IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received September 16, 2016, accepted October 15, 2016, date of publication October 28, 2016,
date of current version November 28, 2016.

Digital Object Identifier 10.1109/ACCESS.2016.2622724

On the Security of a Universal Cryptocomputer:
The Chosen Instruction Attack

STEFAN RASS AND PETER SCHARTNER

System Security Group with the Alpen-Adria-Universitit Klagenfurt, Klagenfurt 9020, Austria

Corresponding author S. Rass (stefan.rass @aau.at)

ABSTRACT The ultimate goal of private function evaluation is the complete outsourcing of processing tasks
to distrusted platforms (such as clouds), so that arbitrary functions can be evaluated without any leakage of
secret information. Several successful concepts have been proposed in the past, the most striking one having
been fully homomorphic encryption besides the well-known garbled circuits and multiparty computation.
In this paper, we look at an idealized model of outsourced computation, which we call a cryptocomputer.
This is a (theoretical) machine that works exactly like a real-life computer in the sense of understanding
a standard assembly language, but retaining all its internal signals, registers, and memory encrypted at all
times. The encryption is assumed under a key that is unknown to the attacker, and taken as secure (in any
cryptographically meaningful way), so that no leakage of information from any ciphertext can be expected
from programs with reasonable (polynomial) time complexity. Unfortunately, such a cryptocomputer is
necessarily insecure, irrespectively of how the encryption looks like. In particular, we explicitly do not
assume any specific form of security (chosen-ciphertext or other) or (a)symmetry of encryption; our attack
works only on ciphertexts and makes no assumptions whatsoever on the encryption. We prove insecurity of
the cryptocomputer by taking the encryption as a black box, and show how to decipher every signal in the
computer by pure virtue of submitting proper instructions for execution. Our attack falls into the general
category of side-channel attacks, however unlike other related attacks, does neither exploit physical nor any
logical characteristics of the underlying platform (besides the execution flow being observable). Somewhat
surprisingly, it turns out that although the problem that we consider is cryptographic, it seemingly has no
cryptographic solution and apparently calls for an interdisciplinary approach from new directions.

INDEX TERMS Private function evaluation, security, applied cryptography, side-channel attack.

I. INTRODUCTION is already sufficient here, but practical assembler lan-
Assume a standard computer (laptop, smartphone, etc.), guages offer at least additions, subtractions, multiplica-
following a conventional von Neumann or Harvard architec- tions, divisions and bitwise logical operations.
ture, and understanding a reduced or complex instruction set « Conditional branching: at least a while-statement is nec-
(RISC or CISC). Furthermore, suppose that some encryption essary, alternatively also an if-statement. Omitting both
or other disguise is applied to the internal signals so that leads to loop programs, or primitive recursive functions,
nothing about the inner data can be learnt from knowledge the latter of which are known to be unable to compute
of the signal and the public parameters (of the protection). the Ackermann function).
For simplicity, let us think of the internals being protected by « Memory access: although this does not add anything
some encryption scheme (the case of threshold cryptography to the expressiveness of the computational model, it is
and multiparty computation (MPC) is discussed in the con- nevertheless a practical necessity, especially in light of
cluding section of this work). big data applications and the need to process possibly
It is a well known fact that any reasonably powerful model huge amounts of data. Many assembly languages offer
of computation requires at least the functionality of a Turing various kinds of addressing modes, such as direct, indi-
machine, or equivalently, a quite small set of instructions that rect (pointer arithmetic), etc.

cover the following:
For illustrative purposes (only), we will assume an assem-

o Arithmetic and logic instructions: an increment instruc- bly instruction to work on registers of fixed size (32 bit or
tion (like C4++ in the language of the same name) 64 bit are common choices), and to act on encrypted content
2169-3536 © 2016 IEEE. Translations and content mining are permitted for academic research only.

7874 Personal use is also permitted, but republication/redistribution requires IEEE permission. VOLUME 4, 2016
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

S. Rass, P. Schartner: Security of a Universal Cryptocomputer

IEEE Access

at all times. For the syntax, we will stick with the Mips
assembly language [1], in which registers can be marked
by a preceding $-symbol. Under this notation, an instruction
like add $s0, $sl, $s2 would compute the sum of the
values in $s1 and $s2 and put it into register $s0. To make
our assumed computational platform more precise, Figure 1
illustrates a simplified version of a datapath that is — in
variations and with refinements — found in many practical
microprocessors. The central point of our consideration is
the processor working by a repeated sequence of instruction
fetching, instruction and operand decoding, execution, and
writing results back to the memory. The data path illus-
trated in Figure 1 therefore shows only the main compo-
nents involved in these steps, which in particular includes an
instruction memory (homed together with the data memory
in a von Neumann architecture, or physically separate from
the data memory in a Harvard architecture), a register file,
whose content is fed into the arithmetic-logic unit (ALU), and
afterwards written back to the memory. We explicitly added
the increment of the program counter by 4 bits (in a 32 bit
processor architecture), with an optional direct feedback of
data into the program counter (PC), upon a conditional jump
(triggered by the ALU in the execution phase). The multi-
plexer (MUX) shown in the picture either updates the PC with
the direct increment (sequential flow of instructions) or with
the jump target (if the ALU triggers this by the signal labeled
as “conditional jump?” in Figure 1).

instruction decode/| execute | MeMory access

instruction fetch } ! | 4
| register file read | | _and write back
|

(conditional) jump?

]

|

+

I

+

I

|

>

= I
g ! z
@ . | o
= o | g

= 2 |
S o | €
3] 2 I s
= | 9
- el

@]

£ |

monitors PC !

changes !

’ control unit

adversary

FIGURE 1. Standard Data Path (simplified) - Computing Platform.

