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ABSTRACT In bistatic multiple input multiple output (MIMO) radar, more number of detectable incident
signals and a higher angle estimation performance can be obtained by using conjugate estimation of signal
parameters via rotational invariance techniques (ESPRITs) with the characteristic of noncircularity. The
result is achieved under the assumption that all the received signals are noncircular.When the incident signals
are the coexistence of noncircular and circular signals, the conjugate ESPRIT will not valuable. Therefore,
this paper proposes a method of the joint of direction of departure (DOD) and direction of arrival (DOA)
estimation, which is appropriate for the coexistence of noncircular and circular signals in bistatic MIMO
radar. First, the received data model of the bistatic MIMO radar is given. Second, we modify the received
signal model by the use of noncircularity characteristic. Third, we derive out the equation of spatially
rotational invariant containing the DOD and DOA information. Last, we solve the equation to obtain the
DOD and DOA bymeans of total least squares technology. The proposed algorithm has the three advantages.
One is that it has better angle estimation accuracy than that of method which does not use the noncircularity
characteristic. Another one is that it has more number of detectable incident signals. The last one is that the
more number of noncircular signals, the higher angle estimation accuracy will be. Results from numerical
experiments are used to show the effectiveness of our proposed algorithm.

INDEX TERMS Array signal processing, MIMO radar, DOA estimation, ESPRIT, noncircular.

I. INTRODUCTION
Multiple input multiple output (MIMO) radar has received
much attention by researchers and industry as its enormous
advantages [1]. MIMO radar transmits orthogonal signal
waveform through multiple antennas, and receives echoes by
the use of multiple antennas. The more phase-center after
matched filtering process can be obtained, then the MIMO
radar will have larger array aperture than the conventional
phased array radar (PAR). Then the MIMO radar has many
advantages than PAR in many aspects, for example, target
detection, tracking, and imaging, etc [1]–[3]. Angle estima-
tion is always the one of a radar’s concerns. So, the algorithms
of angle estimation with MIMO radar are developed quickly,
such as the references in [4]–[9]. In the following, we give
the detailed analysis.

In [4], the classic Capon algorithm, the Amplitude and
Phase EStimation (APES) algorithm, and the combination

of Capon algorithm and APES (CAPES) are extended to
the joint direction of arrival (DOA) and the amplitude of
incident signals in monostatic MIMO radar. In [5], the esti-
mation of signal parameters via rotational invariance tech-
niques (ESPRIT) algorithm developed for PAR is extended
to the joint estimation of (direction of departure) DOD and
DOA with bistatic MIMO radar according to the rotational
invariance of the transmitted and received array. But there
is a drawback, which is pairing processing between the
DODs and DOAs in the case of multi-signal scenario. So,
reference [6] uses real-valued processing to realize auto-
matic paring between DODs and DOAs estimation. And it
can also improve angle estimation performance under small
snapshots. Other classic algorithms for the joint DOD and
DOAestimationwithin bistaticMIMO radar include: the one-
dimensional research multiple signal classification (MUSIC)
method [7], the combined ESPRIT-MUSIC approach [8],

7232
2169-3536 
 2016 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 4, 2016



G. Zheng et al.: ESPRIT and Unitary ESPRIT Algorithms for Coexistence of Circular and Noncircular Signals

the alternating projection based maximum likelihood esti-
mation [9], trilinear decomposition-based transmitted angle
and received angle estimation [10], the real-valued covariance
vector sparsity-inducing estimation [11], and the reduced-
dimension MUSIC for angle and array gain-phase error
estimation [12].

It is well known that the angle estimation performance
and detectable targets can be improved by using noncircu-
larity characteristic of the noncircular signals. Therefore, the
conjugate ESPRIT method for MIMO radar, which utilizes
the noncircularity characteristics, is developed [13], [14].
In addition, the combined ESPRIT and MUSIC approach
in [8] is applied to bistatic [15] and monostatic [16]
MIMO radar with the case of noncircular signals. And
a sparsity-aware DOA estimation scheme based on
aMUSIC-reweighted L1 norm penalty for noncircular source
is proposed in MIMO radar [17].

