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ABSTRACT Massive multiple-input multiple-output is a promising physical layer technology for
5G wireless communications due to its capability of high spectrum and energy efficiency, high spatial
resolution, and simple transceiver design. To embrace its potential gains, the acquisition of channel state
information is crucial, which unfortunately faces a number of challenges, such as the uplink pilot contamina-
tion, the overhead of downlink training and feedback, and the computational complexity. In order to reduce
the effective channel dimensions, researchers have been investigating the low-rank (sparse) properties of
channel environments from different viewpoints. This paper then provides a general overview of the current
low-rank channel estimation approaches, including their basic assumptions, key results, as well as pros
and cons on addressing the aforementioned tricky challenges. Comparisons among all these methods are
provided for better understanding and some future research prospects for these low-rank approaches are also
forecasted.

INDEX TERMS MassiveMIMO, channel estimation, low-rank property, channel sparsity, angle reciprocity.

I. INTRODUCTION
Large-scale multiple-input multiple-output (MIMO) or
‘‘massive MIMO’’, a new technique that employs hundreds
or even thousands of antennas at base station (BS) to simul-
taneously serve multiple users, has been widely investigated
for its numerous merits, such as high spectrum and energy
efficiency, high spatial resolution, and simple transceiver
design [1]. Meanwhile, massive MIMO faces many practical
challenges, including the sophisticated channel modeling,
the high-dimensional channel state information (CSI), the
scheduling of numerous accessing users, the limited radio
frequency (RF) chains, etc. Among all these challenges, the
CSI acquisition is generally recognized as the bottleneck to
embrace the potential gains promised by massive MIMO:

A. UPLINK (UL) PILOT CONTAMINATION
From the conventional orthogonal training strategy [2],
the required number of orthogonal training sequences as
well as the length of the training sequences should be at
least the number of transmit antennas. Hence, when the
number of users (possibly with more than one antenna)

grows dramatically, there may not exist sufficient orthogonal
training sequences to separate the UL channel estimation
from different users. If the same training sequences are reused
or non-orthogonal training sequences are adopted, then the
inter-user interference will arise during the channel estima-
tion stage, which is known as pilot contamination [1].1

B. OVERHEAD OF DOWNLINK (DL)
TRAINING AND FEEDBACK
Similar to UL cases, the required number of training for DL
will be comparable to the large number of antennas at BS,
and thus BS may not have sufficient number of orthogonal
training sequences to separate the DL channels. Even if it
does, the conventional DL training strategy could fail due to
a shorter channel coherence time. Meanwhile, the amount of
CSI feedback from users to BS needs to be scaled with the
number of antennas to control the quantization error, which
is a much heavy burden for practice concern.

1In this paper, we do not discriminate between inter-cell pilot contamina-
tion and intra-cell pilot contamination [3], as they have the same rationale
and the mathematical formats.
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C. HIGH COMPUTATIONAL COMPLEXITY
As the size of channel matrices increases, matrix operations
involved in the channel estimation, including multiplica-
tion, inversion, eigenvalue decomposition (EVD), or singular
value decomposition (SVD), will induce much higher com-
putational complexity in the practical implementation.

D. ACQUISITION OF CHANNEL COVARIANCE
MATRICES (CCMs)
CCMs have been widely utilized to improve the CSI accu-
racy as well as reducing the effective dimensions of MIMO
channels. Note that CCM is different from signal covariance
where the former can only be obtained from the accumulation
of channel estimates. Meanwhile the sample size to construct
CCM has to increase linearly with the channel dimensions,
making the accuracy or even the acquisition of the estimated
CCMs questionable for massive MIMO. Especially, it is
much difficult to obtain the downlink CCMs for all users as
the cost of training and feedback is hardly affordable.

E. CHANNEL NON-RECIPROCITY
To release the heavy burden of DL training and feedback,
many works proposed to utilize the channel reciprocity for
time division duplexing (TDD) systems, where the down-
link CSI can be immediately obtained from the uplink CSI,
provided that the latter can be obtained through certain
manner. Unfortunately, channel reciprocity is not applicable
for frequency division duplexing (FDD) systems, which is
still a dominant transmission mode in most communications
systems [1].