We believe that this simplified diagram resembles the
skeleton that underlies most practical computing devices
today, and especially suits the execution of assembly code.
The grayish boxes shown in the picture are parts that the
adversary can observe or control, assuming access to the
data path. Practically, it is often not even necessary to fiddle
with the processor internally, since the code can be supplied
externally, and written such that registers get filled with the
desired content. We will postpone the adversary model until
later, and first describe the cryptographic protection that we
assume being applied in the data path; hereafter referred to as
computing platform.

VOLUME 4, 2016

Throughout this work, we will (implicitly) assume that the
actual value within a register, say $s1, is inaccessible to the
computing platform due to an encryption, but that the plat-
form is capable of executing the assembly instruction. Fully
homomorphic encryption (FHE), as one example of how this
can be done, directly offers an addition and multiplication
operation to work on ciphertexts, while the actual operation
is hiddenly applied to the inner plaintext. Alternatives like
garbled circuits (GC) achieve the same functionality, based
on a circuit representation of the instruction, and MPC pro-
duces the result interactively between many parties, while
leaving the actual result up to a reconstruction by a desig-
nated party. In the following, we will not adopt any specific
assumption on sow an instruction is executed, except for an
illustrative sketch given in section III and the assumption
that the operands of an instruction are securely enciphered.
However, the encryption scheme will remain a black box at
all times, and can be assumed to be secure under any notion
(indistinguishability under active attacks, or similar).

We will adopt the following semi-formal understanding of
a universal cryptocomputer (based on the data path sketched
in Figure 1) to reflect the ““ideal” setting of private function
evaluation:

Definition 1: A universal cryptocomputer is a computing
machine that:

1) understands an assembly instruction set (RISC or CISC)

2) can execute arbitrary programs (universality), which

are stored in plain form (except for data within the code
that is encrypted, such as constants),

3) works on ciphertexts only, and never decrypts any of its

internal signals.

Definition 1 implicitly assumes that the program counter
remains available in plain, as is required to retrieve the
next instruction after having completed one. The central
insight in this work is that a universal cryptocomputer meet-
ing the described requirements (of definition 1) is insecure,
since:

« No matter how an instruction is executed or how the
encryption looks like, the capability of the execution
platform to execute any instruction of our own choice
can be exploited to disclose the hidden register con-
tents (and therefore decipher also the memory content).
We call this the chosen instruction attack, and describe
its details in section IV.

« Enlarging register or key sizes provides no improved
security, since a ciphertext’s size is necessarily polyno-
mial in the security parameter. On a sufficiently pow-
erful assembly language (offering additions or shifts),
we obtain a linear time algorithm (linear in the security
parameter) to disclose a ciphertext bitwise. Details are
given in section I'V-B.

« Since our attack presumes that arbitrary code can be
written and submitted for execution, we could sus-
pect code obfuscation to help us out. Unfortunately,
section IV-C shows how assembly mnemonics can be
deobfuscated (using a probabilistic method).

7875

IEEE Access

S. Rass, P. Schartner: Security of a Universal Cryptocomputer

Although our presentation will be given in Mips assembly
syntax, the risks are not mitigated by switching to other
assembly languages, since the common subset of instructions
that all languages need to offer (only in different forms),
can be used to launch the attack only in adapted form
(section V). Section VII elaborates on possible countermea-
sures and opens avenues for future work. Conclusions are
drawn in section VIIIL.

Il. RELATED WORK

Private function evaluation is a special case of the
more general concept of functional encryption [2], [3],
which in particular includes specialized constructions like
attribute and predicate based encryption [4], [5], searchable
encryption [6], [7], and similar. The problem of transfer-
ring the Turing machine model into an entirely encrypted
context has been treated in [8]-[10], and Mips assem-
bly code has explicitly been investigated in [11]. Practical
computational platforms that allow for arbitrary computa-
tions are available in various forms like general purpose
platforms (ObliVM [12], or HEROIC [13]), or designated
compilers that transfer a function’s description into an exe-
cutable representation (usually a circuit, evaluated either as a
garbled circuit [14] or using somewhat homomorphic encryp-
tion [15], [16]). A similar notion is presented in [17], where
a client can send an obfuscated program to some distrusted
server, who evaluates it and learns nothing except the pro-
gram’s output. The last reference is particularly interesting in
our context, since it may (although not yet verified so) provide
hints on how the described attacks in this work could be
thwarted. Closely related to our work is also the one of [18],
who analyze security on the programming language level
(concretely talking about C), to compile a garbled circuit.
Although many security notions have been tailored to the
specific challenge of private function evaluation (e.g., circuit
privacy, which asks for the function f itself to remain hidden
from the evaluator’s eyes), the exploitation of the “universal-
ity” of the processing seems to be an unreported possibility
so far. Consequently, attacks like the one we describe in this
work are not covered by the usual notions of security in the
context of private function evaluation. One notable exception
to this is MPC [19], which admits the execution of arbitrary
instructions as an interactive process between several parties,
while keeping the inner information shared and thus unrecov-
erable by any party. Secrecy is bought here at a considerable
communication (network) overhead. Also, MPC does at some
stage require a ‘““combiner’’ (possibly composed from several
cooperating instances), who recovers the results ultimately.
This is the point where our attack becomes mountable again.

lIl. PRELIMINARIES
A general asymmetric encryption scheme is a triple
(KG, E, D) of three algorithms with the following meaning:
KG: a probabilistic algorithm taking a security parame-
ter t € IN to output system parameter and a public
and private key pair (pk, sk).

7876

E: an algorithm that takes a message m and public key
pk to output a ciphertext c.
D: an algorithm that takes a ciphertext ¢ and secret

decryption key sk to recover a message m'.

Without loss of generality, we will formulate the upcoming
considerations in terms of asymmetric encryption, leaving the
use of a symmetric scheme as an obvious change of no effect.

Furthermore, let us assume that the register size is being
compatible with the block size of the encryption (alterna-
tively, assume the encryption to be a stream cipher). This
assumption is made only for technical soundness, but has also
no explicit impact on the upcoming considerations.