The above outstanding works are based on the assump-
tion that all of the received incident signals are noncircular
signals. When the received incident signals have circular
signals besides the noncircular signals, almost of the above
methods will fail. On the other hand, reference [18] solves
the problem of coexistence of circular and noncircular signals
in PAR. However, the problem of angle estimation in MIMO
radar in case of the coexistence of circular and noncircular
signals has so far not been derived in the literature. Moti-
vated by the reason, this paper will complete this research.
We propose a ESPRIT-like algorithm for the joint DOD and
DOA estimation with bistatic MIMO radar under the coexis-
tence of circular and noncircular signals. This paper can also
be seen the application of the reference [18] in bistaticMIMO
radar. This work appeared in part in the reference [19]. The
proposed algorithm has the three advantages: 1) it has better
angle estimation accuracy than that of does not use of non-
circularity characteristic; 2) it has more number of detectable
incident signals; 3) the more number of noncircular signals,
the higher angle estimation accuracy will be.
Notations: Superscript (·)∗, (·)T , and (·)H denote complex

conjugation, transpose, and conjugate transpose, respectively.
�, ⊗, and ⊕ denote Hadamard-Schur product, Kronecker
product, and Khatri-Rao product (columnwise Kronecker
product), respectively. Re{·} represents the real part of the
entity inside. Im{·} represents the imaginary part of the
entity inside. Tr{·} denotes the trace of the entity inside.
IMN is a MN × MN identity matrix. 5MN is a MN × MN
exchange matrix. vec(·) denotes vectorization processing.
diag(·) denotes diagonalize the vector inside.

H ,

[
A,B,C
D,E,F

]
is defined as a 2 × 3 block matrix, whose

elements are also matrices and their dimension must satisfy
the construction of a new matrixH . rank(R) denotes the rank
of matrix R.

II. SIGNAL MODEL
M transmitted antennas and N received antennas are used
in a bistatic MIMO radar. The transmitted and received

arrays are set as half-wavelength spacing uniform linear
array (ULA).M orthogonal signal waveforms are transmitted
by M transmitted antennas, which is expressed as the matrix
U = [uT1 , · · · ,u

T
M ]T ∈ CM×P, where UUH

= IM and P
denotes the signal coding length. K far field incident signals
impinge on the MIMO radar. The DOD and DOA of incident
signal are marked with θ ∈ [−π2 ,

π
2 ] and φ ∈ [−π2 ,

π
2 ],

respectively. Then the echoes of bistatic MIMO radar can be
expressed as:

X(t) = Ar (φ)⊕ diag[s(t)]ATt (θ )U +W (t) ∈ CMN×P (1)

where t is ’slow’ time index. Ar (φ) = [ar (φ1), · · · , ar (φK )]
∈ CN×K and At (θ ) = [at (θ1), · · · , at (θK )] ∈ CM×K

denote the received and transmitted array manifold, in which
columns ar (φk ) and at (θk ) are respectively equal to:

ar (φk ) = [1, exp(jπ sinφk ), · · · , exp(jπ (N − 1) sinφk ]T

(2)

at (θk ) = [1, exp(jπ sin θk ), · · · , exp(jπ (M − 1) sin θk ]T

(3)

s(t) = [s1(t), · · · , sK (t)]T ∈ CK×1 is the reflected sig-
nals vector, which contains the radar cross-section (RCS)
and Doppler, where sk (t) = βkej2π fk t , βk and fk rep-
resent amplitude and Doppler frequency of the k target,
respectively. s(t) is set as the mixtures of narrow-band
noncircular and circular signals. W (t) ∈ CMN×l is
a white Gaussian random process with zero mean and
σ 2
n variance.
Performing matched filtering processing for the received

data matrix X(t), namely right-multiplied by the transmitted
matrix UH , we can obtain:

X̃(t) = X(t)UH
= Ar (φ)diag[s(t)]ATt (θ )UU

H
+ N(t)

= Ar (φ)diag[s(t)]ATt (θ )+ N(t) (4)

where N(t) = W (t)UH denotes the new noise. Performing
vectorization operation to Eq. (4)], we can get a MN dimen-
sional vector data:

y(t) = vec
{
X̃(t)

}
= A(θ, φ)s(t)+ n(t) ∈ CMN×1 (5)

wherebA(θ, φ) = At (θ ) ⊕ Ar (φ) ∈ CMN×K , in
which the column vector a(θ, φ) = at (θ ) ⊗ ar (φ) is
defined as joint transmit-received steering vector. For noise
n(t) = vec[N(t)], it is known from references [3]–[17]
that the noise is still a white Gaussian random
process.