A direct way to face the above dimension-originated chal-
lenge is to reduce the effective channel dimension. Such a
consideration is possible due to two facts: (i) The antenna
spacing of massive antenna array is usually as small as
half-wave length in order to keep the whole array aperture
small [4], [6], [7]; (ii) BS with large-scale antenna array
has to be elevated at the top of high buildings such that
there are few local scattering [4]; especially, when the carrier
frequency goes to millimeter wave band, the severe path loss
makes sure that only a few reflecting paths could arrive at
BS [8]. In this case, the channel contains strong sparsity
and the signals received from massive antennas would have
very high correlation. Equivalently, the CCM would be rank
deficiency and possess low-rank property. Different channel
estimation approaches were then proposed, including CCM
based method, compressive sensing (CS) based method,
and antenna array theory based method, each with its own
unique perspective to exploit the channel sparsity or low-rank
property.

The objective of this paper is to provide a summary of these
low-rank approaches for massive MIMO channel estimation,
focusing on their basic ideas, detailed realization scheme, as
well as the merits and drawbacks on addressing the forego-
ing challenges. Through detailed comparison, we expect to
highlight the unique strengths of each kind of methods and

thus provide a guideline to select a better channel methods
for different scenarios.

The rest of the paper is organized as follows. In Section II,
we introduce two universal low-rank approaches that can be
applied for any number of receive antennas, i.e., CCM based
method and CS based method. In Section III, we present
the antenna array theory based low-rank channel method
that is specifically suitable for massive number of antennas.
Then some enlightening discussions on the massive MIMO
systems are provided in Section IV. The comparisons among
all these low-rank approaches and some future research
prospects are given in Section V, followed by the conclusion
in Section VI.

II. CCM AND CS BASED LOW-RANK
CHANNEL ESTIMATION
The conventional rank-deficient channel estimation methods
exploit either the low-rank properties inside statistical CCM
or the sparsity inside the instantaneous channels, which can
also be applied to massive MIMO systems.

A. LOW-RANK CCM BASED METHODS
1) CHANNEL MODEL
For MIMO system with M antennas at BS, the channel
between a single-antenna user and BS can be represented
from the antenna array theory as [4]

hk =
∫
θ∈Ak

αk (θ )a(θ )dθ, (1)

where θ denotes the direction of arrival (DOA) of each ray
insides the incident signal and Ak is the angular spread (AS)
of the incident signal from user-k . Moreover, αk (θ ) is the
complex gain of the incident ray at DOA θ and a(θ ) is the
arraymanifold vector (AMV), whose expression is dependent
on the array structure. When a uniform linear array (ULA) is
adopted, there is2

a(θ ) =
[
1, ej

2πd
λ

sin θ , . . . , ej
2πd
λ

(M−1) sin θ
]T
, (2)

where d is the antenna spacing and λ is the signal wavelength.
The CCM of user-k , denoted asRk , can be expressed as [5]

Rk = E{hkhHk } =
∫
θ∈Ak

E{|αk (θ )|2}a(θ )a(θ )Hdθ. (3)

2) NARROW ANGULAR SPREAD
Similar to the conventional approaches, if r , rank
{Rk} � M , then the channels can be expanded by r dominant
eigenvectors that correspond to the r nonzero eigenvalues,
which would reduce the channel dimensions from M to r .

To this end, authors of [6] and [7] considered a finite scat-
tering environment for massive MIMO systems and assumed
that theAS of each user is restrictedwithin a narrow region, as

2This is the typical AMV expression for far-field narrow-band signals,
while the discussion for the near-field or wide-band cases could be similar
obtained.
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FIGURE 1. Finite scattering model, where user 1 is surrounded by local
scatterers (A1 includes only one continuous AS interval), while user 2
experiences several distributed scatterers (A2 contains several
segmented continuous AS intervals). Both AS intervals of two users are
narrow for limited scattering surrounding BS.

shown in Fig. 1. With this assumption, one could mathemati-
cally demonstrate the low-rank property of CCM; namely, the
CCM Rk can be expressed as

Rk = Uk3kUH
k , (4)

where Uk is the signal subspace eigen-matrix of size M × r
and 3k is the nonzero eigenvalue matrix of size r × r .
A key inspection from [6] and [7] is that the CCMs of

any two users with non-overlapped AS are asymptotically
orthogonal to each other, say,

UH
k Ul → 0, for Ak ∩Al = ∅, as M →∞, (5)

and hence the pilot contamination could be removed for
these users with non-overlapped AS even if they employ
the same training sequence. Then [6] proposed a DL joint
spatial division multiplexing (JSDM) scheme, where a clas-
sical multiuser precoder was adopted to restrict each user’s
beamforming vectors within the orthogonal complement of
the channel subspaces of the others. Meanwhile, [7] directly
applied UL channel training via the minimum mean square
error (MMSE) estimator and proved that channels with
non-overlapped AS can be estimated free of interference.