To get an idea of how assembly instructions can be exe-
cuted on encrypted ciphertexts, let us — for the moment —
take the register size to be quite small, say only one bit.
Then, it is trivial to execute an addition instruction like add
$s0, $sl, $s2 by using a humble lookup table of size
2 x 2 (since each register can take on only two values).
Larger register sizes (say 32 bit) would consequently cause
an exponential blow-up of the lookup table (having size
232 % 232 for example), which makes this approach clearly
impractical. However, note that many schemes of private
function evaluation (except multiparty computation) indeed
work on small blocks (even single bits, e.g., garbled circuits).

The task of executing an assembly instruction by a table
lookup is (assuming the table to be of practical size) a matter
of matching the operands $s0, $s1 to the row and column
of the lookup table, from which the encrypted result can be
retrieved. Figure 2 illustrates this idea for a simple addition
instruction. The lookup table is indexed on the two operands
of the instruction, both being ciphertexts (here denoted as
u; and v;). Note that the decryption as indicated in the figure
does actually not happen in reality, but is denoted only for
clarification.

inner plaintext $s1
comparison without ————— ',
decryption Vi Vy Vj
uq
uz

$s0 = u; l___|

\/
Enc(Dec(u;,sk) + Dec(v;,sk),pk) — $s2
FIGURE 2. Execution of add $s2, $s0, $s1 using lookup tables.

Although security being defined as indistinguishability
explicitly prevents such a comparison, a specific construc-
tion of a public key encryption with equality test (PKEET)
has been given [20], and even generic black box construc-
tions that endow any given asymmetric encryption scheme
(KG, E, D) with a ciphertext comparison facility are also
available [9]. So, w.l.o.g., we may assume such an extended
encryption scheme to be used for the assembly interpreter,

VOLUME 4, 2016

S. Rass, P. Schartner: Security of a Universal Cryptocomputer

IEEE Access

which then extends the three algorithms above by two more:
Aut: an algorithm that upon input of the system parame-

ters and keys, outputs a equality testing key ek. This

key is explicitly useless for decrypting ciphertexts,

but lets us check equality of inner plaintexts.

an algorithm that takes two ciphertexts c1, ¢ and

the equality testing key ek to and outputs

Com:

Com(cy, ¢, k) = true
<= D(c1, sk) = D(c2, sk).
Several remarks about this extension are in order here:

1) Both, the authorization and comparison algorithm can
be designed to work on ciphertexts encrypted under
different public keys. Then, ek is a joint key from two
sources, i.e., expressing their joint consent to compare
ciphertexts (controllable authorization).

2) The key ek in the above instance of assembly code
execution on encrypted data acts as an evaluation key.
Such keys are also found in instances of FHE [21].

3) Most importantly, we will use the comparison ora-
cle Com only for describing the chosen instruction
attack in an initial form. In section IV-A, we abandon
this functionality, and return to the original standard
encryption scheme (KG, E, D) that disallows com-
parisons. Thus, only to make a start, we will endow
the computing platform with a flaw in the form of
the comparison oracle, but later on show how such
an oracle can be constructed in a completely clean
and well-designed platform that uses a conventional
(unmodified) encryption.

a: ADVERSARY AND SECURITY MODEL
Our adversary is assumed to have full access to the execution
platform (indeed, the adversary is who runs the code), but
without access to any of the keys that have been used to
encrypt the data. Furthermore, we assume the attacker to
be computationally bounded according to the requirements
of the underlying encryption. This assumption is generic
and depends on the concrete choice of (KG, E, D), but in
most cases will amount to restricting matters to polynomial
time-complexity (in the size of the keys, resp., the security
parameter that went into KG). More formally, we define the
adversary to be/run a probabilistic algorithm A, with
1) inputs being every signal and register content available
in the data path (computing platform), but this access
being on ciphertexts only, and
2) oracle access to the instruction memory, register file
(specifically the operand register contents), and the
program counter value (these accessible parts are high-
lighted in gray in Figure 1), and
3) polynomial running time in the variables ¢, N and M,
where:
« t is the security parameter that went into the KG
algorithm to initialize the encryption.
e N is the number of instructions in the assembly
language

VOLUME 4, 2016

o M is the number of registers

Note that we take the running time as independent of
the size of the data memory (the latter can safely be
assumed as polynomially sized in #, since otherwise, a
super-polynomial lot of ciphertext would be available,
in which case most security notions for encryption
become void).

Security is here (qualitatively) understood as the attacker’s
inability to learn anything about the underlying data (with
efforts taking polynomial time in #, N and M). As we will
show, it is not necessary to become any more specific
or formal on the security definition here, as the attacks
described will entirely disclose the secret data into its plain
(unencrypted) form (quite efficiently), under the assumptions
stated above.

IV. THE CHOSEN INSTRUCTION ATTACK

In its simplest form, consider a for-loop of the
(generic) form for i = 1 to n do...something use-
ful...endfor. In this bit of code, n is the variable of interest.
Then, simply observing how often the loop is executed
directly delivers the value of n, no matter of whether n is
encrypted or not. An obvious countermeasure is having the
compiler add a random number of dummy iterations to hide
the actual value of n. However, achieving this for every
program in a meaningful way is intricate and increases the
complexity of the compilation process.

The actual problem, however, is not resolved by any such
precautions, if the assembly instruction interpreter allows for
arbitrary instructions to be executed.

To see this, let us return to Mips assembly as our illustrative
example (stressing that other assembly languages offer the
same functionality only in different syntax). For the example,
let $c be the register whose content is encrypted and shall be
disclosed. Furthermore, in the simplest case, assume a com-
parison algorithm Com to be available. A chosen-instruction
attack can be mounted along the following steps:

1) Subtract the value $c from itself, giving an encrypted

version of zero, irrespectively of the value hidden in
$c. In MIPS assembly language, execute the command

sub $s0, $c, Sc,

so that $s0 < E($c — $c, pk) = E(0, pk).

