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ABSTRACT The combination of tomographic imaging and deep learning, or machine learning in general,
promises to empower not only image analysis but also image reconstruction. The latter aspect is considered
in this perspective article with an emphasis on medical imaging to develop a new generation of image
reconstruction theories and techniques. This direction might lead to intelligent utilization of domain
knowledge from big data, innovative approaches for image reconstruction, and superior performance in
clinical and preclinical applications. To realize the full impact of machine learning for tomographic imaging,
major theoretical, technical and translational efforts are immediately needed.

INDEX TERMS Tomographic imaging, medical imaging, data acquisition, image reconstruction, image
analysis, big data, machine learning, deep learning.

I. INTRODUCTION
In May 2016, IEEE Transactions on Medical Imaging
published a special issue on ‘‘Deep Learning in Medical
Imaging’’ [1]. There were 18 papers in that issue, selected
from 50 submissions, showing an initial impact of deep
learning on the medical imaging field. Deep learning is one
of the ten breakthrough technologies of 2013 [2], and has
enjoyed an explosive growth over past years; see Figure 1.
As an image reconstruction researcher, I think that the special
issue [1] is only the tip of the iceberg, and the potential impact
of machine learning should be huge on the imaging field at
large, including medical and biological imaging, industrial
non-destructive evaluation, homeland security screening, and
so on. In this perspective, we primarily focus on medical
imaging but the insights presented here also suggest similar
potentials of deep learning in other imaging areas.

It is well known that there are two major components of
medical imaging: (1) image formation/reconstruction: from
data to images, and (2) image processing/analysis: from
images to images (denoising, etc.) and from images to fea-
tures (recognition, etc.). While the special issue [1] and
many other publications are on image processing/analysis,
there seem to be tremendous opportunities to explore
the implications of machine learning for image forma-
tion/reconstruction. Figure 2 sketches a big picture that sum-
marizes the synergy between the machine learning methodol-
ogy and medical imaging problems, which defines an emerg-
ing deep imaging field that this article advocates.

Excited by the synergy between medical imaging (an
exemplary aspect of tomographic imaging) and deep learning
(machine learning in general), this article summarizes my

FIGURE 1. Attention to machine learning has exponentially increased
over the past two decades, having a stronger trend than that of medical
imaging. The intersection point (in red) indicates that research efforts in
medical imaging and deep learning recently became comparable
(fifty-fifty). Hopefully, their combination might boost both.

opinions and speculations on deep imaging for the purposes
of brainstorming, debates or initiatives in the tomographic
imaging field. Although I am solely responsible for this arti-
cle, many peers will be acknowledged below who stimulated
my thinking and writing, and collectively we hope to set a
stage for better imaging tomorrow, and medical imaging in
particular.

The next section explains why the deep neural network is
relevant to image reconstruction. In the third section, efforts
are suggested to harvest low-hanging and high-hanging fruits
on the basis of a number of key problems. This section also
hypothesizes that such efforts would lead to a unified deep
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FIGURE 2. Big picture of deep imaging – A full fusion of medical imaging
and deep learning. A high likelihood is that the direct paths from data to
features and actions may need an intermediate layer essentially
equivalent to a reconstructed/processed image.

imaging framework. In the fourth section, pilot results are
touched upon, showing a promise of machine learning, espe-
cially deep learning. In the fifth section, theoretical issues
are discussed, including some heuristics to appreciate the
potential of deep networks. In the sixth section, deep imaging
as a paradigm shift is highlighted, and a conclusion is drawn.

II. RATIONALE FOR DEEP LEARNING BASED
RECONSTRUCTION
As the center of the nervous system, the human brain contains
billions of neurons [3]. Neuroscience views the brain as a
biological ‘‘computer’’ with a complicated biological neural
network [3] responsible for human intelligence. In the view
of an engineer, the neuron is an electrical signal processing
unit. Once a neuron is excited, voltages are maintained across
membranes by ion pumps to generate ion concentration dif-
ferences through ion channels in the membrane. If the voltage
is sufficiently changed, an action potential is triggered to
travel along the axon via a synaptic connection to another
neuron. The dynamics of the whole neural network is far
from being fully understood. Inspired by the biological neural
network, artificial neurons were designed as elements of
an artificial neural network (ANN) [4]. This model linearly
combines data at input ports like dendrites, and non-linearly
transforms the weighted sum into the output port like the
axon.