3) MERITS AND DRAWBACKS
By leveraging the low-rank property of CCMs and reducing
the effective dimensions of channels, UL pilot contamination
as well as DL training and feedback overhead can be sig-
nificantly reduced. Meanwhile, with the real eigen-direction
of the channel statistics, the subsequent channel estimation
would possess very high accuracy. However, the acquisition
of CCM is a difficult task for multi-user massive MIMO
systems, especially for FDD mode, where the channel non-
reciprocity says that the uplink CCMs cannot be directly
used as downlink CCM. Thus each user’s high-dimensional
downlink CCM at BS has to be separately estimated and
fed back. Furthermore, the accompanied computational com-
plexity involved in the SVD of high-dimensional CCMs for
multiple users is hardly affordable.

B. CS BASED METHODS
1) NUCLEAR NORM REGULARIZATION VIA SEMIDEFINITE
PROGRAMMING (SDP)
Adopting the same finite scattering models as [6] and [7],
authors of [9] investigated the channel estimation for a TDD
multiuser massive MIMO system. It was shown that the
degree of freedom (DoF) of the multiuser channel matrix
was absolutely small due to the limited number of multi-path
propagation components. Utilizing this sparsity, a CS-based
approximation technique was proposed for multiuser channel
estimation, which aimed at solving the relaxation version
of rank minimization problem, i.e., the minimization of the
nuclear norm of channel matrix (see [9, eq. (7)]). After several
mathematical operations, this CSI acquisition problem was
further translated to a quadratic SDP problem and was solved
efficiently with readily available polynomial SDP approach.

This rank minimization method directly exploits the
low-rank properties of channel matrices with the aid of
CS theory, without the need of any additional knowledge
about the statistical distribution or physical parameters of the
propagation channels.

FIGURE 2. Channels exhibit sparsity under certain dictionary matrices.

2) CHANNEL SPARSITY BASED JOINT CSI RECOVERY
Employing a massive ULA at BS, channels can be repre-
sented by a virtual channel representation with a given unitary
dictionarymatrix [10]. It is claimed that transformed channels
possess sparsity due to the limited local scattering at BS
(see Fig. 2), and that different user channels have a partially
common sparsity support due to the shared scatterers in the
propagation environments. A joint CSI estimation approach
was then proposed for both CSI training and feedback reduc-
tion, where the CS technology with a nonlinear recursive
optimization is adopted to recover the sparsity support iden-
tification, followed by the oracle least square (LS) channel
estimation.

Instead of assuming the common sparsity supports
between separate users’ channels, the authors of [11] look
into the common sparsity support shared by subchannels
of different subcarriers in the orthogonal frequency-division
multiplexing (OFDM) systems. Similar to the training proce-
dure of [10], the compressive training signals are transmitted
over multiple pilot tones and the compressive measurements
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are fed back. Then BS recovers all the subchannel vectors
for each user with CS technology. Moreover, the authors also
devised a close-loop channel tracking scheme to simplify the
subsequent CSI acquisition by using the preceding sparsity
supports under the premise that the sparsity supports keep
unchanged during the following transmission.

3) MERITS AND DRAWBACKS
Channel sparsity together with various CS algorithms could
reduce the training overhead for massive MIMO systems and
meanwhile eliminate the requirement of CCMs. Neverthe-
less, the hypothetically exact sparse channel models may be
too ideal, considering both the possible power leakage [14]
during the transformation procedure and the low signal-to-
noise ratio (SNR) conditions. Meanwhile, the underlying
requirement of perfect measurement feedback for users to
BS is also a matter of concern. Furthermore, the design
of a dictionary matrix that could provide a better sparsity
and meanwhile satisfy the restricted isometry property (RIP)
seems to be difficult, since such a matrix is both related with
the array structure as well as the instant incoming DOAs of
the signal.

