics Ongoing Competition (KBOC). KBOC is the
first fixed text keystroke competition (in opposition to the
free text evaluation described in [23]) that presents two key
characteristics that go beyond the usual practice in the field of
biometric evaluation campaigns, namely: KBOC is ongoing
and reproducible. This way KBOC tries to address some of
the shortcomings currently present in keystroking biometrics,
advancing over previous experiences by:

• Proposing the first ongoing competition on keystroke
biometrics. The competition is carried out over a
fully reproducible framework based on the BEAT
platform2 [24]. The term reproducible, as it is employed

2https://www.beat-eu.org/platform/
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in this work, is defined as a computational experiment
that can be repeated using the same data and tools.
The main aim of the competition is to provide a new
benchmark that guarantees a fair comparison between
keystroke recognition algorithms using the same exper-
imental framework.

• Reporting a large performance evaluation of keystroke
dynamics technologies including 31 keystroke recogni-
tion systems from 4 different research laboratories. The
evaluation is performed on the basis of performance and
robustness of the different approaches.

• Disclosing a public database involving 7600 keystroke
sequences from 300 users, simulating a realistic
scenario in which each user types his own sequence
(given name and family name) and impostor
attacks (users who try to spoof the identity of
others).

The rest of the paper is organized as follows. Section 2
introduces the ongoing evaluation tool developed for KBOC.
Section 3 describes the database and evaluation protocols.
Section 4 sketches the best systems submitted so far by
participants to KBOC (this initial stage of the competition
will be referred to as KBOC Baseline). Section 5 reports
the experiments and results of KBOC baseline. Section 6
summarizes the conclusions.

II. KBOC INFRASTRUCTURE
KBOC exploits the potential of the BEAT platform, which
was created under the FP7 EU BEAT project to promote
reproducible research in biometrics [24]. The BEAT platform
is a European computing e-infrastructure for Open Science
that proposes a solution for open access, scientific infor-
mation sharing and re-use of data and source code while
protecting privacy and confidentiality. The platform is a web-
application allowing experimentation and testing in pattern
recognition.

KBOC provides the data and modules necessary to run the
evaluation and the BEAT platform ensures that the system
is correctly executed, also producing the results. Different
algorithms and systems can be easily compared. The platform
also provides an attestation mechanism that guarantees that
a certain result has been produced using the BEAT plat-
form, based on some database, protocol and algorithms. This
attestation mechanism produces a link that can be included
in a report (e.g., scientific papers, technical documents or
certifications) so that readers can go to the platform and check
the authenticity of the results, even being able to replicate the
experiments. There is no limit regarding the number of sys-
tems to evaluate, and the results are automatically provided
to the participants on the platform (i.e., the performance of
the systems is available in real time). KBOC, as part of the
BEAT platform, is a web application divided into:

• Toolchain: determines the data flow of the experi-
ments. The toolchain is defined by a block diagram
(see Figure 1) including datasets and algorithms. The
blocks of KBOC toolchain are: (i) Database: partici-
pants cannot access directly the data but they can use
it in the experiments. The dataset blocks (templates
and probes) define the experimental protocol and they
cannot be modified by the users. The platform automat-
ically provides the training samples (labeled data) and
test samples (unlabeled data) to the Participant Block.
(ii) Participant Block: includes the algorithm to com-
pare keystroke sequences. Participants can modify the
code of this block including their keystroke recognition
algorithms. The inputs are the samples of the database
(training and test samples), and the output are the sim-
ilarity scores. (iii) Analyzer: this block is the output
of the platform. Its tasks include analyzing the scores
produced by the participant block and reporting perfor-
mance according to some standard metrics. Participants
can use the analyzer but cannot access its code. This

FIGURE 1. Toolchain of KBOC developed on BEAT (https://goo.gl/8DJQN7).
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way it is guaranteed that all algorithms are evaluated
according to the same parameters.