While the ANN approach was well motivated, for about
two decades this and other machine learning techniques had
not caused the public excitement until deep learning became
the buzzword years ago. One of the criticisms of neural
networks had been the need for extensive data, the training
time that scales poorly with network size and problem com-
plexity, and the risk that model identification could be trapped
at a local extremum. In a presentation given at Cambridge
University last year, Dr. Geoffrey Hinton of University of
Toronto explained how the deep neural network made an
exciting breakthrough. Briefly speaking, the enabling factors
aremultiple: thousands of timesmore data (big data), millions
of times faster computing power (GPU, TPU, etc.), smarter
weight initialization (layer-wise, transferred, and so on),
better non-linear transformation (ReLU, and more), and

significantly deeper network topology. As a remarkable
milestone [5], an unsupervised learning procedure for a
restricted Boltzmann machine (RBM) can be efficiently
and recursively used to prepare a deep network layer by
layer without supervision. Then, the pre-trained parame-
ters can be fine-tuned via backpropagation. The successes
of deep networks are now well reported in the areas of
computer vision, speech recognition, language processing,
and classic and electronic gaming, with the recent high-
light ‘‘AlphaGo’’ (the computer program that plays the
board chess Go and defeated the professional player for
the first time) [6]. There are several excellent review
articles on deep learning. Three complementary examples
are [7]–[9] (the last one is the most comprehensive and up-
to-date textbook). Also, the 2015 Medical Image Computing
and Computer Assisted Intervention Society (MICCAI) Con-
ference had tutorials on deep learning and imaging [10]. Since
this field is rapidly expanding, an exclusive review is beyond
the scope of this article.

FIGURE 3. Deep network for feature extraction and classification through
nonlinear multi-resolution analysis (fully or locally connected).

Instead of covering much technical details of machine
learning, let us first look at a neural network for pattern
recognition tasks such as face recognition. As shown in
Figure 3, there are many layers of neurons with inter-layer
connections in the deep network. Data are fed into the input
layer of the network. Weights associated with the neurons are
typically obtained in a pre-training and fine-tuning process
or a hybrid training process with a large set of unlabeled
and labeled images. Results are obtained in the output layer
of the network. Other layers are hidden from direct access.
Each layer uses features from the previous one to form more
advanced features. At earlier layers, lower level features such
as edges, corners, and facial motifs are analyzed. At later
layers, higher level features are synthesized to match face
templates. Thanks to innovative algorithmic ingredients that
have been developed over the past years, this deep learning
mechanism has been made extremely successful for feature
extraction from images as reported in the literature [7]–[9].
Note that a deep network is fundamentally different from
many other multi-resolution analysis schemes and optimiza-
tion methods. A niche of deep networks is the nonlinear
learning and nonconvex optimization ability for problems
of huge dimensionality that were too complex for machine
intelligence.
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While Figure 3 illustrates the process from images to
features, what we are now interested in is from projection
data/indirect measurements to tomographic images. The raw
data collected for tomographic reconstruction can be con-
sidered as image features which are often approximated as
linearly combined image voxel values, and more generally
modeled as nonlinear functions of an image. Thus, image
reconstruction is from raw data (features measured with
tomographic scanning) to underlying images, an inverse of
the pattern recognition workflow that goes from images to
features in Figure 3. It is argued as follows that this inverse
process does not present any conceptual challenge.

A classic mathematical foundation of artificial neural net-
works is the so-called universal approximation theorem that,
with a reasonable activation function, a feed-forward net-
work containing only a single hidden layer may closely
approximate an arbitrary continuous function on a com-
pact subset when the network parameters are optimally
specified [11]. Then, the assumption on the activation func-
tion was greatly relaxed, leading to the observation that ‘‘it is
not the specific choice of the activation function, but rather
the multilayer feedforward architecture itself which gives
neural networks the potential of being universal learning
machines’’ [12]. Although a single hidden layer neural net-
work can approximate any function, it is highly inefficient
to handle large-scale problems and big data since the num-
ber of neurons would grow exponentially. With deep neural
networks, depth and width can be combined to efficiently
represent functions to high precision, and perform powerful
multi-scale analysis, quite like wavelet analysis but in a non-
linear manner.

If we consider that the process from images to features is a
forward function, the counterpart from features to images is
an inverse function. It might appear that the analogy is some-
how asymmetric, since the features of the neural network are
based on the problem and hence semantic, while the tomo-
graphic data acquisition captures physical interactions. How-
ever, at a higher level the information flows in semantics and
physics are quite the same and should be computable in sim-
ilar steps. Just like the case in which such a forward function
has been successfully implemented in a neural network for
many applications, so should be the case that the inverse func-
tion for any tomographic modality would be representable in
terms of a neural network. Both types of the processes ought
to be feasible by the intrinsic capabilities of the deep net-
work that supports such a general functional representation
via biomimicry, be it forward or inverse. Since the forward
neural network is deep (i.e., many layers from an image to
features), it is natural to expect that the inverse neural network
should be also deep (many layers from raw data to an image).
Despite special cases in which relatively shallow networks
may work well, the neural network would be generally deep
when the problem is complex, and the aforementioned repre-
sentation efficiency and multi-resolution analysis are impor-
tant to combat the entanglement of features and the curse of
dimensionality.