2) Next, invoke Com($c, $s0, ek). If this returns t rue,
then $c = 0 has been discovered and we are done.

3) Otherwise, Sc # 0 means that we can divide $c
by itself to get an encryption of 1 for the quotient
and another encryption of zero for the remainder (a
byproduct that is not required at this point). In MIPS
assembly, we would thus submit the instructions
div Sc, Sc
mflo $sl #S$sl <« E(Sc/$c,pk) =E(, pk)

4) Now, given $s0 = E(0, pk) and $s1 = E(1, pk), it is
a trivial matter of executing

add $s0, $s0, S$sl

7877

IEEE Access

S. Rass, P. Schartner: Security of a Universal Cryptocomputer

for k times to get $s0 = E(k, pk) fork =0, 1,2,
5) Repeating the previous step, and by virtue of Com, we
can brute-force disclose any unknown register content,
given that the registers are only 32 or 64 bits, leaving
us with no more than 232 or 2% cases to test. This is
feasible on nowadays computing architectures.

It must be stressed that under a standard implementation
of public key cryptography, the adversary would be given the
public key pk, which quite directly would allow to produce
the sought values for the comparison. This is indeed a valid
shortcut to the above attack, and also applies to any deter-
ministic asymmetric scheme like RSA over small plaintext
spaces (simply trial encrypt all candidate plaintexts and see
if the given RSA ciphertext is reproduced). In the following,
let us therefore strengthen our hypothesis on the adversary
to be unable of producing ciphertexts on its own (say, if the
encryption key pk is never made public). This indeed general-
izes the upcoming considerations, as this assumption includes
all symmetric encryption schemes into our description.

Since the attack in the described form assumed the exis-
tence of a comparison algorithm Com, let us now modify it to
work without this assumption.

A. GETTING RID OF THE COMPARISON ORACLE

The previously described attack did assume the existence of a
comparison oracle that shipped with the encryption function
E(m, pk), but assumed nothing on the structure or security
of the encryption itself. Let us now drop this extension and
confine ourself to a black-box usage of the encryption scheme
(KG, E, D) in its plain form. Indeed, it can be shown that
the comparison function can be established even without
changing the encryption scheme at all. So, we will modify
the above attack to work without any assumptions on the
underlying encryption.

Various options are available to construct a comparison

oracle, such as (at least):

« Use branching instructions: for example, Mips assembly
offers a branch-if-equal command beqg $s0, $s1,
label, which upon execution can be observed to reset
the program counter in case of equality. This directly
implements the sought comparison oracle. Alternative
comparisons like #, < or > can in combination be used
to yield the same output (for example, a = b <=
—(a < b)AN—(a >b) < a <bAb < a,and
a > b <= b < a, so that only one conditional
branching instruction would be required).

« Use memory access patterns: loading a memory cell
into a register is a matter of issuing 1w $si1,
offset ($s2), which accesses the memory at the
cell with address $s2 + offset. Enforcing $s0 to
contain zero (as described previously), and using this
ciphertext for of fset, we end up accessing the address
0+ $s2 = $s2. The equality check on the encrypted
registers $s2 and $s3 are then plainly doable by check-
ing if the instructions

lw $sl1, offset ($s2)

7878

1w $sl1, offset ($s3)

with offset = E(0,pk) access the
memory cell.

o Spare the comparison at all by exploiting error flags and
status registers. For example, if a division by zero causes
a change in some status register, then this change could
be observed as an indication of a zero division. Likewise,
doubling a register until an overflow is indicated works
equally well. A countermeasure against this is, however,
easy if the status registers are re-randomized whenever

an assembly instruction is executed.

same

B. LARGER REGISTERS OR KEYS DO NOT HELP

As we did not assume anything on the encryption, this also
means no assumptions on the key sizes. So enlarging the
key space cannot help here. Unfortunately, working with
larger registers to prevent the final brute-force opening is not
effective either, since the attack can still be mounted.

To see this, let us jump into the attack at the point where
an encrypted value zero and one have been constructed, and
assume that the assembly language offers the logical bitwise
and operation. As before, let $s1 = E(1, pk) be available,
and let $c be the register content to be disclosed. Then,
issuing the command

add $s1, $sl1, $sl

fork = 0,1,2,... times will fill the register $s1 with the
value sequence E(2k, pk). Then, executing

and $s2, S$c, Ssl

and testing the result $s2 to equal zero is a straightforward
mean of testing the individual bits in $c to be zero or one.
This process requires only k repetitions of the procedure
to entirely disclose a k-bit register, and thus remains effi-
cient even if 128 Bit, 256 Bit or larger registers are being
used (that are not accessible through brute-force trials like
described above).

Alternatively, the idea of doubling a register content can
be used to left-shift the content until an overflow is flagged.
Each time when the content is shifted to the left by 1 bit (by
doubling the content via add $c, $c, $c) an overflow
indicates a 1 at the most significant position, while no over-
flow tells us that the most significant bit has been a zero.

The same possibility is opened by logical shift instructions.
Especially the right-shift can be used to produce a zero-value,
if it is issued at least k times on the same register, when k is
the bitsize of the CPU.

C. REVERSING CODE OBFUSCATION

Since our attack heavily relied on using the assembly code
in a known form, obfuscating the op-codes appears as a
straightforward mean to make the attacks at least more diffi-
cult (note that we cannot obfuscate the operands easily, since
the interpreter has to know where to retrieve the data from).
This is, however, only of limited use, since many instructions

VOLUME 4, 2016

S. Rass, P. Schartner: Security of a Universal Cryptocomputer

IEEE Access

can be recognized upon their syntax (for example, arithmetic
and logic instructions take three registers as parameters, as
opposed to conditional branches taking two registers and a
label). In the following, we consider code obfuscation in sim-
ple terms of randomly renaming mnemonics while leaving
the semantic unchanged. Full code obfuscation that induces
dummy instructions and decoy code structures provides no
additional security against our attacks, since the goal is here
not on reverse engineering the code, but merely on identifying
the instructions required to launch a CIA attack.