III. MODIFIED SIGNAL MODEL
We set K = Knc + Kc, which Knc denotes the number
of noncircular signals and K denotes the number of circu-
lar signals. We rewrite the reflected signals as the vector
s(t) =

[
snc(t)T , sc(t)T

]T , where the vector snc(t) denotes
noncircular signals and sc(t) denotes circular signals, which
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are expressed as{
snc(t) = [snc,1(t), · · · , snc,Knc (t)]

T

sc(t) = [sc,1(t), · · · , sc,Kc (t)]
T (6)

Circularity is a characteristic of complex random signals. For
a zero-mean complex signal z, the definition of circularity
is: E[zzH ] = δ2,E[zzT ] = ρeηδ2, where η is the noncir-
cular phase and 0 ≤ ρ ≤ 1 is the circularity rate. The
signal is circular when ρ = 0 and noncircular when 0 <

ρ ≤ 1. Here completely noncircular signals are considered,
i.e., ρ = 1. According to the above analysis, noncircular
signal snc,i(t) can be written as snc,i(t) = εisi(t), where
εi = ejϕi is a complex constant and si(t) is a real-valued
signal. Therefore, the noncircular signal vector snc(t) can be
rewritten as:

snc(t) = 0sreal1(t) (7)

where sreal1(t) = [s1(t), · · · , sKnc (t)]
T and 0 =

diag[ε1, · · · , εKnc ]. According to the reference [18], one
circular signal is divided into the two identical angle real-
valued signals, as follows.

sc(t) = [sreal2(t)+ jsreal3(t)] =
[
IKc jIKc

] [ sreal2(t)
sreal3(t)

]
(8)

According to Eqs. (7) and (8), the reflected signals s(t) can
be expressed as

s(t) =
[
snc(t)
sc(t)

]
=

0sreal1(t)[
IKc jIKc

] [ sreal2(t)
sreal3(t)

]
=

[
0 0 0
0 IKc jIKc

] sreal1(t)sreal2(t)
sreal3(t)

 = 4s̃(t) (9)

where 4 ,

[
0 0 0
0 IKc jIKc

]
and s̃(t) , [sreal1(t)T , sreal2(t)T ,

sreal3(t)T ]T a real-valued signal vector. Then the whole
received data of Eq. (5) is rewritten as:

y(t) = A(θ, φ)s(t)+ n(t) = A(θ, φ)4s̃(t)+ n(t)

= Ã(θ, φ)s̃(t)+ n(t) (10)

where Ã(θ, φ) = A(θ, φ)4 ∈ CMN×(Knc+2Kc). Eq. (10)
indicates that the new form data is similar to the signal model,
which (Knc + 2Kc) incident noncircular signals impinge into
the array of the steering matrix Ã(θ, φ). In the following, we
will drive the rotational invariance about the steering matrix
Ã(θ, φ) and show the method to estimate the DOD and DOA
angles according to the Eq. (10).

IV. PROPOSED ALGORITHM
A. ROTATIONAL INVARIANCE FOR BISTATIC MIMO RADAR
To make full use of noncircularity characteristic of noncir-
cular signal, we compute the conjugation of received data to

extend the array aperture (It doubles the array dimension from
MN to 2MN .):

ync(t) =
[
y(t)
5MN y(t)∗

]
=

[
Ã(θ, φ)s̃(t)
5MN Ã(θ, φ)∗s̃(t)∗

]
+

[
n(t)
5MNn(t)∗

]
=

[
Ã(θ, φ)
5MN Ã(θ, φ)∗

]
s̃(t)+

[
n(t)
5MNn(t)∗

]
= Anc(θ, φ)s̃(t)+ nnc(t) (11)

where Anc(θ, φ) ∈ C2MN×(Knc+2Kc) denotes the joint steering
matrix, which can be unwrapped as:

Anc(θ, φ)

=

[
A(θ, φ)4
5MNA(θ, φ)∗4∗

]
=

[
A1(θ, φ)0,A2(θ, φ), jA2(θ, φ)
5MNA1(θ, φ)∗0∗,5MNA2(θ, φ)∗, j5MNA2(θ, φ)∗

]
(12)

where A1(θ, φ) and A2(θ, φ) denote the joint transmit-
received steering matrix of the first Knc signals and the last
Kc signals, respectively, that isA(θ, φ) = [A1(θ, φ)A2(θ, φ)].
For the upper part of the matrix Anc(θ, φ) in Eq. (12), the first
and last (M−1) elements of transmitted array has the spatially
rotational invariance, mathematically

At1 (θ, φ)

=

 [at1 (θ1)⊗ ar (φ1), · · · , at1 (θKnc )⊗ ar (φKnc )]0,
[at1 (θKnc+1)⊗ ar (φKnc+1), · · · , at1 (θK )⊗ ar (φK )],
j[at1 (θKnc+1)⊗ ar (φKnc+1), · · · , at1 (θK )⊗ ar (φK )]