III. ANTENNA ARRAY THEORY BASED LOW-RANK
CHANNEL ESTIMATION
Now that the angular information is crucial for the low-rank
channel estimation, a natural question arise: why don’t we
directly achieve such angular information via certain canoni-
cal means, say, array signal processing? However, there are
three main reasons that the conventional MUSIC [12] and
ESPRIT [13] are not applicable here: (i) They may suffer
from very high computational complexity due to their SVD
operation with massive antennas; (ii) They are designed for
the scenario when the incoming signals do not have AS and
would suffer from performance degradation with surrounding
scattering; (ii) They are blind approaches originally designed
for Radar application but do not utilize the training sequences
embedded in communications systems. Hence, a new array
signal processing approach that could efficiently obtain the
angular information specifically for massive MIMO system
was proposed in [14].

A. SPATIAL BASIS EXPANSION MODEL (SBEM)
1) INITIAL AS ESTIMATION VIA DFT
The large antenna number at BS, namely large spatial sam-
pling points, will greatly enhance the resolution of discrete
Fourier transform (DFT) and thus render the possibility to
immediately achieve AS of the incoming signals via spa-
tial DFT operation at BS [14]. Interestingly, for ULA with
M � 1 antennas, the DFT of the UL channel yields an
equivalent evenly spaced subchannels in the beamspace. The
nonzero points of DFT reflect the beamspace subchannels
that concentrate around the central DOA of the incident sig-
nals, while the width of these nonzero points corresponds to
AS of the incident signals. With narrow AS condition [6], [7],

the number of beamspace subchannels is limited and thus
the original channel would exhibit the sparsity in beamspace
for massive MIMO system.3 Such a sparse representation is
equivalent to spanning the original channel in the beamspace
with limited basis vectors (subchannels) and is thus named
as SBEM.
Remark 1: The initial AS estimation with DFT could be

efficiently implemented via the fast Fourier transform (FFT),
making it much appealing for massive MIMO scenarios.

2) ENHANCING CHANNEL SPARSITY VIA SPATIAL ROTATION
In practical application, the number of antennas at BS cannot
be ideally infinite, and hence the DFT resolution is still
limited. In this case, the power of the beamspace subchan-
nels would leak to their neighbors outside the direction of
the incident signals. Consequently, there would be much
more non-zero beamspace subchannels beyond those truly
representing the AS of the incident signals, which would
deteriorate the sparsity of the beamspace representation of
the channel and would increase the burden of the subsequent
training. The authors of [14] then proposed to use spatial
rotation tomitigate this power leakage by rotating the channel
by an appropriate spatial phase such that the beamspace sub-
channels would point towards the incident signal in a better
format. With spatial rotation, the channel sparsity after DFT
operation can be dramatically enhanced, and one example is
given in Fig. 3.

FIGURE 3. Illustration of spatial rotation with AS = 4◦ and M = 128. After
spatial rotation, the number of DFT points gathering over 99% channel
power is significantly reduced from 28 to 11.

3) SBEM BASED CHANNEL ESTIMATION
With the DFT operation and the spatial rotation, the channel
can be represented as [14]

hk =
τ∑

q=1

βk,q8(φk )a(θk,q) (6)

3This property is the direct reason that the CS method could utilize DFT
matrix as a good dictionary matrix for sparsity but is presented from antenna
theory viewpoint in [14] for a vivid understanding.
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where 8(φk ) = diag
{
[1, ejφk , · · · , ej(M−1)φk ]

}
is the spa-

tial rotation matrix and φk ∈ [− π
M ,

π
M ] is a spatial rota-

tion parameter; a(θk,q)’s represent τ subchannels in the
beamspace and are orthogonal to each other. If ULA is
adopted, a(θk,q) would be one column of the DFT matrix.
Moreover, βk,q is the complex gain of the corresponding
beamspace subchannel.

Obviously, the channel estimation in massive MIMO can
be decomposed into two parts: AS estimation (for the θk,q
in (6)) and gain estimation (for the βk,q in (6)). The former
can be immediately achieved via the previously mentioned
DFT approach, and the remaining limited number of channel
gains can be simply obtained via linear estimation method,
e.g., LS, while the amount of training is equivalent to the
number of non-zero beamspace subchannels in (6). Further-
more, the angular information of each user would vary much
slower than the channel itself since the physical position of
any terminal changes negligibly in one channel coherence
time as compared to its distance from BS. Hence, one would
safely treat the AS information as unchanged within a much
longer period while only update the channel gains for every
channel coherence time. Meanwhile, it was proved in [7]
that users with non-overlapped AS would have orthogonal
channels, which can also be observed from SBEM (6), where
non-overlapped AS results in orthogonal beamspace sub-
channels.4 One could then assign users with non-overlapped
AS into one group and let them reuse the same training
sequence for UL channel estimation without causing pilot
contamination.

