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ABSTRACT As green communication becomes an inevitable trend for future 5G wireless networks, how
to maximize the energy efficiency (EE) of device-to-device (D2D) communication has drawn extensive
attention recently. However, most of existing works only optimize the EE in the single-cell scenario,
while little attention is paid to maximizing the EE of the whole cellular network underlaid with D2D
communication with randomly distributed users on multiple bands. In this paper, we first consider the whole
cellular network underlaid with D2D communication on multiple bands and derive the exact expressions of
the successful transmission probabilities, the average sum rate and the EE based on stochastic geometry
theory. Then, we formulate the optimization problem of maximizing the EE subject to four constraints
regarding to transmission power and outage probabilities, and the non-convexity of this problem is also
verified. After that, by exploiting the objective function property of being the sum of several functions,
we propose a derivative-based algorithm to solve this non-convex optimization problem. Our theoretical
analysis shows that the computational complexity of the proposed algorithm is significantly lower than that
of the conventional branch and bound algorithm. Finally, simulation results demonstrate that the proposed
algorithm can achieve the near-optimal EE with much better performance than the conventional algorithm.

INDEX TERMS 5G, D2D communication, energy efficiency, stochastic geometry.

I. INTRODUCTION

Device-to-device (D2D) communication is widely recog-
nized as one of the key enablers for 5G wireless networks, in
which many future concepts like internet of things and smart
cities will come into reality [1]. In D2D communication, the
communication between spatially closely located devices can
be established directly [2], which can enhance the network
throughput, reduce the transmission latency, improve the
spectrum efficiency (SE) and the energy efficiency (EE) [3].
However, as D2D communication reuses the frequency
resources of existing cellular networks, extra interference will
be introduced to the network and impair the communication
quality. As a result, a certain part of the total power should
be used to mitigate the interference, leading to a reduction of
the power used for transmission. Hence, it is crucial to allo-
cate the power appropriately to strike a balance between the
interference coordination and the transmission efficiency [4].

A widely used performance indicator in the literature to
evaluate the power allocation schemes is the EE [5]-[8].
As more and more attention is paid to green communi-
cation [9], the EE maximization of D2D communication
has attracted extensive interests recently [10]-[12]. Specifi-
cally, the authors in [10] proposed an iterative algorithm to
maximize the EE of D2D communication in the single-cell
scenario, where multiple cellular users and D2D users are
considered. Besides, a distributed resource allocation algo-
rithm was proposed in [11] to make a tradeoff between
EE and SE of D2D communication in the uplink single-
cell scenario on multiple bands. Furthermore, the authors
in [12] considered the D2D communication underlaying cel-
lular networks on multiple bands in a single-cell system, and
adopted the branch and bound (BB) algorithm to maximize
the EE. However, most of existing works only consider the
EE in the single-cell scenario on multiple bands, while little
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attention is paid to the EE optimization of the whole cellular
network underlaid with D2D communication with randomly
distributed users on multiple bands. In the whole cellular
network underlaid with D2D communication, apart from the
interference inside each cell, we also need to coordinate the
mutual interference of different cells, which is more practical
in future 5G wireless networks, yet more difficult to inves-
tigate. In addition, the channel fading coefficients may vary
on different bands, therefore, each band will have a different
effect on the network performance. Hence, it is indispensable
to design an effective solution to optimally allocate the power
on different bands so as to maximize the EE of the whole
cellular network underlaid with D2D communication on mul-
tiple bands.

In this paper, we formulate the EE optimization problem of
the whole cellular network underlaid with D2D communica-
tion on multiple bands based on stochastic geometry theory,
and propose a derivative-based algorithm to maximize the
EE with the computational complexity significantly lower
than that of the conventional BB algorithm.! Specifically, the
spatial random distribution of users in the network is modeled
as a homogeneous Poisson point process (PPP), from which
the successful transmission probabilities, the average sum
rate (ASR), and the EE of D2D communication on multiple
bands are derived. Then, the optimization problem of maxi-
mizing the EE subject to four constraints regarding to trans-
mission power and outage probabilities is formulated, which
is proved to be a non-convex problem. To solve this chal-
lenging problem, we propose a derivative-based algorithm
by exploiting the objective function property of being the
sum of several functions. Our theoretical analysis shows that
the computational complexity of the derivative-based algo-
rithm is substantially lower than that of the conventional BB
algorithm. Simulation results demonstrate that the proposed
derivative-based algorithm can achieve the near-optimal EE
with remarkably better performance than the conventional
BB algorithm.

The rest of this paper is organized as follows. The sys-
tem model is briefly introduced in Section II. Then in
Section III, we derive the exact expressions of the successful
transmission probabilities, the ASR, and the EE of D2D
communication on multiple bands, based on which the EE
optimization problem is also formulated. Section I'V presents
the proposed derivative-based algorithm to solve the opti-
mization problem in details, together with the computational
complexity comparison with the conventional BB algorithm.
Simulation results and the corresponding analysis are pro-
vided in Section V, followed by the final conclusions in
Section VI.