This viewpoint can also be argued from an algorithmic
perspective. Either the filtered backprojection (FBP) or
simultaneous algebraic reconstruction technique (SART) can
be easily formulated in the form of parallel layered struc-
tures [13]. Then, the straightforward path to deep imaging
could be simply from raw data to an initial image through
a neural network modeled after a traditional reconstruction
scheme, and then from a reconstructed image to a processed
image through a refinement deep network (an overlap with
deep learning based image processing, to be explained more
in the next section).

As a side note, from data sampled below the Nyquist rate,
artifacts in reconstructed images are frequently structured and
non-local. It might appear that a deep convolutional neural
network is better at handling localized artifacts than it is
in the case of image distortions with a non-local spatially-
varying point spread function. Actually, nonlocal features
can be expressed as a linear or nonlinear combination of
local features. Hence, deep learning can handle global image
features in principle, even if they are substantially distorted.

FIGURE 4. Past, present and future of CT image reconstruction.

III. ROADMAP FOR LOW- AND HIGH-HANGING FRUITS
Without the loss of generality, let us take CT as an example. It
can be imagined that many CT reconstruction algorithms can
be covered in the deep imaging framework, as suggested in
Figure 4. In the past, image reconstruction is mostly analytic,
and advanced reconstruction algorithms were developed even
in the intricate helical cone-beam geometry assuming noise-
free data [14]. With the increasing use of CT scans and public
concern about patient radiation safety, iterative reconstruction
algorithms have become gradually popular [15]. It is hypoth-
esized here that both analytic and iterative algorithms can
be upgraded to deep imaging algorithms to deliver superior
diagnostic performance.

Towards deep imaging, there are various techniques to be
developed as low-hanging and high-hanging fruits. Let us
first look at low-hanging fruits, and then high-hanging ones.
However, these can be pursed in parallel.

A. LOW-HANGING FRUITS
First, low-hanging fruits can be harvested by replacing one
or more machine learning elements of a current image
reconstruction scheme with deep learning counterparts.
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FIGURE 5. Low-hanging fruits by ‘‘knocking-out/down/in’’ computational
elements in a traditional iterative reconstruction flowchart.

To appreciate this replacement strategy, let us recall genetic
engineering techniques. Geneticists use knock-out, knock-
down and knock-in to produce genetically modified models
such as genetically modified mice. In a nutshell, knock-out
means deletion or mutational inactivation of a target gene;
knock-down suppresses the expression of a target gene; and
knock-in inserts a gene into a chromosomal locus. Once a
target gene is ‘‘knocked-out’’, it no longer functions. By
identifying the resultant phenotypes, the function of that gene
can be inferred. Less brutal than knock-out, knock-down
weakens the expression of a gene. On the other hand, knock-
in is just the opposite of knock-out. In a similar spirit, we can
view each type of reconstruction algorithms as an organic
flowchart, and some building blocks can be replaced by
machine learning counterparts. For example, Figure 5 shows
a generic flowchart for iterative reconstruction, along with
multiple machine learning elements that can be knocked-in at
appropriate locations while the corresponding original black
box can be knocked-out or knocked-down. Thus, a state of
the art reconstruction algorithm can be used to guide the con-
struction of a corresponding deep network. By the universal
approximation theorem, each computational element should
have a neural network counterpart. Therefore, a network-
oriented equivalent version can be built out of the state of
the art algorithm. The real power of the deep learning based
reconstruction lies in the data-driven knowledge-enhancing
abilities so as to promise a smarter initial guess, more relevant
intermediate features, and an optimally regularized final
image within an application-specific low-dimensional mani-
fold.

Also, low-hanging fruits can be captured by performing
deep learning based image post-processing (a number of good
papers were already published on image denoising using
neural networks; however, few of which are for medical
imaging [1]). When a projection dataset is complete, an
analytic reconstruction would bring basically a full informa-
tion content from the projection domain to the image space
even if data are noisy. If a dataset is truncated, distorted
or otherwise severely compromised (for example, limited

angle, few-view, local reconstruction, metal artifact reduc-
tion, beam-hardening correction, scatter suppression, and
motion restoration problems) [16], a suitable iterative algo-
rithm can be used to form an initial image. It is the image
domain where the human vision system is good at denoising,
destreaking, deblurring, and interpretation. In other words,
we can let existing image reconstruction algorithms generate
initial images, and then let deep networks do more intelli-
gent work based on initial images. This two-stage approach
is recommended for three reasons. First, well-established
tomographic algorithms can still be utilized. Second, the
popular deep networks with images as inputs can be easily
adapted. Third, domain-specific big data can be incorporated
as unprecedented prior knowledge. With this approach, the
neural network is naturally deep, since as shown in many
papers [1] medical image processing and analysis can be
effectively performed by a deep network.