(13)

At2 (θ, φ)

=

 [at2 (θ1)⊗ ar (φ1), · · · , at2 (θKnc )⊗ ar (φKnc )]0,
[at2 (θKnc+1)⊗ ar (φKnc+1), · · · , at2 (θK )⊗ ar (φK )],
j[at2 (θKnc+1)⊗ ar (φKnc+1), · · · , at2 (θK )⊗ ar (φK )]


(14)

where at1 (θ ) and at2 (θ ) denote the steering vectors of the first
and last (M − 1) elements of the transmitted array. From
Eqs. (13) and (14), we know that there is a rotational invari-
ance between the matrix At1 (θ, φ) and the matrix At2 (θ, φ),
as follows.

At2 (θ, φ) = At1 (θ, φ)8θ (15)

where 8θ = diag[ejπ sin θ1 , · · · , ejπ sin θK , ejπ sin θKnc+1 , · · · ,
ejπ sin θK ], which includes the DODs of (Knc + 2Kc) signals.
In addition, a compact matrix form can be used to illustrate
Eqs. (13) and (14), as follows.

At1 (θ, φ) = [Oθ1A1(θ, φ)0,Oθ1A2(θ, φ),Oθ1jA2(θ, φ)]
= Oθ1[A1(θ, φ)0,A2(θ, φ), jA2(θ, φ)]
= Oθ1A(θ, φ)4 (16)

At2 (θ, φ) = [Oθ2A1(θ, φ)0,Oθ2A2(θ, φ), Oθ2jA2(θ, φ)]
= Oθ2[A1(θ, φ)0,A2(θ, φ), jA2(θ, φ)]
= Oθ2A(θ, φ)4 (17)
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where the selection matrices Oθ1 and Oθ2 equal Oθ1 =

[I (M−1)N0(M−1)N×N ], Oθ2 = [0(M−1)N×N I (M−1)N ], respec-
tively. Substituting Eqs. (16) and (17) into (15), we have

Oθ2A(θ, φ)4 = Oθ1A(θ, φ)48θ (18)

Similar to the result of Eq. (18), for the under part of Eq. (12),
the following rotational invariance equation holds.

Oθ25MNA(θ, φ)∗4∗ = Oθ15MNA(θ, φ)∗4∗8θ (19)

Combining Eq. (18) and Eq. (19), we can obtain

(I2 ⊗ Oθ2)
[
A(θ, φ)4
5MNA(θ, φ)∗4∗

]
= (I2 ⊗ Oθ1)

[
A(θ, φ)4
5MNA(θ, φ)∗4∗

]
8θ (20)

Define the selection matrices Jθ1 and Jθ2 as Jθ1 , (I2 ⊗
Oθ1) = I2 ⊗ [I (M−1)N0(M−1)N×N ] and Jθ2 , (I2 ⊗ Oθ2) =
I2 ⊗ [0(M−1)N×N I (M−1)N ], respectively, then we have the
rotational invariance equation.

Jθ2Anc(θ, φ) = Jθ1Anc(θ, φ)8θ (21)

Similar to the result of Eq. (21), another rotational invariance
equation with the received array can be obtained, as follows.

Jφ2Anc(θ, φ) = Jφ1Anc(θ, φ)8φ (22)

where 8φ = diag[ejπ sinφ1 , · · · , ejπ sinφK , ejπ sinφKnc+1 ,
· · · , ejπ sinφK ], which includes the DOAs of (Knc + 2Kc)
signals. The selection matrices are equal to Jφ1 = I2M ⊗
[I (N−1)0(N−1)×1] and J

φ
2 = I2M ⊗ [0(N−1)×1I (N−1)].

B. ESPRIT AND UNITARY ESPRIT FOR
DOD AND DOA ESTIMATION
1) ESPRIT
Let Y denotes a matrix consisting of L snapshots of received
data ync(tl). Then we calculate the covariance matrix by
using maximum likelihood, i.e. R̂ = YYH/L. Let ES
denotes the signal subspace. In the following, we give
the analysis about signal subspace dimension. We define
a new matrix constructed by the upper part of Anc(θ, φ)
in Eq. (12):

Aup
nc(θ, φ) , [A1(θ, φ)0,A2(θ, φ), jA2(θ, φ)] (23)

Then the number of signals to be estimated of matrix
Anc(θ, φ) are equal to that of A

up
nc(θ, φ), we rewrite A

up
nc(θ, φ)

as

Aup(θ, φ)