Notation: Pr () denotes the probability; I' (-) stands for
the gamma function, i.e., I' (z) = f0+°° e tdr; Ly (8)
represents the Laplace transformation (LT) of f (x), where s
is the independent variable of the function we obtain after

ISimulation codes are provided to reproduce the results presented in this
paper: http://oa.ee.tsinghua.edu.cn/dailinglong/.
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FIGURE 1. System model of the whole cellular network underlaid with
D2D communication.

transformation; Finally, E (x) denotes the expectation of a
random variable x.

Il. SYSTEM MODEL

As illustrated in Fig. 1, in this paper we consider the gen-
eral scenario that the whole cellular network underlaid with
D2D communication, where D2D communication shares the
uplink frequency resources of the existing cellular networks.
The base station (BS) is in charge of the resource allo-
cation of the whole cellular network underlaid with D2D
communication.

Unlike our previous work which only investigated the
power allocation problem on a single band [13], here we
consider the power allocation on multiple bands. The spec-
trum of the whole cellular network is divided into K bands,
and the bandwidth of the ith band is W;. In what follows,
the subscript i in the variables denotes the ith band and i =
1,2, ---, K. Based on stochastic geometry theory, the spatial
random distribution of cellular users in the ith band can be
modeled as a homogeneous PPP ®.; with density A.; on
the two-dimensional plane )i [14]. The transmission power of
cellular users in the ith band is P ;, and the total transmission
power of cellular users is P.. Hence, we have

K
Y Pei=P. (1)
i=1

Similarly, the spatial random distribution of D2D users in
the ith band can also be modeled as a homogeneous PPP & ;
with density A4 ; on ). The transmission power of D2D users
in the ith band is P, ;, and the total transmission power of
D2D users is Py, then we have

K
> Pai=Pa. ©)
i=1

According to Palm theory [15], the typical receiver at the
origin does not influence the statistics of the PPP. To analyze
the performance of the whole cellular network underlaid with
D2D communication, without loss of generality, we can focus
on a typical receiver located at the origin of )i, namely a
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typical BS for cellular uplink transmission or a typical D2D
receiver for D2D communication.

By considering both the large-scale path loss and the small-
scale Rayleigh fading, the received power P, for cellular users
or D2D users can be expressed as

P, = P,5R™“, 3

where P; is the transmission power, é represents the Rayleigh
fading coefficient that follows an independent exponential
distribution with unit mean for every communication link in
the network, R stands for the distance between the transmitter
and the receiver, and o« denotes the path loss exponent.

lll. EE OPTIMIZATION PROBLEM FORMULATION

In this section, we first derive the successful transmission
probability (STP) of typical receivers. Then, the exact expres-
sions of the ASR and the EE of D2D communication on
multiple bands are also obtained, followed by the formulation
of the EE optimization problem.

A. SUCCESSFUL TRANSMISSION PROBABILITY

The typical receiver suffers from the interference introduced
by both cellular transmission and D2D communication. Thus,
the signal-to-interference plus noise-ratio (SINR) of the typ-
ical BS in the ith band is

Pc iac OOR:80 i

Z PczgchRc_]Ol‘i‘ Z PdlsdloRlel+N0
jECDL, ledy
“4)

where 8.,00 and R, oo ; denote the Rayleigh fading coefficient
and the distance between the typical BS and the correspond-
ing cellular user in the ith band, respectively. Similarly, . jo
and R jo,; stand for the Rayleigh fading coefficient and the
distance between the jth cellular user and the typical BS in
the ith band. 84,0 and Ry j0,; are the counterparts for D2D
communication. Finally, Ny is the thermal noise.

Since the interference caused by spectrum sharing is usu-
ally much larger than the thermal noise, the SINR in (4)
becomes the signal-to-interference-ratio (SIR) as

SINR, ;=

8¢,00R, 5 ;
, 00
SIR; = ———=——, %)
Ie.c0,i + 1c,d0,i
Py, _
where I c0,i = > SCJORCJO i Le,d0,i= > ’fad,IORd% i
JjeDi IGCDd,

Then, the STP of the typical BS is derived in the following
Lemma 1.