Similarly, a sinogram can be viewed as an image, and
a deep learning algorithm can be used to improve a low-
dose or otherwise compromised sinogram; see an example
we simulated below. The transform from a poor sinogram
to an improved one is a type of image processing tasks, and
can be done via deep learning. Then, a better image will be
reconstructed from the improved sinogram.

B. HIGH-HANGING FRUITS
In contrast, high-hanging fruits do not necessarily involve any
key ingredient of classic reconstruction algorithms. With the
most advanced deep imaging algorithms, we hope to encom-
pass the broadest range of image reconstruction problems
for an imaging performance superior to the state of the art.
It seems that the following key problems are of great refer-
ence values (some of which you might still consider as low-
hanging fruits), and solving themwith novelty, thoroughness,
and wide applicability would lead to high-hanging fruits.

1) NETWORK CONFIGURATION
Design of network topologies (and dynamics) for typical
applications is a prominent target, along the formulation of
the working principles (like object-oriented design) for adap-
tation and integration of network modules. This is equivalent
to algorithmic design or computer architecture design. It may
be boldly speculated that deep imaging networks could poten-
tially outperform conventional imaging algorithms, because
information processing with a deep network is nonlinear in
activation functions, global through a deeply layered struc-
ture, and a best bet with comprehensive prior knowledge
learnt from big data. This is in sharp contrast to many tra-
ditional regularizers that are linear, local, or ad hoc [17].
Currently, the network design remains an area of active explo-
ration in terms of both the overall architecture and component
characteristics, and has been rarely touched upon for the
purpose of image reconstruction.

The deep neural network, and artificial intelligence in gen-
eral, can be further improved by mimicking neuroplasticity
— the ability of the brain to grow and reorganize for learning,

VOLUME 4, 2016 8917



G. Wang: Perspective on Deep Imaging

adaption and compensation. Currently, the number of layers
and the number of neurons per layer in a deep network
were obtained using the trial and error approach, and not
governed by any theory. In reference to the brain growth and
reorganization, the future deep network could work in the
same way and become more adaptive and more suitable for
medical imaging. As time goes by, we may be able to design
deep networks that are time-varying, reconfigurable, and even
have quantum computing behaviors [18].

2) DATA GENERATION
Advanced imagemodeling and data generation are important.
In the clinical world, there are enormous image volumes but
only a limited amount of them were labeled, and patient
privacy has been a hurdle for medical imaging research.
Nevertheless, the field is ripe for big data and deep learning.
First, big data are gradually becoming accessible to
researchers. A good example is the National Lung Screening
Trial (NLST) [19]. In this context, pairing imaging data with
reconstructed images is invaluable. On the other hand, a really
realistic simulator could play a key role. For example, a high-
performance simulator (such as CatSim for CT research [20])
can take real images as input to produce high-quality ‘‘raw
data’’ for training and testing purposes. More interestingly,
we can build a general anatomical image model to gener-
ate big data. For example, using anatomical atlases such as
those based on the Visible Human project [21], [22], we
can produce image volumes that are representative of the
human bodies in different contrasts (say CT and MRI). With
deformable morphing methods, we can produce a large num-
ber of anatomically realistic images that may be otherwise
difficult to obtain [23]; see Figure 6.

FIGURE 6. Organ and body surfaces of the RPI pregnant female models at
the end of 3, 6 and 9 months, respectively, for estimation of radiation
doses from radiological procedures [23] (Courtesy of X. George Xu with
RPI).

It is underlined that simple-minded synthetic big data,
based on one or a few real cases only, would be insuf-
ficient for deep imaging. Indeed, the current standard for
high-quality image reconstruction papers is to have real data
demonstration, not just numerical results. Existing image
databases do not store raw data, and preprocessing steps
and parameters, and a typical numerical simulation envi-
ronment in the medical imaging field does not include
all practical factors including x-ray scattering, x-ray focal
spot shape, detector or coil imperfectness, physiological

motion, and many others. However, when there are suffi-
ciently many representative cases that allow us to deform
into realistic variants, we can generate a huge number of
unlabeled and labeled high-quality images as target. Coupled
with low-quality/incomplete data/images as input, we can
train a deep neural network to perform image reconstruc-
tion that could bypass an explicit treatment of all imaging
physics details. This is quite like the case in which a deep
learning based diagnosis program designed by a computer
scientist can be comparable or even better than a human
radiologist, although the computer scientist knows little about
pathology [1].

3) HYBRID TRAINING
Of particular relevance to deep imaging is how to train a deep
network with big data. With unlabeled big data and a smaller
or moderate amount of labeled data, deep learning can be
implemented via a pre-training step without supervision, a
knowledge transfer based initialization, or a hybrid training
process, so that intrinsic image features are learnt to have
favorable initial weights and then fine-tuned [24]. Transfer
learning and hybrid training with unlabeled and labeled data
seems a good research topic. For example, such a training
process could be pre-conditioned or guided by an advanced
numerical simulator, observer, and statistical bootstrapping.