Unfortunately, it is exactly the aforementioned issue
that helps discovering which instruction does what. Before
describing this in section IV-C.1, let us first describe how
the required arithmetic instructions (subtraction, addition,
division) can be discovered or emulated.

In the following, the attacker may take any pair of distinct
registers or memory cells at any time of a normal program
execution; let us call them $s0 and $s1. With high proba-
bility (= 1 —27%*1 for a k-bit register), the two registers will
have different and nonzero values.

1) DEOBFUSCATING BRANCHING MNEMONICS
Let the obfuscated version of a conditional branch be denoted
ascb $s0, $sl, label, where there is no information
on whether cb tests for =, #, <, >, < or >. Furthermore,
let $s0 and $s1 be two arbitrarily picked registers whose
contents are (most likely) distinct (to assure this, the follow-
ing steps should therefore be repeated with several choices
of $s0 and $s1).

Figure 3 illustrates the steps to disclose (or also program)
a comparison for <, > or =, using an unknown conditional
jump instruction cb. The flowchart-like diamond boxes have
a Y-branch if the instruction in the box caused a jump, and
go into the N-path if the conditional branch cb did nothing.
The intermediate rectangular boxes list the possibilities left
at each point in the flow.

FIGURE 3. Revealing the semantic of cb € {<, >, =}.

Once an instruction cb is found that branches conditional
on =, < or >, the control flow in Figure 3 can be used as
a template to implement the necessary comparisons for the
chosen instruction attack.

VOLUME 4, 2016

This in turn lets us create the values 0 and 1, which can
then be used to discover tests for strict inequality (<, > or
#). Again, let cb be any of these tests (as indicated by the top
left N-branch in Figure 3). Also, let $s0 and $s1 now be two
registers that contain the (encrypted) values 0 and 1. Then,
consider the execution of the following two instructions:

cb $s0, $s1, labell # 0<1? (1)
cb $s1, $s0, label2 # 1<07? 2)

We can distinguish three cases:

1) Both instructions cause a jump: then cb tests for #.

2) Only one of the instruction branches: then cb is either
for < if (1) jumped to 1abell, or for >, if (2) jumped
to label?2.

3) The third case of neither instruction jumping is impos-
sible, conditional on cb being either #, < or >.
Otherwise, it indicates a mistake in the first discovery
along the flow in Figure 3. In that case, our choice of
$s0 and $s1 was unlucky, and we must start afresh.

2) DEOBFUSCATING ARITHMETIC/LOGIC MNEMONICS

Let the unknown instruction be written as cmd. In case of
Mips assembly, the instructions for division and multiplica-
tion are recognizable by taking only two arguments, so we
exclude them here in this particular illustration.

Let us assume, w.l.o.g., that the instruction set contains
a logical shift to the right, then shifting a register k times
to the right surely creates a zero value (a left shift works
equally well, and can even be emulated by repeated additions
to double a value; see above).

If, in addition, a subtraction instruction is available (or an
addition of the twos-complement), then we can execute both
instructions and then do a conditional branch to check if they
give the same result. To disclose the subtraction instruction,
we write code of the following (general) pattern:

e Let cmdl, cmd2 be any two instructions, which we
suspect to be a shift and a subtraction (not knowing if
this is correct or which is which). Then, use cmdl and
cmd?2 to produce a value suspected to be zero on the two
ways as described above.

o Use the conditional branching for equality testing to
check if the two previously obtained results are the same.
If so, then we know that {cmd1, cmd2} = {sub, shr},
albeit we still do not know which is which.

o The final distinction can be made by re-doing the com-
parison after only a single invocation of cmdl and
cmd?2. The result will be zero only for one of the two
(assuming that the ciphertext on which we were working
was not zero or one by coincidence), indicating the one
that produced the zero to be the subtraction instruction,
and leaving the other to be the right shift.

The above procedure needs to be repeated, obviously, for
every pair of instructions, although step IV-C.2 is only to

be done once. The overall effort is in O ((1;/)) C O(N?)

for a total of N instructions. This is indeed feasible, since

7879

IEEE Access

S. Rass, P. Schartner: Security of a Universal Cryptocomputer

even in a CISC architecture with an assumed number of,
say 400, instructions, we end up testing a total of no more than
(430) = 79800 cases. On a RISC architecture (like Mips) with
30 instructions, there would be only 435 pairs to be tested.

Also, note that the procedure has a general chance to
fail, in case of unfortunate choices of the contents put into
the registers $s1 and $s2 (remember that we allowed the
attacker to act probabilistically). Thus, the overall deobfusca-
tion should be repeated to lower the error sufficiently. Indeed,
for M registers available, there are O(M?) pairs that can be
used for the attack, which bounds the number of trials possi-
ble for the adversary. Additionally, the attacker could apply
any arithmetic instruction, albeit unknown in its functionality,
to modify a given ciphertext into something else (and most
likely different to the previous value).

Having discovered the subtraction instruction and with
an equality test being doable by the previously discovered
conditional branches (upon =, < or >), then it is easy to
issue a subtraction between two (arbitrarily chosen) register
contents, followed by an addition and a check if the suspected
addition reversed the effect of the subtraction. This incident
reveals the mnemonic behind which the addition instruction
is hidden:

sub $s0, $sl, $s2 #$s0 <« $s1 —$s2
cmdl $s3, $s0, $s2 #$s3 <« $s0+ $s2
if $s0 = $s3 then cmdl = add

Finally, even if the assembly language does not offer a
direct command for divisions, it is an easy matter to emulate
a division by repeated subtraction. Alternatively, if the pre-
vious investigation has dug up a right shift instruction, then
repeatedly shifting a content to the right and testing for the
value to become zero leaves us with the butlast intermediate
result to be necessarily equal to 1. Hence, this can replace the
division in the original CIA-attack.