=

 [a(θ1)⊗ ar (φ1), · · · , at1 (θKnc )⊗ ar (φKnc )]0,
[a(θKnc+1)⊗ ar (φKnc+1), · · · , a(θK )⊗ ar (φK )],
j[a(θKnc+1)⊗ ar (φKnc+1), · · · , a(θK )⊗ ar (φK )]


(24)

From the above equation, we can see that the number of
columns of Aup(θ, φ) are equals to (Knc+2Kc), whose angles
are equal to:

(θ1, φ1), · · · , (θKnc , φKnc ), (θKnc+1, φKnc+1), · · · ,
(θK , φK ), (θKnc+1, φKnc+1), · · · , (θK , φK ).

Then the signal subspace is consisted of (Knc+2Kc) eigenvec-
tors corresponding to the largest (Knc + 2Kc) eigenvalues of
matrix R̂. Under no noise case, the signal subspaceES and the
steering matrix Anc have the same space, that is, ES = AncT ,
where T is a nonsingular matrix. Substituting ES = AncT
into (21) and (22), one can get the following rotational invari-
ant equations.

Jθ2ES = Jθ1ES9θ (25)

Jφ2ES = Jφ1ES9φ (26)

where 9θ = T−1θ 8θT θ and 9φ = T−1φ 8φTφ .
Eqs. (25) and (26) can be solved by the least squares (LS)
or the total least squares (TLS) algorithm.

After eigendecomposition, the diagonal elements in
8θ and 8φ will be out-of-order. We need to find out the
DOD and DOA estimation for a same target. Because there
is no mismatch between the elements of 8θ and 8φ , and
its corresponding eigenvectors T θ and Tφ . Thus, different
diagonal elements in 8θ and 8φ can be paired for the same
source by pairing the orthogonal rows of T θ and Tφ . This
pairing method is proposed by [20]. Let k denotes the row
index of the matrix element with the largest absolute value in
the f th column of the matrix {T θ ·T−1φ }. Then the kth row of
T θ must correspond to the f th row of Tφ . Now, the 8θ and
8φ have been correctly paired.
Now we can figure out the angle estimations of circular

signals using the method of selecting the two closest estima-
tions [18]. The residual estimations are noncircular signals’
angle estimations. Detailed steps can be found in [18].

2) UNITARY ESPRIT
We extend the data matrix Y to Z = [Y52MNY∗5L].
It doubles the snapshots from L to 2L. Doubled snapshots
dataZ is transformed into real-valuedmatrix by using a sparse
unitary matrix [21].

3 = QH2MN [Y52MNY∗5L]Q2L ∈ R2MN×2L (27)

Qo is a sparse unitary matrix, defined as

Q2O =
1
√
2

[
IO jIO
5O −j5O

]
,

Q2O+1 =
1
√
2

 IO 0 jIO
0T

√
2 0T

5O 0 −j5O

 (28)

Then we calculate the real-valued covariance matrix R̂real =

1/(2L)33H . We can use the similar method of above
ESPRIT to select the real-valued signal subspace ES . Then
substituting ES = AncT into (21) and (22), and then trans-
forming the results into the real-valued form, one can get the
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following rotational invariant equations (The detail can be
found in [6]).

Kθ2ES = Kθ1ES2θ (29)

Kφ2ES = Kφ1ES2φ (30)

where 2θ = T−1�θT and 2φ = T−1�φT . Kθ1 =
Re{QH2(M−1)NJ

θ
2Q2MN } andK

θ
2 = Im{QH2(M−1)NJ

θ
2Q2MN } are

2(M − 1)N × 2MN matrices.

�θ = diag[tan(
π sin θ1

2
), · · · , tan(

π sin θK
2

),

tan(
π sin θKnc+1

2
), · · · , tan(

π sin θK
2

)]

is a real-valued matrix, which contains the desired DOD
information. Kφ1 = Re{QH2M (N−1)J

φ
2Q2MN } and Kφ2 =

Im{QH2M (N−1)J
φ
2Q2MN }, and

�φ = diag[tan(
π sinφ1

2
), · · · , tan(

π sinφK
2

),

tan(
π sinφKnc+1

2
), · · · , tan(

π sinφK
2

)]

is a real-valued matrix, which contains the desired DOA
information. Eqs. (29) and (30) can be solved by the LS or
TLS algorithm. Because 2θ and 2φ are real-valued. There-
fore, we can use the following complex decomposition to
achieve automatically pairing between the DODs and DOAs
estimations [22].