4) NETWORK-BASED REGULARIZATION
Smart regularization in the data and/or image domains can
be viewed as a generalized ‘‘backpropagation’’. Some net-
work modules are needed to extract desirable/undesirable
image features and enable the network to do smart image
reconstruction. In particular, some modules would effec-
tively regularize image reconstruction to reduce task-specific
penalty measures. Evaluation of penalties is relative eas-
ier than generalized backpropagation of these penalty mea-
sures, both of which are desirable to improve image quality
gradually.

5) ‘‘PARTICULARS’’ MANAGEMENT
In many imaging modalities, data quality and image met-
rics are complicated by multiple factors, such as imag-
ing geometry, patient placement, sensor calibration, and
so on. Prior information about these characteristics was
taken into account, to different degrees, in existing recon-
struction approaches but it is not straightforward within
the deep learning framework. Recently, with locally linear
embedding we obtained excellent results in automatic geo-
metric calibration for fan-beam and cone-beam CT [25].
Based on this and other results, preprocessing/calibration
tasks could be handled in a low-dimensional manifold,
and seem computationally manageable in a deep learning
framework.

The above considerations apply to all major imaging
modalities; for example, biomedical imaging problems are
associated with similar formulations in the general cate-
gory of inverse problems. To the first order approximation,
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a majority of medical imaging algorithms have Fourier or
wavelet transform related versions, and could be helped by
some common deep networks. For nonlinear imagingmodels,
deep imaging should be a better strategy, given the nonlinear
nature of deep networks. While the multimodality imaging
trend promotes a system-level integration [26], deep imaging
might be a unified information theoretic framework or ameta-
solution to support either individual or hybrid scanners.

The suggested imaging algorithmic unification is consis-
tent with the successes in the artificial intelligence fieldwhere
deep learning procedures follow very similar steps despite
the rather different problems such as chess playing, face
identification, and speech recognition. Just as a unified theory
is preferred in the physical sciences, it is speculated that a uni-
fiedmedical imagingmethodologywould have advantages so
that important computational elements for network training
and other tasks can be shared by all the modalities, and
the realization of inter-modality synergy could be facilitated
since all the computational flows are in the same hierarchy
consisting of building blocks that are standard and dedicated
artificial neural circuits.

Additionally, some modalities have characteristics that are
complex- or tensor-valued, while most deep learning archi-
tectures have been real-valued. There are simple ways to
convert from complex to real, and theremay be value in devel-
oping neural network architectures that support complex-
or tensor-valued inputs and outputs. Contemporary tensor
decomposition methods could be used to motivate deep net-
work structures [27].

Certainly, not every imaging problem can be best solved
using deep learning. For a clean dataset, the conventional
method works well. For a challenging dataset, a deep network
may be the method of choice. In any case, deep learning
should be very relevant to medical imaging. Like with other
methods, research will uncover the merits and limits of deep
imaging, and future image reconstruction schemes may be
hybrid, without discarding classic results entirely.

Along the course of deep imaging development, the first
step is to show the technical feasibility that deep learning
is qualified as an alternative approach; the second step is to
achieve a statistically better image quality from deep learning
than competing methods; and the third step is to make deep
learning solutions highly efficient and practical for deploy-
ment.

IV. PILOT RESULTS
There have been a number of initial attempts at usingmachine
learning including deep learning for medical image recon-
struction. With the use of neural network, two classical
papers from more than 20 years ago targeted SPECT image
reconstruction [28], [29]. More recently, dictionary learning,
which is a contemporary machine learning approach, was
adapted for MRI and CT image reconstruction [27], [30],
[31]. Very recently, reports came out on pilot MRI results
with initial images and regularization parameters respectively
obtained via deep learning [32], [33], and on limited-angle

CT via data-driven learning based on a deep neural network,
showing artifacts reduction and detail recovery [34].

Our three CT examples are as follows. The first example
shows how to transform a poor-quality image to a good-
quality reconstruction. Let us define a 2D world of Shepp-
Logan phantoms. Let a field of view be a unit disk covered
by a 128 ∗ 128 image, 8 bits per pixel. We made each
image consist of one background disk of radius 1 and inten-
sity 100 as well as up to 9 ellipses completely inside the
background disk. Each ellipse is specified by the following
random parameters: center at (x, y), semi-axes (a, b), rotation
angle θ , and intensity selected from [−10, 10]. A pixel in
the image could be covered by multiple ellipses including the
background disk. The pixel value is the sum of all the involved
intensity values. From each image generated, 256 parallel-
beam projections were synthesized, 180 rays per projection.
From each dataset of projections, a SART reconstruction was
performed for a small number of iterations. These blurry
intermediate images are not what we want. Then, a deep
network was trained using the known original phantoms to
predict a much-improved image from a low-quality image.
The network consisted of three convolutional layers. In the
training process, 140,000 small image patches were randomly
selected from the intermediate images as input, and the corre-
sponding image patches in the ground truth images as output.
The representative results are in Figure 7.