Lemma 1: The successful transmission probability of the
typical BS in the ith band satisfies:

2
Pqi\®
Pr(SIRc; > Tci) = exp § —Ge.i | hei + Ad.i P
c,i
(6)
where T, ; represents the SIR threshold of cellular uplink

transmission and G¢; = T/ ,Rf 00, I (1 + %) r (1 — %)
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Proof: Since §. oo follows an independent exponential
distribution with unit mean as mentioned in Section II, by
considering (5), the STP of the typical BS can be expressed as

Pr (SIRC,,' > TC,,')

8c.00R . 00 ;
— Pr ¢,00,i > Tc,i
Ic,cO,i + Ic,dO,i

=Pr [5c,00 > Tc,iRg,()o,i (Ic,co,i + Ic,dO,i)]

=E 1_[ 28 ( TC ch 00, 18C ./ORC]O t)
jeq)c,i

P
<E Hexp T“RCOOZP 5d,0Rd,0l
lECDd,,'

= Elcyfo_,'(acv_/o) (TC,iRi()(),i) ﬁlc_d()y,'((sd,[()) (TC,iRi()()Yl') . (7)

According to the definition of LT and stochastic geometry
theory [14], we have

LIL‘ c0, 1(5010) (T‘c lRL 00, l)

+OO 3 —a
= exp —Ac,i/ E (c.jo) (1 — ¢ TeiReooir )dr]
0

o 2 2
= eXp _)\‘C’inTc,iRC,OO,iF 1 + ; ry1- ; ) (8)

Elr,do.i(tsd.zo) (TCJR?,OO,I‘)

I Py i s 02 2 2
= exp |—Aqi P JTTCJRC’OOJF 1~|—a r 1—& .
c,i

C))

Letg. ;i = nTC ZRL 00, Ll + 2)T (1 — =) and then substi-
tute (8) and (9) into (7), we can have (6).

Lemma 1 reveals how the key network parameters impact
the STP of the typical BS. Specifically, if the threshold T ;
increases, the STP decreases because the inequality SIR. ; >
T..; is more difficult to satisfy. In addition, the growth in
R¢.00.; will result in a reduction in the STP. The reason is that,
the channel fading becomes more serious when the distance
increases. Besides, the STP increases as the densities of cellu-
lar users A, ; or D2D users A4 ; become sparser, which can be
attributed to the mitigation of interference caused by different
users. Furthermore, if we increase Py ;, the STP will decrease
since the transmission power of D2D communication will
introduce interference to cellular transmission. Finally, SIR ;
will increase if more power is used for cellular transmission,
which means the increase in P, ; will lead to a higher STP.

Following the same way of obtaining the SIR of the typical
BS in the ith band, namely SIR. ; in (5), the SIR of the typical
D2D receiver in the ith band can be written as

-
SIR, ; = M’ (10)
" a0,i +1aa0,i
where 84,00 and Ry o0,; denote the Rayleigh fading coefficient
and the distance between the typical D2D receiver and the
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corresponding D2D transmitter in the ith band, respectively,

Pei — —
licoi = 2 p:8cjoR o and lyqoi = D 8a0R; 5 ;-
J€Pei [€Dy,i
Then, we present the STP of the typical D2D receiver in the

following Lemma 2.
Lemma 2: The successful transmission probability of the
typical D2D receiver in the ith band satisfies:

2
P c,i @
Pr(SIR4.; > Tai) = exp {—gd,i |:)¥c,i<ﬁ> + ?»d,i] }
N
(11
where Ty ; representg the SIR threshold of D2D communica-
tion, and ¢4 ; = ”Td&,iRg,oo,iF (1 + % r(1r- % .
Proof: The proof is similar to the proof of Lemma 1. B
According to Lemma 2, the STP of the typical D2D
receiver is influenced by the key network parameters. Partic-
ularly, if we decrease Py ; and increase Ty i, Rq,00,i, Ac,is Md,is
and P, ;, then the STP will decrease, which can be explained
by similar reasons mentioned before.
Up to now, we have completed the derivation of the STP
of typical receivers, which is essential to the formulation of
the optimization problem. In the next subsection, we dis-

cuss another two important network performance indicators,
namely the ASR and the EE.

B. AVERAGE SUM RATE AND ENERGY EFFICIENCY OF D2D
COMMUNICATION

Let R;,; denote the average rate of D2D communication in
the ith band, if we obtain the value of the SIR threshold 7y ;,
then we have [16]

Rai=Wilogy (1+T4i)Pr(SIRg; = Tai). (12

According to Lemma 2, (12) can be written as

2
Pe.i\e
Ra,i=Wilogy(1+Tq i) exp {_gd,i [&»,i(l);’l.) +)\d,i:| }
N
(13)

Thus, the ASR of D2D communication in the ith band is

ASRy i = Ay iRqi
= Ag,iWilogy(1+T4 1)

2
P.\a
X exp {—gd,i |}C’i<pm) +)\d,i:| } (14)
d,i

The EE is defined as the ASR divided by the total power
consumption [17]. Here we consider the power consumed per
unit area for D2D communication in the ith band, which can
be expressed as A4 ;Pq,; [18]. Accordingly, the EE of D2D
communication in the ith band can be defined as
EE,; = ASRy i

" AdiPai

f— Wi .
= ﬁ’ilogz (1 + Td’,)
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2
Pei\®
X exp {_gd,i [kc,i(—P;’l) + )»d,i:| } (15)
N

and the total EE of D2D communication is

K
EE,; = ZEEd,i. (16)
i=1
The total EE of D2D communication is the objective func-
tion of our optimization problem, which is formulated in the
next subsection.