Recognizing other operations may be equally possi-
ble using known relations that these satisfy, such as
$s0 x $s0 = $s0 if and only if $s0 € {0, 1}. Like-
wise, the only logical self-inverse two-operand instruction
is the XOR, while the logical not is also self-inverse (an
involution) but takes only one operand. For testing the zero,
even without a subtraction, we can exploit the fact that
$s0 =0 < $s0+ $s0 = $s0, etc.

V. USING OTHER ASSEMBLY LANGUAGES

Not surprisingly, many CPU architectures provide a sufficient
lot of instructions that allow mounting the described attacks.
We give only three examples out of the vast amount of archi-
tectures:

o Intel 8051 CISC architecture [22]: this provides the
djnz-instruction, meaning decrement-and-jump-if-not-
zero. This is a quite convenient and even direct way
of brute-force testing a register content; simply write
a loop to decrease the inner (encrypted) value until the
instruction no longer jumps. Counting the iterations then
directly delivers the inner value without any decryption.

7880

o x86 processor [23]: the original 8086/8088 instruction
set already has all in it that we need, since there is a
command SUB doing subtractions, and an INC instruc-
tion that directly gives us an (encrypted) 1. Conditional
jumps are offering all sorts of comparison.

o ARM processor family [24]: these also have a
BEQ instruction that can be used directly, besides offer-
ing the necessary arithmetic through the instructions
SUB and logical shift to the right (LSR).

Summarizing our findings in a comparative way,
Table 1 shows the instructions that each platform pro-
vides (at least) to enable a chosen instruction attack. Any
platform providing similar instructions allows for the same
(or similar) CIA attack. The table is not exhaustive and shows
only selected instructions towards illustrating the diversity of
instructions and highlight common instructions that enable
a CIA attack.

TABLE 1. Examples of instruction set vulnerability to the CIA attack.

[architecture | CIA-enabling instructions (selection) |
MIPS add, beq, and, sll
x86 (8086/8088) | SUB, INC
Intel 8051 djnz
ARM beq, sub, Isr

VI. ATTACKING CIRCUIT-BASED SCHEMES

Many schemes in the literature (GC, FHE and also MPC),
prescribe a conversion of the program (algorithm, function) f
into a proper representation for evaluation. For GC and FHE,
this representation is a circuit. The conversion requires a
“compiler” that takes a description of f to output the proper
circuit representation. This conversion, to be practically fea-
sible, requires the circuit to be uniform, i.e., constructible
by a Turing machine, or more practically, by an algorithm
that takes an integer n and a description of the function f to
construct a circuit that computes f on all inputs of (exact)
length n (see [25] for the theoretical background). Practi-
cally, this conversion is demanded in polynomial time (to be
feasible), which fits into the computational bounds that we
imposed on our adversary in section III.

A circuit family, however, also entails that for data lots of
varying length, circuits have to be compiled afresh, which
somewhat deviates from our initial requirement of the com-
puting platform to be universal (in the sense of being capa-
ble of running any code on arbitrary inputs). Nevertheless,
circuit models of private function evaluation can be used
to realize core parts of the computing platform like the
arithmetic-logic unit (ALU), or to represent the data path in
its entirety as one large circuit (as is the case for real-life
Microprocessors).

Even despite the (compiled) “circuit-code” for f being
hardly changeable towards a different functionality, chosen
instructions can nonetheless be executed upon making the
circuit compiler (such as proposed by [26]) into an integral
part of the execution platform. That is, it is conceptually no
difference to declare the last two parts of the compilation

VOLUME 4, 2016

S. Rass, P. Schartner: Security of a Universal Cryptocomputer

IEEE Access

chain

Program — Compiler — Evaluation

= execution unit (ALU)

as the new platform, which then again takes an arbitrary
program (instructions) to execution (only converting instruc-
tions into the proper circuit to evaluate them; but our attack
does not hinge on “how” an instruction is executed, whether
using a circuit or otherwise). If the program counter remains
unencrypted, say to enable instruction fetching, then the cho-
sen instruction attack can be launched as described before.
Otherwise, if the circuit is constructed to utilize all signals
(irrespectively of the inner computational execution flow),
then a CIA attack can be mounted if the attacker gains oracle
access to the decryption function, by virtue of which it can run
code whose execution flow becomes visible in the decrypted
output. Again, such an implementation of private function
evaluation is outside the definition of the universal crypto-
computer that we described above, but shows that notions
like chosen ciphertext security (which usually assume oracle
access to a decryption algorithm), do not generally cover
chosen instruction attacks too.

If the computational platform uses multiparty computation,
the story is more involved. For example, the representation
would be a protocol between separate parties, all of which
would need to cooperate on executing the adversary’s chosen
instruction(s). This requires the adversary’s control over all
computing players, which is usually precluded in the context
of MPC. Extending our attack to cover MPC implementations
thus remains an interesting aisle of future research.

VIl. COUNTERMEASURES

There appears to be neither an obvious nor simple coun-
termeasure against the attacks, due to their simplicity and
generality. As was argued in section IV-C, obfuscating the
code could be reverted. One possibility (yet unexplored and
as such a matter of interesting future work) is making execu-
tion traces indistinguishable [17]. Roughly speaking, we may
think of this as applying a transformation to the original code,
in order to make a program use each execution path equally
likely. However, such a precaution would either be applied a
priori (before submitting the code for execution, cf. [27]), or
a posteriori (i.e., after the code is received by the platform for
execution). In any case, the attacker was assumed to run the
execution platform with unlimited access to its internals, so
we cannot safely rely on such a countermeasure to be in place
when the platform is distrusted.