2θ + j2φ = T−1{�θ + j�φ}T (31)

Then the paired DODs and DOAs estimations of {θk , φk},
k = 1, · · · , (Knc + 2Kc) can be obtained by extracting the
real and imaginary parts of the eigenvalues {�θ + j�φ}:{

θ̂k = arcsin{2arctan([�θ ]kk )/π}
φ̂k = arcsin{2 arctan([�φ]kk )/π}

,

k = 1, · · · , (Knc + 2Kc) (32)

We can use the above method to figure out Kc DOD and
DOA estimations of circular signals. And the rest of the Knc
estimations are noncircular signals’ ones.

C. IMPLEMENTATION AND REMARKS OF
THE PROPOSED ALGORITHM
Based on the above theoretical analysis, the proposed DOD
and DOA estimation with bistatic MIMO radar under the
case of the coexistence noncircular and circular signals is
summarized below. Here we take Unitary ESPRIT for an
example.

Step 1 Perform matched filtering processing with Eq. (4),
then perform vectorization operation with Eq. (5) to get
a MN dimension received vector data y(t).
Step 2 Extend the received vector data y(t) to

a 2MN dimension vector data ync(t) according to Eq. (11).
Step 3 Calculate the covariance matrix R̂ of ync(t), per-

form forward-backward covariance averaging to obtain the
real-valued covariance matrix R̂real, then perform eigenvalue

decomposition with R̂real to obtain the 2MN × (Knc + 2Kc)
dimension real-valued signal subspace ES.

Step 4 Construct the rotational invariant
Eqs. (29) and (30) about signal subspace ES using selection
matrices, then solve them by means of LS or TLS to obtain
rotational factor matrices2θ and2φ .
Step 5 Pair the elements of 2θ and 2φ according

to Eq. (31), then perform Eq. (32) to calculate the (Knc+2Kc)
DOD and DOA estimations according to the paired elements
of2θ and2φ .

Step 6 Figure out the Kc pairs closest estimations, then
average each pair to estimate angles of Kc circular signals,
and the residual estimations are the angle estimations of Knc
noncircular signals.
Remark 1: The maximum number of detectable signals

by our method is dependent on Eq. (11) and ESPRIT-like
method. On the one hand, assume that the incident signals are
uncorrelated with one another. Then the array covariance R
matrix can be unwrapped as: R = Anc(θ, φ)RssAnc(θ, φ)H +
σ 2
n I2MN , where Rss = diag[σ 2

s1 , · · · , σ
2
sK , σ

2
sKnc , · · · , σ

2
sK ],

σ 2
sk is the power of k incident signal. It is full rank, i.e.

rank(Rss) = (Knc + 2Kc). The array structure can be config-
ured to ensure full column rank of Anc(θ, φ). Then the maxi-
mum number of detectable signals depends on the maximum
rank of R, which is obviously equal to rank(R) = 2MN . So,
(Knc + 2Kc) ≤ 2MN should hold. On the other hand, using
the ESRPIT-like method, DODs and DOAs are estimated
from the signal subspace ES . From Eqs. (25) and (26), the
row dimensions of Jθ2ES and Jφ2ES are equal to 2(M − 1)N
and 2M (N − 1), respectively. Then the maximum number of
detectable signals is 2min[M (N − 1), (M − 1)N ]. Therefore,
the maximum number of detectable signals for our proposed
algorithm must satisfy

(Knc + 2Kc) ≤ 2min[MN ,M (N − 1), (M − 1)N ]

= 2min[M (N − 1), (M − 1)N ].

Remark 2: Note that our proposed algorithm needs to
know the number of circular and noncircular signals as a
priori. The result also has been pointed out by [23]. In active
communication system, the number of signals and their forms
are known to us, like BPSK (noncircular) or QPSK (circular),
etc. So, we know the number of circular and noncircular
signals.

V. DERIVATION OF THE Cramér-RAO BOUND (CRB)
It can be seen from the above analysis, the signal model
is equivalent to that the signal we already know part infor-
mation of the radar waveform. Therefore, it is reasonable
to calculate the CRB by using the signal model ync(t) =
Anc(θ, φ)s̃(t) + nnc(t), which has utilized the noncircularity
characteristic of noncircular signal already. Reference [24]
gives a closed-form expression of the deterministic 1-D CRB.
But in practice, the signals perhaps are Gaussian random
distribution vectors with zero mean. And the parameters to
be estimated are {θk , φk |k = 1, · · · ,K , (Knc + 1), · · · ,K }.
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Therefore, we gives a expression of the stochastic 2-DCRB in
the following. The parameters can be rewritten as the vector
form: {