FIGURE 7. Deep network capable of iterative reconstruction. The image
pairs from the left to right columns are (1) two original phantoms, (2) the
SART reconstruction after only 20 iterations, (3) the counterparts after
500 iterations, and (4) the deep imaging results with the corresponding
20-iteration images as the inputs, which resemble well the 500-iteration
counterparts (arguably, the 4th column looks slightly better than the 3rd

column).

The second example is from a poor-quality sinogram to
a good-quality sinogram, which was prepared in a way
quite similar to that for the first example. Now, each phan-
tom contained a fixed background disk and two random
disks inside the circular background: one disk represents an
x-ray attenuating feature, and the other an x-ray opaque metal
part. The image size was 32 × 32 for quick results. After
a phantom image was created, the sinogram was generated
from 90 angles. Every metal blocked sinogram was linked
to a complete sinogram formed after the metal was replaced
with an x-ray transparent object. Then, a deep network was
similarly trained as for the first example with respect to the
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FIGURE 8. Deep network capable of sinogram restoration. The first row
lists an original image (metal in purple) and the associated metal-blocked
sinogram. The second row contains the restored sinogram and the
reconstructed image, which shows the potential of deep learning as a
smart interpolator over the missing data region.

complete sinograms to restore missing data; as illustrated in
Figure 8.

The third example demonstrates the potential of deep
learning with MGH Radiology chest CT datasets [21].
These datasets were acquired in low dose levels. They
were reconstructed using three reconstruction techniques:
filtered back-projection (FBP), adaptive statistical iterative
reconstruction (ASIR), and model-based iterative reconstruc-
tion (MBIR) respectively. These were all implemented on
commercial CT scanners. We followed the same deep learn-
ing procedure as in the previous two examples, and took
FBP images as input and MBIR images as the gold standard
for neural network training. For comparison, we performed
image denoising on FBP images using the famous block
matching and 3D filtering (BM3D) method [35] and our deep
neural network. Figure 9 shows the image denoising effect of
deep learning, as compared to the MBIR counterpart. It can
be observed that the image quality achieved via deep learning
is quite similar to that of MBIR but deep learning is much
faster than the state of the art iterative reconstruction. It is
interesting that a computationally efficient post-processing
neural network after the standard ‘‘cheap’’ FBP achieves a
very similar outcome as the much more elaborative iterative
scheme, and yet the neural network solution does not need
any explicit physical knowledge such as the x-ray imaging
model. We are working to refine the network so that deep
learning might beat the iterative reconstruction, aided by rich
knowledge extracted from big data.

Figure 7 resembles a super-resolution problem. Figure 8
represents a type of imprinting work. Figure 9 is just an
image denoising operation. Note that you may not be able to
see much differences between the iterative and deep learning
images in Figure 9 partially because the iterative results
were used as the target for training, but the point is that if
deep imaging and the iterative method give similar results,
then deep imaging is already an alternative method, and we

FIGURE 9. Deep learning based image denoising, demonstrating that
deep learning could be an effective and efficient alternative to the state
of the art iterative reconstruction strategy.

have more to expect in the future. It is relatively easy to
apply existing deep learning techniques to have these low-
hanging fruits first. Indeed, a latest report of ours visually
and quantitatively demonstrated a competing performance
of deep learning relative to TV minimization, KSVD, and
BM3D [36].

In principle, artificial network based a priori knowledge
is more powerful than convex approaches, as hinted by the
superior performance of deep learning in well-known image
analysis applications such as face recognition. There are
multiple ways to capitalize the power of deep learning for
image reconstruction. The use of neural networks as ‘‘priors’’
in an algebraic formulation is one of them. We have already
pursued along that direction; for example, with a neural net-
work based stopping rule the SART-type reconstruction can
be ‘‘smartly’’ monitored (data not included due to limited
space).

It is encouraging that in addition to what was mentioned
above there are other researchers who are working on deep
learning approaches (including the author’s collaborators and
peers). However, up to this moment, no deep learning based
reconstruction method has been fully developed, rigorously
validated, and has outperformed the best alternative meth-
ods. The challenges are very understandable. First of all,
deep learning based imaging needs high-quality big data and
meticulous training and testing for full characterization of the
imaging performance. This motivates us to take solid steps
immediately for low- and high-hanging fruits.