C. EE OPTIMIZATION PROBLEM
In this subsection, we discuss the constraints to formulate the
EE optimization problem, and proved that the EE optimiza-
tion problem is non-convex.

To ensure the high quality of communication, the outage
probabilities of cellular transmission and D2D communica-
tion should be less than certain thresholds, i.e.,

1 —Pr (SIRc,i = Tc,i) = Qc,i’ (17)
1 —Pr(SIRg,; = Ta,i) < 6a.i, (18)

where 6, ; and 6, ; represent the outage thresholds of cellular
transmission and D2D communication in the ith band, respec-
tively. It should be noted that, if (17) or (18) cannot hold for
any of the P ; in the domain determined by other constraints,
then this means that the interference in the network is too
severe to be coordinated. Under such circumstance, the BS
will reduce the number of D2D users that are permitted to
access the network until the outage probabilities are suffi-
ciently small.

For D2D communication, the sum of the power of all
bands should equal the total transmission power, which is
determined by D2D terminals. Thus, (2) should be satisfied.

Besides, the power in the ith band should not be less than
zero or exceed the upper bound of the power of that band,
which is denoted as Py ; up. Hence, we have

0 = Pd,i = Pd,i,up~ (19)

The ultimate goal of the optimal resource allocation
scheme is to maximize EE, in (16) with respect to Py ; subject
to constraints (2), (17), (18), (19), which can be formulated
as the following optimization problem

K
max EE; = EE, ;
Pa; Y ,; i (20)

s.t. (2), (17), (18), (19).

However, the constraints in (20) are complicated, rendering
the optimization problem intractable. In what follows, we will
transform the inequality constraints in (20) into the feasible
regions of Py ; to simplify the optimization problem.

Based on (6), (11), (17) and (18), we have

—In(1—64,) B @)2’ 21

Pyi> P
' Cl( Ac,iSd,i Ac,i
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—In(1=6c:) A\’
Py < P —( ) - ). (22)
Ad,iSe,i Ad,i
“n(1-043)  ras\ "2
Let Py ilow = Pu(% - ﬁ) and Py ihigh =
“n(1=6))  rei)?

Pc,i( Tdice X , then (19), (21) and (22) actually
determine the feasible region of Py ;. If the lower bound
and upper bound of the feasible region of P4 ; are denoted
as Pgiinf and Py ;sup, respectively, we have Pgjinf =
max {07 Pd,i,low} and Pgjsp = min {Pd,i,up: Pd,i,high}-
Thus, (20) can be transformed into the following form

K
max EE; = ) EE;;
Py, i=1

Py iinf < Pai < Py isups (23)

K
Z Pyi=Py.
i=1

S.t.

This completes the optimization problem formulation of
maximizing the EE of the whole cellular network underlaid
with D2D communication, which differs significantly from
the previous works that consider the EE in the single-cell
scenario [10]-[12].

In our previous work [13], where only a single band
is considered in the optimization problem, the objective
function is convex, therefore, the problem can be solved
by convex optimization theory. However, the objective
function EE; in (23) is non-convex, which is verified
below.

Let A; = Wlog, (1 + Td,,') exp (—gd,i)hd’,-) and B; =

Sd.ite,i(Pe.i)

2

A Ai L)
EEai=[i(Pai) = pmexp|\~Bi\p~) ). (4
d.i = fi (Pa.i) Pa. exP( ’(Pd,i) ) .

Then, we present the intervals on which f; (Pd,i) is convex or
concave in the following Lemma 3.

Lemma 3: f; (Pd’,-) is convex on the interval (0, t?i) U

R

, then we can rewrite EE; ; in (15) as

o o

a a o
(’221" +oo) but concave on the interval (tl2 ol i), where

B.
ni= (2+3a—‘/(a2+ 12a+4)),

b= Bi (230 (e + 1200+ 4) ).
T 202
Proof: The proof is given in Appendix A. [ ]

It should be noted that the standard form of convex opti-
mization problems is minimizing a convex function, which is
equivalent to maximizing a concave function. To optimize the
problem based on convex optimization theory, the objective
function EE; in (23) needs to be concave on the feasible
region, i.e., according to Lemma 3, for i = 1, 2,a~ .. aK,
(Paiinf, Pa,i;sup) should be the subinterval of (tlj o tg i),
which is not true in general. In fact, if we set the aforemen-
tioned network parameters as the typical values in practical
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wireless networks (see Table 2 in Section V), tZi is just
slightly greater than zero, which means the length of the
interval on which f; (Pd,i) is concave is negligible. Hence,
unlike the optimization problem in our previous work where
only a single band is considered [13], the new optimiza-
tion problem (23) considering multiple bands is non-convex,
which cannot be solved by convex optimization theory.
In view of this, we propose a derivative-based algorithm to
solve (23) in the next section.