4) ANGLE RECIPROCITY FOR DOWNLINK CHANNEL
ESTIMATION IN FDD SYSTEMS
The channel non-reciprocity isolates UL and DL training,
resulting in heavy resource overhead and computational com-
plexity for DL training in FDD systems. The antenna array
theory based approach [14] proposed to utilize the angle
reciprocity [15] to help the DL channel estimation for FDD
systems. Angle reciprocity says that only those signal waves
that physically reverse the UL paths could arrive at users
during DL transmission, and this reciprocity between uplink
and downlink AS holds true even for FDD system as long
as the UL carrier frequency is not far from the DL carrier
frequency, say less than several Giga Hz [16]. Hence, the UL
angular information can be directly viewed as its DL coun-
terpart and thus only the remaining DL channel gains need
to be re-estimated through linear method. Such an approach
significantly reduces the cost of DL training and feedback
for massive MIMO systems. Moreover, since that angle reci-
procity holds for both TDD and FDD system, it helps to
establish a unified UL/DL channel estimation protocol for
both TDD and FDD massive MIMO systems.

4Though different users may have different phase rotation and would
suffer from some inter-subchannel interference, such kind of interference
would be negligible with massive number of antennas and with certain guard
interval among users [14].

5) DATA-AIDED BLIND AS TRACKING
The AS information of all users could be estimated with a
relatively long preamble at the start of the transmission and
should be re-estimated once there appear significant changes
of users’ positions. Nevertheless, by grouping the users with
non-overlapped AS together, each user’s AS information
could be blindly tracked through DFT-aided approach even
during data transmission period. This helps to further reduce
the training demands for AS estimation.

FIGURE 4. Rationale of Array Signal Processing aided Channel Estimation.

B. RATIONALE OF SBEM WITH MASSIVE MIMO
In fact, SBEM based channel estimation is closely related
with antenna theory and with the massive MIMO system,
whose rationale is shown in Fig. 4. More precisely:
• With massive MIMO, channel estimation could be
decomposed into angle estimation and gain estimation,
whereas the conventionalMIMO systemwould have low
resolution and cannot separate angular information from
the channel.

• With massive MIMO, angle estimation can be effec-
tively achieved by DFT approach due to the improved
spatial resolution.

• With the estimated angular information, one can utilize
the angle reciprocity to simplify the DL channel estima-
tion, especially for FDD system.

Remark 2: It can be easily realized that all the above
angle related benefits do not exist for conventional small-
scale antennas system because it cannot formulate the nar-
row beams to utilize such angular information. For example,
pointing a wide beam towards the user direction would suffer
from severe power leakage and this why the beamforming in
conventional MIMO system should stay in eigen-space but
not the beamspace. In other words, SBEM could be treated as
a specifically designed scheme for massive MIMO system.
In contrast, CCM or CS based approaches are universal for
any MIMO systems as long as sparsity or the low rank
property holds. Hence, one would expect a better perfor-
mance from SBEM in terms of accuracy or complexity than
CCM and CS based methods under massive MIMO systems.
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IV. DISCUSSIONS
A. WHERE DOES LOW-RANK PROPERTY HOLD TRUE?
Obviously, the above works all rely on the assumption
of finite scattering environments, i.e., the narrow AS for
low-rank property of CCMs or the sparsity of channels.
Generally, two scenarios have been accepted to support this
key assumption:
• BS equipped with a large number of antennas is always
elevated at a very high altitude, say on the top of a
high building, a dedicated tower, or an unmanned aerial
vehicle (UAV) platform, such that there are few sur-
rounding scatterers [4]. Meanwhile, the array is nor-
mally formulated by half-wavelength spaced antennas
and this smaller aperture further reduce the possibility
to see many surrounding scatterers. Hence, the AS seen
by BS is quite small and the number of incoming signal
path is limited.