• Dataformats: describe the information transmitted
between blocks of the toolchain. They specify the
format of inputs and outputs of the algorithms and
databases. KBOC includes a specific dataformat (called
kboc16_keystroke)3 to define the timestamp sequences
associated to each sample. The data format includes both
the timestamp and the key pressed.

• Leaderboard: represents the experimental results.
KBOC is an ongoing competition, therefore the results
will be automatically updated with new submissions.4

It should be noted that participating in the ongoing evalua-
tion and using of the platform do not imply the publication
of the code. Confidentiality is a priority and is granted in
all cases. The organizers have no access to the private code
evaluated by the platform but only to the results obtained.
Reproducibility is granted by allowing execution permis-
sion without code access, thereby preserving confidentiality.
Participants retain all access rights to their code. They can
keep it private, share it with other specific users, or make it
public so that other platform users can benefit and reuse it.
These access rights can be different for different parts of the
code (e.g., the participant can decide tomake public a specific
segmentation module but not the matcher).

KBOC is now active and several baseline experiments
are available at the BEAT platform.5 For further opera-
tional/logistic information on how to participate in the com-
petition please visit the official competition website.6

III. DATASET AND EVALUATION PROTOCOLS
The dataset proposed for the competition is part of the
BiosecurID multimodal database [25] and consists of
keystroke sequences from 300 subjects acquired in four
different sessions distributed in a four month time span.
Thus, three different levels of temporal variability are taken
into account: (i) within the same session (the samples are
not acquired consecutively), (ii) within weeks (between two
consecutive sessions), and (iii) within months (between non-
consecutive sessions).

Each session comprises 4 case-insensitive repetitions of the
subject’s name and surname (2 in the middle of the session
and two at the end) typed in a natural and continuous manner.
Note that passwords based on name and surname are very
familiar sequences that are typed almost on a daily basis. This
allows us to reduce the intra-class variability and to increase
the inter-class variability. Therefore, the discriminative power
of these sequences is larger than other random free text
scenarios.

The BiosecurID multimodal database was captured in a
university environment, being the vast majority of acquired

3https://goo.gl/lwyBVb
4https://goo.gl/EQeUBj
5https://goo.gl/VsKgVM
6https://sites.google.com/site/btas16kboc/

subjects proficient in the use of computers and keyboards.
No mistakes are permitted (i.e., pressing the backspace), if
the subject gets it wrong, he/she is asked to start the sequence
again. The names of three other subjects in the database are
also captured as forgeries, again with no mistakes permit-
ted when typing the sequence. However, during the acqui-
sition we observed that around 4% of samples (equally dis-
tributed among genuine and impostors) present inconsisten-
cies that produce different lengths in the sequences. The use
of shift keys can vary the number of keys pressed even if
the final result does not change. For example the sequences
Shift+Shift+a=A and the sequences Shift+a=A have differ-
ent lengths but same text as output. We consider these sam-
ples as matching and therefore they are part of the database
employed for the competition. The time (in milliseconds)
elapsed between key events (press and release) is provided
as the keystroke dynamics sequence. Imitations are carried
out in a cyclical way, i.e., all the subjects imitate the previous
subjects, and the first one imitates the last subjects.

FIGURE 2. Keystroke dynamics events (press and release) and three of its
most popular features: Hold Time, Release-Press (RP) Latency and
Press-Press (PP) Latency.

The sequences provided to the participants include the
time intervals between consecutive key events (press and
release) and the ANSI code associated to the key pressed.
Figure 2 shows the timestamps and three of the most popular
features used in keystroke dynamics: Hold Time (tri − tpi ),
Press-Press Latency (tpi+1 − tpi ) and Release-Press Latency
(tpi+1 − tri ). The main statistics of the dataset proposed for
the competition are summarized in Table 2 and probability
distributions of some key features are showed in Figure 3.
The statistics show that most sequences have length ranging
from 13 to 38 characters (see Figure 3 left). Regarding two of
the most popular characteristics on keystroke dynamics, the
values of Hold Time (difference between timestamps of press
and release events of the same key) are distributed around
3 values (as can be seen in Figure 3 center), while Press-
Press Latency (difference between timetimestamps of press
and press events of consecutive keys) are distributed around
more than 8 values (see Figure 3 right). As it can be seen
in Figure 3, the clock resolution is approximately 40 msec.
The clock resolution defines precision of the timestamps
(i.e. the maximum difference between the real timestamp and
the measured timestamps is ±40 msec). The use of external
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TABLE 2. Summary of the main statistics of the database proposed for
the competition.

reference clocks can be used to increase the resolution of
keystroke latencies [26] and improve the performance of
recognition systems.