θ = [θ1, · · · , θK , θ(Knc+1), · · · , θK ]
ψ = [φ1, · · · , φK , φ(Knc+1), · · · , φK ]

(33)

It is well known that CRB is equal to the diagonal elements
of inverse of Fisher information matrix (FIM). So we only
calculate the FIM of parameters of Eq. (33), then the CRB
can be obtained. In the following, the calculation of FIM is
given. FIM can be expressed as

J =
[
Jθθ Jθψ
Jψθ Jψψ

]
2(Knc+2Kc)×2(Knc+2Kc)

(34)

According to [25], the (i, j) elements of Jhk, (h, k = θ ,ψ)
for L snapshots can be expressed as

Jhk(i, j) = L · Tr
{
R−1

∂R
∂hi

R−1
∂R
∂kj

}
(35)

where R denotes virtual array covariance matrix. The array
covariance R matrix can be unwrapped as

R = Anc(θ, φ)RssAnc(θ, φ)H + σ 2
n I2MN (36)

Define the column vector of matrixAnc(θ, φ) as anc,k , accord-
ing to Eq. (12), we can obtain that anc,k equals

anc,k =

[
a(θk , φk )εk
5MNa(θk , φk )∗ε∗k

]
, k = 1, · · · ,Knc

anc,k =

[
a(θk , φk )
5MNa(θk , φk )∗

]
, k = Knc + 1, · · · ,K

anc,k=

[
a(θk , φk )
j5MNa(θk , φk )∗

]
, k = K+1, · · · , (Knc+2Kc)

(37)

Then we calculate the first-order partial derivatives of R with
respect to θk and φk , as follows.

∂R
∂ξk
=
σ 2
sk ∂(anc,ka

H
nc,k )

∂ξk
= σ 2

sk
∂anc,k
∂ξk

aHnc,k+σ
2
skanc,k

∂aHnc,k
∂ξk

(38)

where ξ denotes θ , φ. The results of (38) in detail are given
in the following. For simplicity, at (θk ) and ar (φk ) are marked
with at,k and ar,k , respectively. Equation (39), (40) as shown
at the bottom of this page.
where

ct,k = jπ [0, cos θk , · · · , (M − 1) cos θk )]T (41)

cr,k = jπ [0, cosφk , · · · , (N − 1) cosφk )]T (42)

VI. COMPUTER SIMULATIONS
In this section, computer simulation results are used to
prove the effectiveness of the proposed algorithm. The root
mean square error (RMSE) of angle estimation is defined

as RMSE =

√
1
KQ

Q∑
q=1

K∑
k=1

(ζ̂k,q − ζk )2, where Q is Monte

Carlo experiments and ζ = θ, φ. In following simulations,
we set that the noncircular incident signals are consisted
of BPSK signals and the circular incident signals are con-
sisted of QPSK signals. Our proposed algorithms in the fol-
lowing figures are marked with C-NC ESPRIT and C-NC
Unitary ESPRIT.

In the first experiment, we consider a bistatic MIMO radar
systemwithM = 6 andN = 6.We set there areK = 3 uncor-
related incident signals, in which there hasKnc = 1 noncircu-
lar source and Kc = 2 circular sources. The DOD and DOA
of noncircular source equals θ1 = [10◦] and φ1 = [−50◦],
respectively, and its rotation phase equals 2π

5 . The DOD and
DOA of circular sources equal [θ2, θ3] = [20◦, 30◦] and
[φ2, φ3] = [−30◦,−10◦]. We set SNR = 20dB and the
number of snapshots is L = 100. Table 1 gives the DOD and

∂anc,k
∂θk

=



[
(ct,k � at,k )⊗ ar,kεk
5MN [(ct,k � at,k )⊗ ar,k ]ε∗k

]
, k = 1, · · · ,Knc[

(ct,k � at,k )⊗ ar,k
5MN [(ct,k � at,k )⊗ ar,k ]∗

]
, k = Knc + 1, · · · ,K[

(ct,k � at,k )⊗ ar,k
j5MN [(ct,k � at,k )⊗ ar,k ]∗

]
, k = K + 1, · · · , (Knc + 2Kc)

(39)

∂anc,k
∂φk

=



[
at,k ⊗ (cr,k � ar,k )εk
5MNat,k ⊗ [(cr,k � ar,k )]ε∗k

]
, k = 1, · · · ,Knc[

at,k ⊗ (cr,k � ar,k )
5MNat,k ⊗ [(cr,k � ar,k )]∗

]
, k = Knc + 1, · · · ,K[

at,k ⊗ (cr,k � ar,k )
j5MNat,k ⊗ [(cr,k � ar,k )]∗

]
, k = K + 1, · · · , (Knc + 2Kc)

(40)
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TABLE 1. The angle estimation results before averaging.