IV. PROPOSED DERIVATIVE-BASED ALGORITHM

In this section, we describe and compare two algorithms
that can be used to solve non-convex optimization problems.
Specifically, we first briefly describe the implementation pro-
cess of the conventional BB algorithm. Then, the derivative-
based algorithm is proposed to solve the non-convex EE
optimization problem (23) in Section III. Finally, we ana-
lyze and compare the computational complexity of these two
algorithms.

A. CONVENTIONAL BRANCH AND BOUND ALGORITHM

A conventional algorithm commonly used to solve non-
convex optimization problems is the BB algorithm [19],
which has also been widely adopted to solve some chal-
lenging optimization problems in wireless communication
networks [12], [20]. The BB algorithm can be essentially
perceived to be an improved version of the exhaustive enu-
meration method, where the candidate solutions to the prob-
lem are enumerated systematically in order to find the opti-
mal solution that maximize the objective function. Specif-
ically, we can interpret the set of candidate solutions as a
rooted tree, where the root and the branches represent the
full set and subsets of the solution set, respectively. All
branches of the tree are explored and before enumerating
the candidate solutions of a branch, we estimate the upper
bound of the objective function in this branch. If the upper
bound is not greater than the best function value found so
far, then this branch is discarded, namely pruned from the
search space. After all branches are explored, the solution that
yields the maximum value is regarded as the final optimal
solution.

Obviously, whether a branch will be pruned or not is not
predictable. For instance, if the optimal solution is acquired
in the first branch, then all the unexplored branches will
be pruned, thus reducing computational complexity signifi-
cantly. However, most of the branches will not be pruned if
the optimal solution is in the last branch, which means the
computational complexity may approach that of the exhaus-
tive enumeration method in this case. Hence, the computa-
tional complexity of the BB algorithm is not fixed, and even
worse, the BB algorithm may degenerate into the exhaus-
tive enumeration method. In view of the limited perfor-
mance of the conventional BB algorithm, we propose another
algorithm, namely the derivative-based algorithm in the next
subsection.
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B. PROPOSED DERIVATIVE-BASED ALGORITHM
To solve (23), we propose a derivative-based algorithm by
exploiting the objective function property of being the sum
of several functions.

Let P4 i max denote the global maximum point of f; (Pd,,-)
on the interval [Py jnf, Pa.issup> i.€.. fi (Pa,i) achieves the

maximum value when Py ; = Py, ; max. From (16), we know
that EE; is the sum of K functions. If the equality constraint
K

in (23), i.e., Y Pg;= Py is removed, then every Py ; is

mutually indei)?:llldent, therefore, the maximum value of EE;
can be obtained when every EE;; achieves its maximum
value on the feasible region. Apparently, maximizing every
EE, ; individually is much more tractable than solving (23).
Thus, we can calculate Py ; max fori = 1,2,---, K and let

P4y = Pg,imax in the first place, and then adjust the value
K

of Py ; so as to meet the equality constraint ) Py ; = Py

in a way that causes the least reduction in EEZI_.IThis is the
core idea of our proposed algorithm, and the implementation
details are stated below.

Firstly, the calculation of P4 ; max is given by the following
Theorem 1.

Theorem 1: The global maximum point of f; (Pd,i) on the
feasible region [Pd,,-,imc, Pd,,-,sup] is

o
. . 2B; )2
Pd,z,sup» Pd,l,sup = ( o ) s
o o
2\ 2 S\ 2
Pd,i,max = (%) , Pd‘l"inf < (%) < Pd,i,sup, (25)
o
2B;\ 2
Pqiinf,  Pd.iinf > (7’ .

Proof: The proof is given in Appendix B.
From Theorem 1, we know that Py ; max is determined

. . 2B;\ 2
by the relationship between (7)

[Pa.i.inf, Pa.i.sup ] Of fi (Pa.i)-

In what follows, the current value of P4 ; is denoted by
P4 cur- Consider the method we adopt to adjust the value
of P, ; after assigning Pg ;max to Py;. Let d = Py —

and the feasible region

K
> Pgimaxs A = %, where A is the adjustment step of Py ;,

la_n]d n is the parameter that controls A. Since the adjustment
commences at the global maximum point of f; (P4,;) on the
feasible region, the adjustment process will certainly make
P4 ; deviate from Py ; max, 1.€., we have

fi (Pd,i,cur) > fi (Pd,i,cur + A) . (26)

To meet the equality constraint while keeping the reduction
in EEy as little as possible, we need to adjust the P4 ; whose
function value decreases the least after adjustment. Accord-
ing to Taylor’s theorem [21], the approximation of f; (Pd, i) at
P4.; = Pg i cur by the first order Taylor polynomial is

fi (Pd,i,cur + A) %ﬁ (Pa’,i,cur) +f,‘/ (Pd,i,cur) A (27)