V. THEORETICAL ISSUES
Deep learning has achieved impressive successes in practice
but a decent theory remains missing. This embarrassment is
well recognized by the community. For example, Dr. Yann
LeCun pointed out several open topics in his keynote pre-
sentation at the Conference on Computer Vision and Pattern
Recognition 2015. Several of them demand deeper theoretical
understanding on why CNN works well and how to make it
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better so that local minima are effectively avoided and global
solutions are efficiently achieved.

Why does a deep neural network perform well? This has
become a hot topic for theorists to brainstorm. For example,
from a perspective of theoretical physics, the concept of the
renormalization group (RG, related to conformal invariance
by which a system behaves in the same way at different
scales) was recently utilized for understanding the perfor-
mance of deep learning [37]. Specifically, a mapping was
constructed in light of the variational renormalization group
for the deep learning network based on Restricted Boltzmann
Machines (RBMs), suggesting that deep learning may be an
RG-like scheme to learn features from data.

Here let me give an insight from a perspective of
linear/non-linear systems. First, each neuron is governed by
an activation function which takes data in the form of an inner
product, instead of input data directly. The inner product is
computed by summing products of paired data, which can be
visualized as a double helical structure, like that of DNA in
which the paired results between the double helix are lumped
together. In other words, the inner product is a fundamental
construct for deep learning. This view is mathematically
meaningful, since most of mathematical transforms includ-
ing matrix multiplications are calculated via inner products.
These products are nothing but projections onto appropriate
bases of an involved space. Cross- and auto-correlations are
inner products, common for feature detection. Projections
and backprojections are inner products as well. Certainly,
the inner product operation is linear, and we should not be
limited to linearity. Then, the nonlinear trick comes as an
activation function. Biomimicry-wise, the biological convo-
lution (the function of DNA) is much more complicated than
the classic mathematical convolution, and that is why the
nonlinear activation function is needed to empower the classic
mathematical convolution. In a good sense, a deep network
is a generalized mathematical convolution process through
multiple stages. Since a deep network mimics an organism
better than a linear operator, a deep network is much more
intelligent than a linear system solver.

In a deep network, the alternating linear and nonlinear
processing steps seem to hint that the simplest linear com-
putational elements (inner products) and simplest nonlinear
computational elements (monotonic activation functions) can
be integrated to perform highly complicated computational
tasks. Hence, the principle of simplicity applies not only to
physical sciences but also to information/intelligence sci-
ences, and the multi-resolution phenomena seems merely a
reflection of this principle. When inner products are per-
formed, linear elements of machine intelligence are realized.
When the activation steps (in a general sense, many effects
are included such as pooling and dropout) are followed, the
non-linear nature of the problem is addressed. So on and
so forth, smart analysis and synthesis goes from bottom
up (feed forward) and from top down (back propagation).
This kind of linear and nonlinear couplings/interconnections
might universally solve a wide class of nonlinear

optimization/estimation/intelligence problems, whose theo-
retical characterization has yet to be worked out.

As a side note, a majority of reconstruction algorithms
were designed for linear imaging problems. If the linear
system model is accurate, at the first look, there appears no
need to trade analytic and statistical insight for nonlinear
processing advantages of deep networks. Nevertheless, even
in that case, it could be argued that deep imaging is an
attractive platform to fully utilize domain specific knowledge
when big data is available. Such comprehensive contextual
prior knowledge cannot be fully utilized by iterative likeli-
hood/Bayesian algorithms, which are nonlinear but limited
to compensation for statistical fluctuation. Additionally, with
the principle of simplicity, we tend to prefer deep imaging,
using the analogy of digital over analog computers.

It is acknowledged that interesting critiques were made on
deep learning that slightly different images could be put into
distinct classes [38], and random images could be accepted
into a class with a high confidence level [39].

These critiques are important, but they should be address-
able. Taking CT as an example, image reconstruction is the-
oretically not unique from a finite number of projections in
an unconstrained functional space [40]. However, the non-
uniqueness is avoided in practice where we have a priori
knowledge that an underlying image can be treated as band-
limited, and we can collect a set of sufficiently many data
appropriate for the bandwidth. As another example, in the
area of compressed sensing it was shown that while com-
pressed sensing produced visually pleasing images, tumor-
like features were hidden or lost [41]. Nevertheless, those fea-
tures were constructed based on the known imaging geometry
and algorithmic details, which would not likely be encoun-
tered in clinical settings. Indeed, most theoretical analyses
on compressed sensing methods suggest the validity of the
results with the modifier ‘‘with an overwhelming probabil-
ity’’, such as in [42]. Actually, multiple iterative image recon-
struction algorithms for medical imaging already have CS
components and show excellent results. As long as a method
most likely delivers decent results, it is a great tool unless we
have an even better method.