• When massive MIMO system is employed at the
millimeter-wave band, e.g., 60GHz, the high path
loss will lead the primary propagation to be only
the line-of-sight (LOS) or the first order reflection,
such that the number of incoming signal path is
limited [8].

Remark 3: Obviously, the sparsity in spatial domain,
either the low-rank properties of CCMs or sparsity of chan-
nels is the only way to reduce the channel spatial dimension-
ality for massive MIMO systems.

B. THOUGHTS ON ‘‘HIGH SPATIAL RESOLUTION’’
OF MASSIVE MIMO
It has been widely recognized that massive MIMO enjoys the
advantage of high spatial resolution. Nevertheless, it must be
pointed out that the combination ofmassive antenna array and
the narrow AS condition (or the spatial sparsity) is a must to
realize such a high spatial resolution. For example, Fig. 5(a)
illustrates the case where BS has massive number of antennas
while AS of users are too broad and overlap with each other.
In this case, even if the massive antenna array is able to
formulate narrow DL beams, it still cannot distinguish the
two users totally in beamspace; namely, DL signals sent by
two separate narrow beams still cause interferences between
users. By contrast, Fig. 5(b) shows the case where BS has a
few antennas while the AS of users are narrow and do not
overlap with each other. In this case, the DL beams would
be too wide to separate different users; namely, the power
leakage to the sidelobe would cause interferences between
users.

Hence, in order to enjoy the high resolution claimed by
massive MIMO, there is a pre-requisite that the incoming
channels should be sparse, which makes massive MIMO
more suitable for mmWave applications.

V. COMPARISONS AND FUTURE RESEARCH
A. COMPARISONS AMONG LOW-RANK APPROACHES
1) SIMILARITIES
• All these methods require narrow AS assumption or the
spatial sparsity assumption.

FIGURE 5. Massive MIMO with wide incoming AS and conventional
MIMO with narrow incoming AS. (a) Massive MIMO + broad AS.
(b) MIMO + narrow AS.

• All these methods are able to mitigate the UL pilot con-
tamination as well as the heavy burden of DL training
and feedback.

2) DIFFERENCES
a: CCM-BASED METHOD
• The low-rank CCM approach in [6] and [7] is more
accurate than the others since the exact channel statistics
are exploited and the accurate channel eigen-spaces are
extracted. On the other hand, SBEM method limits its
channel in beamspace and would face more number of
unknowns. Similarly, CS method would have difficulty
to choose a better dictionary matrix and may suffer
from higher sparsity level. Nevertheless, achieving the
covariance matrices for all users would be a costly task
especially for moving users whose AS would change
from time to time. Moreover, obtaining the down-
link covariance matrices may also suffer from heavy
feedback cost.

b: CS-BASED METHOD
• The CS-based method normally started with DL channel
estimations and could obtain the channel estimates of
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all users simultaneously without user grouping. Never-
theless, such an approach will suffer from performance
degradation in order to cover the whole spatial domain
with less number of training, and the corresponding
performance loss is randomly determined by the users’
position. In UL case, however, compressive sensing
normally require some prior knowledge, for example
whether users have similar AS, such that it can perform
user grouping before the channel estimation. Otherwise,
the users’ training signals will superimpose on top of
each other and the sparsity of each channels cannot be
observed from the received signal.

• CS-based method does not require the knowledge of
CCMs, and thus avoid the accompanied SVD operation.

c: SBEM-BASED METHOD
• SBEM does not require the knowledge of CCMs, and
could be efficiently implemented with FFT. By contrast,
CCM-based method suffers from high-dimensional
SVD and CS-based method requires non-linear opti-
mization. Therefore, SBEM is a more friendly approach
for hardware implementation.

• SBEM could strengthen the sparsity of channels
via phase rotation, while CS-based method generally
assumes perfect sparsity and ignore the power leakage
effect.

• With the estimated AS information, SBEM could
unify the UL/DL transmission for both TDD and
FDD systems by utilizing the angle reciprocity.
However, the UL/DL CCMs [6], [7] and sparsity
supports [10], [11] are not necessarily reciprocal in
FDD systems.

• SBEM could track the angular information of different
users during the data transmission via the simple FFT
operation.

FIGURE 6. The DL MSE performance comparison of these low-rank
approaches under the case of user mobility.