If we adjust the value of Py ; from Py ; cur t0 Py i cur+ A, EEy4
will decrease by [f, (Pd,l-,cur) —fi (Pd)l-,wr + A) , which is
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Algorithm 1 The Proposed Derivative-Based Algorithm
Input:  K; Wi; o; 0,55 04,15 Teis Tais Re,00,i5 Ra,00,i5
Ac,is Mdis Pe,is P iups Pa.
Output: EE,.
1: Initialize the tolerance ¢ that controls the loop;
2: Calculate Py ; max based on Theorem 1;
3: Pgi = Pg imax;

K
4 d=Pi— 3 Py
i=1

50 A= %;

6: der; = lfi/ (Pd,i)
K

P; — ZPd,i > e do

i=1
8: j = arg min {der;};

5

7. while

9:  if Py —ii A > Pgjsup OF Pgj+ A < Py jinf then

10: derj = +00;

11:  else

12: Paj=Pg;+ A,
13: der; = %’ (Pd,j)‘;
14:  endif

15: end while

16: return EE; = Y f; (Pa,i).
i=1

mainly determined by |f/ (P4, cur) | according to (27). Hence,
we can calculate |f! (Pgicur)| for i = 1,2,---,K and
adjust the value of Py j from Py j cur t0 Py jcur + A, Where j

satisfies

Vj/ (Pd,j,cur)

Repeat such process for at least n times, then the equality
K

< lfi/ (Pd,i,cur)

, Vi=1,2,--- K. (28)

constraint > P4 ; = P4 can be satisfied, and the near-optimal

solution tolfi3) is obtained.

Based on the aforementioned analysis, the proposed
derivative-based algorithm is shown in Algorithm 1, and we
explain several key steps as follows.

In step 5, n is a parameter that controls the balance between
computational complexity and the performance, to which we
can assign a suitable value in accordance with the practical
requirement.

In step 6, we set a variable der; to save the value of
[fl/ (Pd,,-) | This variable is used for selecting the appropriate
Py j in step 8, and may be updated in step 10 or step 13 in
every iteration.

In step 7, if the Py ; selected in the current iteration will
exceed the feasible region after adjustment, then we need
to choose another P;; to adjust after this iteration. Since
whether this situation will happen or not is unpredictable, the
number of iterations is not determined either. Thus, we set a
tolerance threshold ¢ instead of a counter to decide when to
exit the loop.
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In steps 9 and 10, if P, ; will overstep the feasible region
after adjustment, then we set der; to infinite so that j will not
be chosen in step 8 again. By doing so, we can preclude the
occurrence of an endless loop.

In step 13, we update der; instead of every der; because for
i=1,2,.---,K and i # j, der; remains unchanged after
adjusting Py ;.

C. COMPUTATIONAL COMPLEXITY ANALYSIS

In this subsection, we compare the computational com-
plexity of the conventional BB algorithm and the proposed
derivative-based algorithm.

As mentioned before, the BB algorithm can be regarded as
an improved version of the exhaustive enumeration method,
therefore, we will investigate the computational complexity
of the exhaustive enumeration method in the first place. Let
App denote the step length of each loop. Then in the ith
band whose bandwidth is W;, we need to enumerate ALB"B
candidate solutions. Hence, the total computational com-
plexity of the exhaustive enumeration method is the prod-
uct of the computational complexity of every band, namely

K—-1 K-1
o\l w (A;BB) ) . It should be noted that the exponent
i=1

on A;BB is K —1 instead of K because according to the equality
constraint in (23), only K — 1 variables in (23) are mutually
independent. For the BB algorithm, some of the branches are
pruned from the search space based on the estimation of the
upper bound. However, the exact number of the discarded
branches is not fixed, so the computational complexity of the
BB algorithm cannot be determined accurately, which can

'\ A

K—1 K-1
be expressed approximately as O | 8 [] W<L> ,
i=1

where factor § is a positive number. In the worst case, the BB
algorithm enumerates candidate solutions in all branches and
degenerates into the exhaustive enumeration method, whose
computational complexity is unbearably high.

Next, we analyze the computational complexity of the
proposed derivative-based algorithm. From steps 9 and 10 in
Algorithm 1, we know that if the P, ; selected in the current
iteration will exceed the feasible region after adjustment,
then der; is set to infinite, which means that this Py ; will
not be chosen again, since we always select the j with the
minimum der; in step 8. As a result, for a particular j, the
situation that the currently selected Py ; cannot be adjusted
because of the restriction of the feasible region, will happen
at most once. Hence, in the best case, i.e., all the P, ; selected
in the iterations can be adjusted, after adjusting Py ; for n
times, the equality constraint in (23) will be satisfied, so the
computational complexity is O (n). In the worst case, all of
the selected Py j reach the boundaries of the feasible regions,
therefore, apart from the necessary n iterations for adjust-
ment, there are K iterations in which we do nothing except
set the corresponding der; to infinite. Thus, the computational
complexity is O (n + K). It is worth pointing out that K is
negligible compared with # in general, i.e., n + K = n, so the
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TABLE 1. The comparison of computational complexity.