Still, there are more theoretical limitations of compressed
sensing that have yet to be resolved. When the claim was
made that compressed sensing generates valid results "with
an overwhelming probability", important caveats cannot be
ignored. Especially, the problem sizes need to be large for
most theoretical results to become valid, and the probabilistic
sampling schemes have to be designed according to distri-
butions that may not be easily verifiable. Even if there is a
high-probability of "success" in the theoretical settings, the
involved constants of proportionality are not always favor-
able. Although the current theory cannot give the imaging
performance guarantee for most medical imaging problems,
the theoretical insights have enabled a large range of applica-
tions.

Overall, we feel that the story for deep learning will be sim-
ilar to that for compressed sensing; that is, dependably-good
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FIGURE 10. Fourth paradigm as presented by Dr. Jim Gray [46], and
slightly renamed by the author.

results are feasible in the absence of full-fledged theory, and
eventually we will have a satisfactory theory. Encouragingly,
good results are constantly emerging such as [43].

It is also acknowledged that deep imaging has important
implications regarding how image details get resolved, and
its risk to bring details or artifacts that are not purely in the
data. This could be a huge concern in medicine. This pre-
caution applies to all other regularization-based algorithms as
well, although to different degrees. Traditional regularization
methods were extensively studied, and there are opportuni-
ties for deep learning research along this direction. Philo-
sophically and practically, I think that we should be able to
reconstruct an optimal image from adequate measurements
in reference to rich prior knowledge using a deep network, its
variants, or other similar methods. Many regularized iterative
algorithms were demonstrated to be successful, and I do not
fundamentally worry about that deep learning based algo-
rithms will be cheated. A key prerequisite for deep imaging
is a training set that spans the space of all relevant cases.
Otherwise, an optimized deep network topology (if achieved)
could be disappointing in the real world.

If a deep network is well trained, it is postulated that its
structure should be stable through re-training with images
obtained through locally and affinely transformed previously-
used images. This invariance may help characterize the
generic architecture of a deep imager.

VI. CONCLUDING REMARKS
In 1962, Dr. Thomas Kuhn proposed a philosophical view
of scientific advancement [44], [45]. Instead of viewing sci-
ence as a steady progress in incremental steps, he under-
lined breakthroughs, each of which is characterized by a new
paradigm of thinking and doing. In 2007, Dr. Jim Gray gave a
talk to theNational Research Council, Computer Science and
Telecommunications Board, in Mountain View, CA, in which
he added the fourth paradigm to the perspective from the
pre-science era to the present: empirical, theoretical, compu-
tational, and data-explorative that unifies theory, experiment,
and simulation; see Figure 10. Actually, the fourth paradigm
might be better called ‘‘machine learning from big data’’ to
emphasize that the driver of big or small data exploration is

the man-machine system, instead of the researcher alone; i.e.,
intelligence is no longer solely owned by the human. By the
way, the fifth paradigm has not been mentioned yet, which
I think should be hybrid (brain-computer integration) yet
connected intelligence (Intelligent-net or ‘‘Intelnet’’) enhanc-
ing learning and research capabilities to an unprecedented
level.

The fourth paradigm seems to be on the horizon in the
medical imaging field. In addition to exploring how deep
learning can reshape the landscape of image reconstruction
as pondered earlier, the combination of deep learning based
image reconstruction and analysis may allow us to change
healthcare. For example, deep learning may help tweak or
design imaging and reading protocols specific to different
organs, lesion types, and patient characteristics. Also, big
data based deep imaging software may query data across
institutional and medical specialties and go beyond the exist-
ing decision support programs by incorporating such infor-
mation as patient age, gender, symptoms, medical history,
disease profile, biochemical, pathological, microbiological,
and genomic data. Moreover, why not combine diagnosis
and intervention via deep learning? Supervised autonomous
robotic soft tissue surgery is an initial example [47]. There
are already efforts to automate radiation treatment plan-
ning. This kind of intelligent systems will be a counter-
part of the GoogleCar (which is the automatic driving car
being developed by Google): the former inside, the latter
outside.

Deep learning is not only a new wave of research, devel-
opment and application in the field of medical imaging (and
other imaging fields such as homeland security screening)
but also a paradigm shift. This could be the magic wand
to achieving optimal results cost-effectively, especially from
huge and compromised data, as well as for problems that
are nonlinear, nonconvex, and overly complex. However, my
perspective of deep imaging could be overly optimistic, and
must be balanced by controversies, potential difficulties and
justified concerns. It has taken decades for the neural network
approach to outperform the human in some recognition tasks,
and hence the general success of deep learning for image
reconstruction must rely on some new twists that take time
to develop and realize. The big data, learning architecture,
performance evaluation, and potential translation may all
demand significant efforts. Nevertheless, I am enthusiastic
that the venture to deep imaging will accelerate to a level that
it will re-invent the future of healthcare [48], [49].
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