Picking up the idea of a making a program ‘“non-
malleable” we could attempt to link instructions to one
another so that one instruction cannot be executed with-
out the preceding statement having executed immediately
before. Unfortunately, the issue of achieving this ranges
much beyond a simple chaining by hashing or digital sig-
natures, since the dependency must be anchored in the data
that is executed (which in turn is inaccessible to the cryp-
tocomputer). Although ideas like these already exist in an

VOLUME 4, 2016

(admittedly humorous context of esoteric programming lan-
guages like Malbolge [28]), a concrete technique to make
instructions data-dependent on one another appears unavail-
able, and opens another interesting avenue of future research.
Some progress into this direction, however, has been made
by [29], which considers instruction overlapping. Whether
or not this technique can be extended to suit our needs is
an open issue. Besides, measures used to provide control
flow integrity (CFI) [30]-[32] may also be useful and will
be included in future research.

Finally, we can relax the assumption on the plain program
counter to be available. Suppose that every instruction is such
that it, as an auxiliary piece of data, carries information on
where to fetch the next instruction (e.g., every instruction
carries a jump). Although the code can then be presented ““out
of order”, it would be easy to put it back into its original
sequence, unless the next instruction pointer is encrypted.
This induces the possibility of using private information
retrieval [33] or oblivious RAM to fetch the next instruction.
This could — theoretically — disable the adversary’s chances
of observing the execution flow ‘““in plain”, but come at the
cost of having to sweep over the entire memory (including
data and code), in order to retrieve one single instruction (note
that we cannot resort to treating the program only, since plain
memory access, even if it retrieves ciphertexts only, would
then let us recover the functionality of a comparison oracle;
cf. section IV-A). The practical overhead induced by such
a measure, however, is expectedly large, even though quite
simple suitable schemes exist [33], [34]

VIil. CONCLUSION

This work is intended as a step towards discovering some
theoretical limitations of cryptographic techniques in terms of
applicability to private function evaluation. When encryption
shall be applied to a contemporarily common computing
architecture without adapting the architecture itself, then our
results show that pure encryption is intrinsically incapable
of solving the problem to the final extent, so that physical
protection, hardware security and non-technical measures
remain inevitable. Within a standard data path structure such
as underlies today’s microprocessors, there seems to be no
obvious way to escape the problem, because retracting nec-
essary instructions from the assembly languages either makes
the resulting language impractical (or inefficient), or does
not remove the CIA attack issue. Also, side-channel infor-
mation leakage appears to be somewhat unavoidable, since it
either occurs logically (through the CIA attack), or physically,
induced by the specific hardware implementation. Circuits as
a computational model appear cumbersome in this regard,
since the circuit has to be crafted specifically for a fixed
function. Mitigating the problem therefore seems to call for
completely different and new computing architectures.

ACKNOWLEDGMENTS

The authors thank the anonymous reviewers for valuable
suggestions that have helped to improve the paper, and also
pointed to interesting future research questions.

7881

IEEE Access

S. Rass, P. Schartner: Security of a Universal Cryptocomputer

REFERENCES

[1]

[2]

[3]

[4]
[5]

[6]

[71
[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

7882

Imagination. (2015). MIPS32 Architecture, accessed on Mar. 24,
2015. [Online]. Available: http://www.imgtec.com/mips/architectures/
mips32.asp

D. Boneh, A. Sahai, and B. Waters, “Functional encryption: Defini-
tions and challenges,” in Proc. 8th Theory Cryptogr. Conf. (TCC),
Springer LNCS, vol. 6597. 2011, pp. 253-273. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1987260.1987281

B. Waters, “‘Functional encryption: Origins and recent developments,” in
Proc. 16th Int. Conf. PKC, vol. 7778. 2013, pp. 51-54.

C. Blundo, V. Iovino, and G. Persiano, ‘“‘Predicate encryption with partial
public keys,” in Proc. CANS, 2010, pp. 298-313.

J. Katz, A. Sahai, and B. Waters, “Predicate encryption supporting
disjunctions, polynomial equations, and inner products,” in
Proc. Theory Appl. Cryptogr. Techn. 27th Annu. Int. Conf. Adv.
Cryptol. (EUROCRYPT), Berlin, Germany, 2008, pp. 146-162. [Online].
Available: http://dl.acm.org/citation.cfm?id=1788414.1788423

H. S. Rhee, J. H. Park, W. Susilo, and D. H. Lee, “Improved searchable
public key encryption with designated tester,” in Proc. ASIACCS, 2009,
pp. 376-379.

T. Moataz and A. Shikfa, “Boolean symmetric searchable encryption,” in
Proc. ASIACCS, 2013, pp. 265-276.

S. Goldwasser, Y. T. Kalai, R. A. Popa, V. Vaikuntanathan, and
N. Zeldovich, “How to run Turing machines on encrypted data,” Cryp-
tol. ePrint Arch., Tech. Rep. 2013/229, Santa Barbara, CA, USA, 2013.
[Online]. Available: http://eprint.iacr.org/

S. Rass, “Blind Turing-machines: Arbitrary private computations from
group homomorphic encryption,” Int. J. Adv. Comput. Sci. Appl., vol. 4,
no. 11, pp. 47-56, 2013.

S. Rass and P. Schartner, “System enabling licensed processing of
encrypted information,” U.S. Patent 14 1892349, Apr. 20, 2016.

X. Wang, S. D. Gordon, A. Mclntosh, and J. Katz, ““Secure computation of
MIPS machine code,” Cryptol. ePrint Arch., International Association for
Cryptologic Research (IACR), Nevada, NV, USA, Tech. Rep. 2015/547,
2015. [Online]. Available: http://eprint.iacr.org/

X. S. Wang, C. Liu, K. Nayak, Y. Huang, and E. Shi, “ObliVM: A pro-
gramming framework for secure computation,” in Proc. IEEE Symp.
Secur. Privacy (S&P), May 2015, pp. 359-376. [Online]. Available:
http://www.cs.umd.edu/~elaine/docs/oblivm.pdf

N. G. Tsoutsos and M. Maniatakos, “HEROIC: Homomorphically
EncRypted one instruction computer,” in Proc. Design, Autom. Test Eur.
Conf. Exhibit. (DATE), Mar. 2014, pp. 1-6.