FIGURE 1. The estimations of three incident signals with 100 runs and
M = 6, N = 6, SNR = 20 dB, L = 100. (a) C-NC ESPRIT. (b) C-NC Unitary
ESPRIT.

DOA estimations before averaging the closed angles of the
circular sources with one trial. It is five estimations, which
has the same number with theoretical analysisKnc+2Kc = 5.
Figs. 1 (a) and (b) show the paired angles estimation results
with 100 Monte Carlo trials. It is indicated in the figures that
the DODs and DOAs of the three incident signals are well
localized and paired correctly.

In the second experiment, we verify the advantage on the
more number of detectable targets of our proposed algorithm.
Here we set that M = 2, N = 4 in the bistatic MIMO radar.
The maximum number of localizable targets are four using
the ESPRIT algorithm in [5] and Unitary ESPRIT in [6], both
of the two methods doesn’t exploit the noncircularity char-
acteristic. Therefore, we set five targets in the simulations,

FIGURE 2. The estimation results of five targets M = 2, N = 4,
SNR = 20 dB.

FIGURE 3. RMSE versus SNR with M = 4, N = 4, L = 50, K = 4 and 1000
Monte Carlo trials. (a) DOD estimation. (b) DOA estimation.

which have four noncircular signals and one circular signal.
Then Knc + 2Kc = 6 and 2min[M (N − 1), (M − 1)N ] = 8.
Thus, the methods in [5] and [6] will fail but our proposed
method will success in the theoretical analysis. Fig. 2 gives
the estimation results of five targets with M = 2 and N = 4
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FIGURE 4. RMSE versus the number of snapshots with M = 4, N = 4,
SNR = 20, K = 4 and 1000 Monte Carlo trials. (a) DOD estimation.
(b) DOA estimation.

by using themethods in [5] and [6], and our proposedmethod.
It can be seen from the figure that the results are as what we
expected.

Figs. 3 (a) and (b) illustrate the RMSE versus SNR, also
compared with the methods in [5] and in [6]. In the third
experiment, we set that M = 2, N = 4 in the bistatic
MIMO radar. The number of uncorrelated incident signals is
K = 4, in which the angles equal θ = [10◦, 20◦, 30◦, 40◦]
andφ = [−50◦,−30◦,−10◦, 0◦]. The number of noncircular
signals is set as from Knc = 1 up to Knc = 3. The rota-
tional phases are set as starting from zero with π

4 spacing.
We set the snapshots equal L = 50 Monte Carlo trials are
1000. It is indicated in the figures that the angle estimation
performance of the proposed algorithms are better than those
of the methods in [5] and in [6]. In addition, the more the
number of noncircular signals are, the better angle estimation
performancewill be. Because themore number of noncircular
signals are, the less number of signals to be estimated in (11)
will be.

Figs. 4 (a) and (b) show the RMSE versus the number
of snapshots, compared with the methods in [5] and in [6].

In the last experiment, we set SNR = 20dB and the others
simulation conditions are the same as the above simulation
ones. It is indicated in Figs. 4 (a) and (b) that the performance
of DOD and DOA estimation of the proposed algorithm
becomes better in collaboration with L increasing and outper-
forms the methods in [5] and in [6]. In addition, the more the
number of noncircular signals are, the better angle estimation
performance will be. The reason is same as the Fig. 3.

VII. CONCLUSIONS
The problem of joint DOD and DOA estimation with bistatic
MIMO radar under the case of the coexistence of circular
and noncircular signals has studied in this paper. First, the
signal model is modified to the new signal model, which
incident signals are noncircular. Then, the rotational invari-
ance of doubled array, which makes full use of noncircularity
characteristic of noncircular signal, is figured out. Last, the
DOD and DOA are estimated by the methods of ESPRIT and
Unitary ESPRIT algorithm. From the simulation results, we
can see that the proposed algorithm has the three advantages:
1) it has better angle estimation accuracy than that of conven-
tional method, which does not use the noncircularity charac-
teristic; 2) it has more number of detectable incident signals;
3) when the number of whole incident signals is constant,
the more number of noncircular signals, the higher angle
estimation accuracywill be. Note that our proposed algorithm
needs to know the number of circular and noncircular signals
as a priori.
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