The experimental protocol is based on the following
steps, for each user: (i) Participants have 4 training samples
(genuine samples from the 1st session) as enrollment data.
(ii) 20 test samples (genuine and impostor samples randomly
selected from remaining samples not used for training) are
used to evaluate the performance of the systems. The number
of genuine and impostor samples per user varies between

8 and 12 (but the sum is equal to 20 for all of them). This
variable number of genuine and impostor samples helps to
avoid algorithms that exploit cohort information. (iii) Each
test sample is labeled with its corresponding user model and
performance is evaluated according to the verification task
(1:1 comparisons).

There are two modes of participation: ongoing and offline.
Dataset and evaluation protocols of both modes of partic-
ipation are exactly the same. The only difference between
both modes is that for the offline competition was organized
as part of the The IEEE Eighth International Conference on
Biometrics: Theory, Applications, and Systems (BTAS 2016)
and therefore a deadline was set for the submission of algo-
rithms. The performance of the offline evaluation (detailed in
section 5) will be used as baseline for the ongoing competi-
tion. The complete dataset is available at KBOC website.7

IV. KBOC BASELINE: SYSTEMS
In order to start up KBOC, a traditional offline competition
was first proposed to serve as KBOC Baseline [27]. The
training set and test set (described in section 3) were available
for all the participants. The keystroke recognition algorithms
were executed at the participant premises according to the
competition protocol. The scores (comparisons between user
models and genuine/impostors samples) obtained by the par-
ticipants were sent to the KBOC organization. To avoid over-
fitting, the number of submissions was limited to 15 different
systems that were evaluated after the submission deadline.

There was a total of 12 institutions from 7 different coun-
tries registered for the competition (5 fromUSA, 2 from India
and 1 from Norway, Argelia, The Netherlands, Brazil and
China). Four of the registered institutions finally submitted
their systems for a total of 31 evaluated systems.

The systems evaluated include the most popular machine
learning algorithms (Neural Networks, Support Vector
Machines, Decision Trees) as well as basic distances
(Euclidean, Manhattan, Mahalanobis) popular in keystroke
dynamics literature. Different strategies were proposed to

7https://sites.google.com/site/btas16kboc/home

FIGURE 3. Probability distributions of KBOC dataset for number of keys on each keystroke sequence (Left), Hold Time feature (Center) and Press-Press
Latency feature (Right).
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TABLE 3. Summary of the characteristics of the best approaches submitted by the participants.

normalize features and scores. The best system of each of the
three non-anonymous participants is briefly below. Table 3
summarizes the most important characteristics of the best
system submitted by each participant.

A. U.S. ARMY RESEARCH LABORATORY (ARL)
The main characteristics of the best system (number 6 of 15)
submitted by ARL team is summarized as: (i) The fea-
tures used are Hold Time and Press-Press Latency. (ii) ARL
team proposes an element-wise semantic alignment (see [28]
for details) between the target sequence (minimum length
sequence in the training data) and the query sequence. Amod-
ified Dynamic Time Warping (DTW) algorithm is used to
match multiple minimum length sequences (misaligned sam-
ples). (iii) The features (Hold Time and Press-Press Latency)
are normalized according to the following equation:

f̂ ji = max

(
0,min

(
1,

f ji − bf c

df e − bf c

))
(1)

where bf c and df e are the lower and upper bounds respec-
tively defines as bf c = µ− σ and df e = µ+ σ . The mean µ
and standard deviation σ are calculated from all the training
samples. (iv) The distance between a query sequence and the
training set is calculated using the Manhattan distance as:

d =
M∑
i=1

∣∣∣f̂ ji − ḡji∣∣∣ (2)

were ḡj is the mean training vector. (v) Finally, the distances
from query samples to each claimed identity are then nor-
malized similarly to Eq. (1) to within ±2σ of the mean, with
distances outside that range clipped to [0, 1]. In that case, the
lower and upper bounds are calculate as