Iterative Conventional BB P roposed
number n algorithm O (un—1) derivative-based
algorithm O (n)
100 5 x 104 100
500 3.125 x 107 500
1000 5 x 108 1000
5000 3.125 x 101! 5000
10000 5 x 1012 10000

computational complexity of the proposed derivative-based
algorithm is O (n) in the general case.

For fair comparison of the computational complexity, we
set identical adjustment step for these two algorithms, i.e.,
Apg = A = %. Consequently, the computational complex-
ity of the BB algorithm becomes O (unX~1), where u =

K—1 K—1
pIIw(E)

lfalble 1 compares the computational complexity of the
conventional BB algorithm and the proposed derivative-based
algorithm, where we set K = Sand p = 5 x 1074 as
a typical example. We can see that the proposed derivative-
based algorithm has significantly lower computational com-
plexity than the conventional BB algorithm. Besides, it is also
noticeable that as n increases, the computational complexity
of the conventional BB algorithm increases exponentially,

while that of the proposed derivative-based algorithm only
increases linearly.

TABLE 2. Simulation parameters.

Parameter Value
K 5
W; 20MHz
e 4
Oc,i 0.1
0d,i 0.1
Tc,i 0dB
T4, 0dB
[Re,00,1, Re,00,2, - - » Re,00,5] [50, 60, 70, 80, 90] m

[10, 20, 30, 20, 10] m
[10, 1,10, 10, 10] x 10~ user/m?
[10,1,10, 10, 10] x 10~ %user/m?

[Ra,00,1, Ra,00,2, " » Ra,00,5)
[)‘c,lv )‘c,27 e 7)\C,5]
Aa,1,Ad,25 5 Aas)

P.; 100mW
Py 60mW
Piiup 20mW
€ 1x 1073

V. SIMULATION RESULTS

In this section, we investigate the EE performance of the
derivative-based algorithm as well as the BB algorithm. The
EE of D2D communication under different network param-
eters is also obtained and analyzed. The main simulation
parameters, including the bandwidth of the ith band W;,
the total transmission power of D2D users Py, are given in
Table 2 [10].
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FIGURE 2. The EE of D2D communication achieved by different
algorithms.
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FIGURE 3. The EE of D2D communication against the reference density of
D2D users A4 ref-

Fig. 2 shows the EE performance comparison of differ-
ent algorithms. The dash line denotes the EE performance
obtained by the optimal solution (the exhaustive enumeration
method), which serves as a benchmark for comparison. We
can see that the EE achieved by the proposed derivative-
based algorithm is almost identical with the optimal solution,
while a significant performance gap exists between the con-
ventional BB algorithm and the optimal solution. Thus, we
can conclude that the proposed derivative-based algorithm is
near-optimal and remarkably outperforms the conventional
BB algorithm.

Fig. 3 demonstrates the EE under different densities of
D2D users and transmission power of cellular users achieved
by the proposed derivative-based algorithm, where we set
[Ad.1s a2+ s ha,s|=Ad rer % [10,1,10,10,10]. We can find
that the EE rises at first and then declines as A4 ref increases.
The reason for this phenomenon is that when A4 ref is rela-
tively small, the interference caused by spectrum sharing is
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FIGURE 4. The EE of D2D communication against the reference density of
cellular users A ref-

slight. Thus, if A4 rer increases, compared with the increase
in the ASR, the growth of interference is insignificant, which
results in a higher EE. However, the interference becomes
more and more serious as A4 ref continues increasing, which
means more energy will be consumed to coordinate the
interference, leading to a decrease in the EE. In addition,
the tendency that the EE declines as the transmission power
of cellular users P.; increases is also revealed in Fig. 3,
which can be attributed to the growing interference caused
by cellular transmission. The increase in P.; leads to more
serious interference to D2D communication. Consequently,
the EE decreases because more power is used to coordinate
the interference.

Fig. 4 illustrates the EE under different densities of cellular
users and distances of D2D users obtained by the proposed
derivative-based algorithm. The simulation parameters are
set as: [Ra,00,1, Ra,00,2: -+ » Ra,00,5] = Raret % [1,2,3,2,1],
[Aets he2s s hes] = Aeret x [10, 1,10, 10,101, P =
300mW, P; = 80mW. It can be seen that the EE decreases
as Ac ref increases, which is a consequence of the exacerbation
of interference introduced by cellular transmission. More
power consumed for D2D communication will be used to
coordinate the interference caused by the growing numbers of
cellular users, which results in a reduction in the EE. Another
noticeable trend in Fig. 4 is that as the reference distance
of D2D users Ry rer increases, a decrease in the EE can be
observed. According to (3), we know that the channel fading
becomes more serious as the distance increases, leading to a
decrease in SIR; ;. Thus, the ASR decreases, which results in
the decrease in the EE.