A numerical example on the mean square errors (MSE) of
DL channel estimation from different low-rank approaches
versus SNR are shown in Fig. 6, where the channels are

formulated by equations (1) and (2) with M = 128 and
d = λ/2, and the maximum rank or sparsity level considered
for all methods is set as 16. To keep a fair comparison, the
total training power for all methods is the same for any given
SNR.We consider the situation of user mobility. Specifically,
as users move, the instantaneous AS is fixed as 4◦ at each time
moment while the statistical AS, defined as the total range of
AS that users cover within a relatively longer period, is set
as 4◦, 14◦, 16◦, 20◦, respectively. The CCM will be obtained
based on statistical AS while the channels in CS and SBEM
is obtained based on the instantaneous AS.

As expected, JSDM method with perfect CCM performs
the best among all different methods when statistical AS is 4◦.
Meanwhile, both SBEM and CS methods approach certain
error floors due to the power leakage in the spatial domain.
As the statistical AS increases, the MSE performances of
JSDM deteriorate obviously whereas the MSE curves from
CS method and SBEM are not affected so much. The reason
lies in that CCM will cover too broad AS and thus are not
accurate for the instantaneous channel estimation. Instead,
SBEM and CS method are only related with sparsity of
instantaneous channels and thus are more suitable for the
mobile communications. Meanwhile, SBEM performs better
than CS method and has a smaller error floor for the reason
that SBEM could strengthen the sparsity representation via
spatial rotation, whereas CS method does not harness the
antenna array theory to enhance the channel sparsity and thus
have a relatively larger sparsity level, resulting in a lower
channel estimation accuracy.

TABLE 1. Comparison between existing low-rank approaches.

A summarized comparison between different low-rank
channel estimation approaches for massive MIMO is shown
in Table 1.

B. FUTURE RESEARCH PROSPECTS
Manymature techniques in antenna array theory could be bor-
rowed into massive MIMO system and formulate prospective
research directions in the future. Some immediate examples
are given here:

VOLUME 4, 2016 7319



H. Xie et al.: Overview of Low-Rank Channel Estimation for Massive MIMO Systems

1) ARRAY CONFIGURATION DESIGN
Due to space limitation, the large number of antennas may be
arranged into various array topologies, like uniform circular
arrays (UCA), cylinder arrays, lens arrays or even irregular
shape. Extending above low-rank approaches to these new
array configurations needs careful investigations. For exam-
ple, CS-based method should exploit new dictionary matrices
for sparse channel representation, while SBEM should obtain
efficient algorithms for angle acquisition. On the other side,
designing the array shape that could achieve the best angle
estimation to help the next channel estimation would also be
interesting.

2) ANGLE-BASED BEAMFORMING
Channel matrices based beamforming such as MMSE and
zero-forcing could be re-explained by the beamspace trans-
mission in massive MIMO scenario, where the latter phys-
ically points to the incident directions of different users.
Hence, many conventional angle-based beamforming tech-
niques [17] would certainly be promoted to wireless commu-
nications system, such as beam-shape formulation, sidelobe
control, optimal beamforming design, etc.

3) ANGLE TRACKING BASED CHANNEL TRACKING
Conventional angle-based target tracking algorithm could
be applied in massive MIMO system to help the channel
tracking of the mobile users. Nevertheless, the antenna array
theory based tracking algorithm is mainly designed for blind
scenario where the targets do not cooperate with the BS.
One should certainly re-design a more efficient track-
ing strategy based on the pilot embedded in the massive
MIMO systems.

VI. CONCLUSION
In this paper, we have investigated the main challenges faced
by high-dimensional CSI acquisition in massive MIMO sys-
tems and provided a detailed review on different low-rank
channel estimation methods. It was first shown that the nar-
row angular spread or the spatial sparsity is crucial for all
low-rank approaches. We then demonstrated that the CCM
method and the CS method are universal ideas while the
SBEM approach is specifically designed for massive MIMO
systems from the viewpoint of antenna array theory. Detailed
comparisons and discussions on all these low-rank methods
have been provided, which demonstrated that SBEM method
could handle most challenges faced by massive MIMO chan-
nel estimation while the other two still have certain limita-
tions. Moreover, SBEM links the transmission of massive
MIMO with angle estimation such that many mature tech-
niques in antenna array theory could be borrowed here and
formulate prospective research directions in the future.
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