⌊
d j
⌋
= µj − 2σ j

and
⌈
d j
⌉
= µj + 2σ j with µj and σ j the mean and standard

deviation of the user j.
The code of all 15 systems submitted by ARL team to

KBOC are available at.8 See [28] for a detailed description
of all systems.

B. UNIVERSIDADE FEDERAL de SERGIPE (UFS)
The main characteristics of the best system (number 7 of 10)
submitted by UFS team is summarized as: (i) The features
used are Hold Time and Press-Press Latency. (ii) UFS team

8https://github.com/vmonaco/kboc

does not propose any alignment procedure but includes a
shuffling procedure [29] to mitigate it. In case of inconsistent
length sequences, the minimum one is compared to each sub
segment of the longer one and the minimum distance is kept.
(iii) As in [18], Press-Press Latency (PP) and Hold Time (H)
intervals are normalized with parameters µPP = −1.61,
σPP = 0.64, µH = −2.46 and σH = 0.33 respectively,
through a non-linear mapping:

f̂ ji =

1+ exp

−1.7(loge
(
f ji
)
− µ)

σ

−1 (3)

where f ji stands for a time interval i (in seconds) of user j.
(iv) The distance between a query sequence and the training
set is calculated using a modified Manhattan distance as:

d =
1
4M

M∑
i=1

∣∣∣f̂ jh,i − ḡjh,i∣∣∣+ 3
4(M − 1)

M−1∑
i=1

∣∣∣f̂ jl,i − ḡjl,i∣∣∣ (4)

were f̂
j
h, f̂

j
l are the normalized Hold Time and Press-Press

Latency features respectively and ḡ jh, ḡ
j
l are the gallery fea-

tures. (v) Finally, the UFS team proposes a strategy to update
the training set every time a query sample obtain a score lower
than 0.14.

C. INDIAN INSTITUTE OF TECHNOLOGY
KHARAGPUR (IITK)
The main characteristics of the best system (number 5 of 5)
submitted by IITK team is summarized as: (i) The features
used are Hold Time and Release-Press Latency. (ii) The
distance between a query sequence and the training set is
calculated using two distance metrics based on mean and
median. The distance measures were computed as:

1
j,k
i =

∣∣∣gj,ki − f ji ∣∣∣ , k = 1, . . . 4 and i ∈ [1, . . . ,M ] (5)

λ
j
i = δ

j,k
i , i ∈ [1, . . . ,M ] (6)

where δj,ki is an element of matrix1 j,k
i and the final distance

was obtained as:

d = mean (λ)+median(λ) (7)

V. KBOC BASELINE: EXPERIMENTS
The participants were allowed to submit up to 15 differ-
ent systems before the deadline. The test samples remained
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sequestered (i.e., participants did not know whether they
were genuine or impostors samples). In addition, a small
development set (10 users with labeled samples) and baseline
algorithms were provided to the participants following the
instruction given in the competition website and upon the
signing of an agreement in order to access these personal data.

As previously mentioned, the algorithms were compared
after the deadline, thus being the performance of all systems
reported after the submission period ended, according to the
following indicators:
• Global Equal Error Rate (EERG): unique EER calcu-
lated using all genuine and impostor scores and only one
decision threshold for all users. EER refers to the value
where False Match Rate (FMR, percentage of impos-
tors users classified as genuine) and False Non-Match
Rate (FNMR, percentage of genuine users classified as
impostors) are equal.

• User-dependent Equal Error Rate (EERU): the EER is
calculated independently for each of the 300 subjects
(300 different decision thresholds). EERU is the average
individual EER from all subjects. This EER is common
in the keystroke dynamics literature [4], [9], [10].