VI. CONCLUSIONS

In this paper, we have proposed a derivative-based algorithm
to maximize the EE of the whole cellular network underlaid
with D2D communication on multiple bands. Particularly, the
performance of the whole cellular network underlaid with
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D2D communication has been analyzed at first based on
stochastic geometry theory, where the exact expressions of
the successful transmission probabilities, the ASR, and the
EE of D2D communication on multiple bands have been
derived. Then, we have formulated the optimization problem
of maximizing the EE and proved that the corresponding
objective function is non-convex. After that, by utilizing
the objective function property of being the sum of several
functions, we have proposed a derivative-based algorithm
to iteratively achieve the near-optimal solution to this non-
convex EE optimization problem. We have shown that the
computational complexity of the proposed derivative-based
algorithm is significantly lower than that of the conventional
BB algorithm. Simulation results have verified the near-
optimal performance of the proposed algorithm, which is
conducive to the realization of energy-efficient D2D commu-
nication in future 5G wireless networks. Particularly, we will
investigate the optimization of both the SE and the EE of the
whole cellular network underlaid with D2D communication
on multiple bands in our future works.

APPENDIX A
PROOF OF LEMMA 3
To find the intervals on which f; (Pg,;) is convex or concave,

. . . d¥Mi(Pai) . .
we need to find the interval on which % is non-negative

d,i
or non-positive [22]. Take the second derivative of f; (Pd, ,~) as

shown in (24), we have
1 \3+3
) (75)

df; (Pa.i 1
—fl (2 d’l) = 2A; exp —B,-(—)
dPy ; P,
i B (2 :  2B?
X Pd,i_; &+3 Pd,i+?’
(29)

RIr

In (29), all terms except for the last one are greater than zero,
which means that we only need to consider the last term. Let
2

t; = Pj ,, then the last term in (29) can be expressed as

, Bi(2 2B?
git)=t; —— | —-+3)ti+—. (30)
o \o o

Lett; ; and £, ; denote the solutions to g; (f;) = 0, where t1 ; <
1 ;, we have

tlz-:£(2+3a:l: (a2+12a+4)> (31

ST 02 ’

Thus, g; (1) is positive on the interval (0, 71 ;)U(t2,i, +00) and

d*fi(Pa.i)
o o dps‘[

on the interval (0, tf i) U <1‘27 i +oo) and negative on the

negative on the interval (1y;, 12,;). Then, is positive

a o

interval (z‘l7 oy ,.). Hence, f; (P4,;) is convex or concave on
the corresponding intervals, and this completes the proof of
Lemma 3.
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APPENDIX B

PROOF OF THEOREM 1

Consider the monotone intervals of f; (Pq,;). Take the deriva-
tive of f; (Pg,i), we have

daf,(Pa;) A 1\«

. d,' . o

D) — e (_Bi(P_) )
d,i d,l

dPy ;
2B [ 1 \#
x<—‘<—> —1). (32)
o \ Py

Apparently, the first and second term of (32) are greater

than zero, therefore, we only need to consider the last

dfi(Pa.i)

term, from which we know that aP is positive on
i

the interval (0, (%) 2) and negative on the interval

o

<( 2B; ) . +oo> .Hence, f; (P4,i) increases monotonically on

o
the interval (0, (&> 2), decreases monotonically on the

o
. 2B;
interval ( ( 7)

value at Py ; = (
erties of f; (Py,i), we plot the curve of f; (Pg,;) in Fig. 5.

As shown in Fig. 5, we can see that f; (Pg,;) rises at first
and then declines as Py ; increases, and the demarcation point

IR

, —i—oo), and reaches the global maximum

%) > To verify the aforementioned prop-

is the maximum point of f; (Pd,,-), namely (%) ’ , which
is denoted by the asterisk. Since the monotone intervals
obtained by calculating derivatives agree with the curve of
fi (Pd,,-), the correctness of our analysis above is proved.
Then, the situation can be divided into the flollowing 3 cases

according to the relationship between (%) > and the feasible

region of f; (Pd,,-).

Firstly, if Py jsup =< (%)7, which means the feasible
region is on the left of the dash line in Fig. 5, then f; (Pd, i)
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increases monotonically on the feasible region, therefore,
fi (Pa,i) reaches the maximum value at Py; = Pgsups
which makes Py imax = Pa,isup- Secondly, if Py jinf <

(%) 2 < Py i sup, then the global maximum point of f; (Pd,i)

o

is within the feasible region, 50 Py. max = (%) 2 Thirdly, if
o

Py iint > % : ,1.e., the feasible region is on the right of the

dash line in Fig. 5, then f; (Pd,i) decreases monotonically on
the feasible region. Hence, the maximum value of f; (Pd, i) is
achieved at Py ;= Py ;i inf, 1.., Pd.i max = Pd.i inf.- SUmmarize
the aforementioned cases in (25), then Theorem 1 holds.
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