• Detection-Error Tradeoff (DET) curve: a plot of FMR
and FNMR that reports system performance at any pos-
sible operating point (decision threshold).

A. PERFORMANCE EVALUATION
It should be highlighted that participants have developed
their systems on the basis of a development set with only
10 users, whichwere then evaluated on 300 sequestered users.
Table 4 presents the results achieved across all their submis-
sions (training with first session and testing with remain-
ing three). The results show clear differences between the
systems proposed by the participants, whose corresponding
EER ranged between 5.32% and 17.90% for the Global EER
(EERG) and 4.72% and 13.66% for the user-dependent EER
(EERU). The large difference between EERG and EERU of
those systems without score normalization (P1, P2 and P3)

TABLE 4. Final results (all systems) in KBOC baseline: EERG
(user-independent-threshold) / EERU (user-dependent threshold).
Training with first session and testing with the 3 remaining sessions. P1 to
P4 as in Table 3. Rows indicate different systems submitted by the same
participant (best participant codes P1 to P4 are available in Table 3).

suggests the importance of this step, especially when a unique
threshold (EERG) is employed [3], [30]. To highlight the
impact of the normalization on the performances, system 5 of
P4 was evaluated (after the competition and once the results
were published) without the score normalization. The EERG
achieved by this system drops from 5.32% to 20.17% when
no score normalization is employed.

Figure 4 left shows theDET curves for all submissions. The
curves show how the submissions made by the participants

FIGURE 4. Left: DET curves obtained from all submissions (training with first and testing with the remaining 3 sessions) and the combination of the best
system of P2 with the best system of P4 (P4 and P2 are the respectively the two best participants). Center: results of the best systems with different time
span between enrolment (first session) and testing: testing with second (dashed) and fourth session (solid). Right: results of the best systems with
aligned samples (solid) and misaligned samples (dashed).
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tend to cluster into different performance ranges. Regarding
the differences between the systems (see Table 3) it is notice-
able the unanimity of features andmatchers. The combination
of Hold Time and Press-Press Latency and the classifier based
on Manhattan distance were used by the two best participants
(P2 and P4). The largest differences between participants lie
in the pre-processing (sequence alignment and feature nor-
malization) and post-processing techniques (score normaliza-
tion) applied. The score normalization applied by P4 allows
to reduce the gap between the global EER (EERG) and the
user-dependent EER (EERU) that results on improved perfor-
mances. Further sections will analyze the results depending
on different factors.

TABLE 5. EERG for the best system of each participant according to the
session used for testing. Training with first session and testing with
second and fourth sessions. The last row indicates the drop of
performance between sessions.

B. ROBUSTNESS TO TIME-LAPSE
As a behavioral trait, the robustness of keystroke biomet-
rics to increasing time between enrollment and testing is an
important factor to consider [31]. The database employed
allows to analyze the performance for different intervals
between enrollment and testing: few weeks (session 1 vs
session 2) and few months (session 1 vs session 4). Table 5
includes the performance (EERG) obtained using the genuine
samples from the second or fourth session for testing and
the samples from the first session for training. The results
show a significant robustness of all systems to this time-lapse
(slightly over 2months), presenting a small performance drop
always under 10%. Even systems with moderate performance
show high stability of the genuine scores for the different
sessions. These results can be seen at Figure 4 center and

Figure 5, where it is possible to observe that genuine scores
from different sessions show almost identical distributions.
Note that, as specified in section 3, the keystroke sequences
used in this work are very familiar sequences, namely: name
and surname. These results suggest that keystroke dynamics
based on such information remain consistent even for acqui-
sitions separated by months.

TABLE 6. EERG for the best system of each participant according to the
nature of the samples used for testing. The last row indicates the drop of
performance between aligned and misaligned samples.

C. ROBUSTNESS TO KEY SEQUENCE MISALIGNMENT
As it was described in section 3, around 4% of the samples in
the database have different number of keys pressed (mainly
because of the use of the shift keys). These sequences may
producemisalignments during the comparison of training and
test samples. Table 6 and Figure 4 right show the perfor-
mances obtained by the best systems for the aligned samples
(sequences with exactly the same keys) and the misaligned
samples (samples with different length and therefore different
keys). In general, there is a significant drop of performance
between both sets that can be more than 300%. The strat-
egy based on DTW alignment adopted by the U.S. Army
Research Laboratory shows the best performance in both
types of samples. How to deal with these misaligned samples
is still an open challenge to be explored by the research
community [32].

D. USER-DEPENDENT PERFORMANCE
The performance of keystroke dynamics is strongly user-
dependent [33]. As an example, Figure 6 shows the his-
togram (in terms of probability distribution) of the EER of

FIGURE 5. Genuine score distribution according to the different sessions used for testing: P1 system 5 (Left), P2 system 7 (Center) and
P4 system 6 (Right).
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FIGURE 6. Probability distribution of the performance obtained with the
system 6 by P4. EER calculated independently for each of the 300 subjects.

FIGURE 7. EER (%) obtained by the best systems of P1, P2 and P4 for
those users that show the worst performance using the best system
submitted to KBOC (system 6 submitted by P4).

the best system evaluated in the competition (system 6 by P4)
obtained independently for each of the 300 users. The results
show a large margin between performances of different users
with substantial percentage of users with differences of EER
up to 20%. How to improve the performance of the worst
users is an open challenge in keystroke dynamics. One possi-
bility is to explore the complementarity between algorithms.
Figure 7 shows the EER of the users with worst performance
using the best system submitted by P4 and the performance
obtained for the same users using the systems submitted by
P1 and P2. The systems submitted by P1 and P2 show a worse
overall performance (see Table 3) than those submitted by P4.
However, the results shown in Figure 7 suggest there is a
potential complementarity between systems, as P1 and P2
tend to give better results than P4 for these problematic users.

In order to evaluate the complementarity between the dif-
ferent systems we have combined them at score level by a
weighted sum [34]. The results (Figure 4 left) suggest certain
level of complementarity and the combination of the best
systems from P2 and P4 shows the best performance of all
systems.

VI. CONCLUSIONS
This paper presented the Keystroke Biometric Ongoing
Competition (KBOC) and the results of an associated
offline competition used as KBOC baseline. The evaluation,
developed on the BEATplatform, comprises one of the largest

fixed text keystroke databases available. The main charac-
teristics of KBOC can be summarized as: (i) Large evalua-
tion database with 300 users and 7200 keystroke sequences
including different passwords for each user. (ii) Multisession
database with 4 different sessions across 4 months. Enroll-
ment using samples from the first session and testing with the
3 remaining sessions. (iii) Baseline for a total of 31 keystroke
dynamics systems considering both global EER (EERG) and
user-dependent EER (EERU). (iv) Ongoing tool implement-
ing reproducible research now publicly available based on the
BEAT platform.

The experiments reported as KBOC Baseline comparing
31 systems from 4 participants have permitted us to obtain
the following new insights to the problem of biometric person
recognition based on keystroke dynamics. In first place, it is
possible to obtain competitive performances with EER under
6% even in challenging conditions with a small development
set of 10 users and test set with 300 users. Secondly, the
alignment of sequences with different lengths and the score
normalization have showed large potential to improve the
systems accuracy. Thirdly, the robustness to a time lapse of
two months is remarkable even for those systems with the
poorest results. Finally, the performance of keystroke dynam-
ics is highly user-dependent. How to adapt algorithms to the
different user behaviors, including synthetic samples [35],
remains an open research field.

These observations motivate us to conduct further research
in: (i) Score normalization techniques to improve the perfor-
mance of systems based on unique classification thresholds.
(ii) Exploit and explore user-dependencies in order to adapt
the algorithms to the variable behavior of users. (iii) New
research on alignment strategies to reduce the severe drop of
accuracy due to typos.
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