E. M. Songhori, S. U. Hussain, A.-R. Sadeghi, T. Schneider, and
F. Koushanfar, “TinyGarble: Highly compressed and scalable sequential
garbled circuits,” in Proc. 36th IEEE Symp. Secur. Privacy, Oakland, CA,
USA, May 2015, pp. 411-428.

C. Aguilar-Melchor, S. Fau, C. Fontaine, G. Gogniat, and R. Sirdey,
“Recent advances in homomorphic encryption: A possible future for signal
processing in the encrypted domain,” IEEE Signal Process. Mag., vol. 30,
no. 2, pp. 108-117, Mar. 2013.

S. Carpov, P. Dubrulle, and R. Sirdey, “Armadillo: A compilation chain
for privacy preserving applications,” Cryptol. ePrint Arch., International
Association for Cryptologic Research (IACR), Tech. Rep. 2014/988,
Nevada, NV, USA, 2014. [Online]. Available: http://eprint.iacr.org/

Y.-C. Chen, S. S. M. Chow, K.-M. Chung, R. W. F. Lai, W.-K. Lin, and
H.-S. Zhou, “Computation-trace indistinguishability obfuscation and its
applications,” Cryptol. ePrint Arch., Tech. Rep. 2015/406, Nevada, USA
2015. [Online]. Available: http://eprint.iacr.org/

S. Zahur and D. Evans, “Obliv-C: A language for extensible data-
oblivious computation,” Cryptol. ePrint Arch., Tech. Rep. 2015/1153,
2015. [Online]. Available: http://eprint.iacr.org/

M. Hirt, “Multi-party computation: Efficient protocols, general adver-
saries, and voting,” Ph.D. dissertation, ETH Ziirich, Ziirich, Switzerland,
2001.

Q. Tang, “Public key encryption supporting plaintext equality test
and user-specified authorization,” Secur. Commun. Netw., vol. 5,
no. 12, pp. 1351-1362, 2012. [Online]. Available: http://dx.doi.org/
10.1002/sec.418

C. Gentry, “A fully homomorphic encryption scheme,” Ph.D. dissertation,
Dept. Comput. Sci., Stanford Univ., Stanford, CA, USA, 2009.

ARM Keil Microcontroller Tools. (2016). 8051 Instruction Set
Manual: Opcodes, accessed on Jul. 13, 2016. [Online]. Available:
http://www.keil.com/support/man/docs/is51/is51_opcodes.htm

K. Lejska. (2009). X86 Opcode and Instruction Reference, accessed on
Jul. 21, 2016. [Online]. Available: http://ref.x86asm.net/

(24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

ARM. (2016). ARM Processor Architecture, accessed on Jul. 21, 2016.
[Online]. Available: http://www.arm.com/products/processors/instruction-
set-architectures/index.php

S. Arora and B. Barak, Computational Complexity: A Modern Approach.
Cambridge, U.K.: Cambridge Univ. Press, 2009.

S. Zahur and D. Evans, “Poster: Obliv-C: A fast, lightweight language for
garbled circuits,” in Proc. 36th IEEE Symp. Secur. Privacy, May 2015,
pp. 1-2.

P. Agten, B. Jacobs, and F. Piessens, “Sound modular verification of
C code executing in an unverified context,” in Proc. 42nd Annu. ACM
SIGPLAN-SIGACT Symp. Principles Program. Lang. (POPL), New York,
NY, USA, 2015, pp. 581-594. [Online]. Available: http://doi.acm.org/
10.1145/2676726.2676972

L. Scheffer. (2016). Programming in Malbolge, accessed on Jul. 13, 2016.
[Online]. Available: http://www.lscheffer.com/malbolge.shtml

C. LeDoux, M. Sharkey, B. Primeaux, and C. Miles, “Instruction embed-
ding for improved obfuscation,” in Proc. 50th Annu. Southeast Regional
Conf. (ACM-SE), New York, NY, USA, 2012, pp. 130-135. [Online].
Available: http://doi.acm.org/10.1145/2184512.2184543

M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti, “Control-flow
integrity,” in Proc. 12th ACM Conf. Comput. Commun. Secur. (CCS),
New York, NY, USA, 2005, pp. 340-353. [Online]. Available: http://doi.
acm.org/10.1145/1102120.1102165

N. Carlini, A. Barresi, M. Payer, D. Wagner, and T. R. Gross,
“Control-flow bending: On the effectiveness of control-flow
integrity,” in Proc. 24th USENIX Secur. Symp. (USENIX Security),
‘Washington, DC, USA, Aug. 2015, pp. 161-176. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity 15/technical-sessions/
presentation/carlini

V. Mohan, P. Larsen, S. Brunthaler, K. W. Hamlen, and M. Franz,
“Opaque control-flow integrity,” in Proc. 22nd Netw. Distrib. Syst. Secur.
Symp. (NDSS), San Diego, CA, USA, Feb. 2015, pp. 1-15.

R. Ostrovsky and W. E. I. Skeith, III, “A survey of single-database
private information retrieval: Techniques and applications,” in Public
Key Cryptography—PKC, LNCS. 4450. Berlin, Germany: Springer, 2007,
pp. 393411.

S. Rass, P. Schartner, and M. Wamser, “Oblivious lookup tables,” in
Proc. 15th Central Eur. Conf. Cryptol. (CECC), 2015, pp. 8-10. [Online].
Available: http://arxiv.org/abs/1505.00605

STEFAN RASS received the master’s degrees
in mathematics and computer science from
the Alpen-Adria-Universitit Klagenfurt (AAU)
in 2005, the Ph.D. degree in mathematics in 2009
and the habilitation in applied computer science
and system security in 2014. He is currently
an Associate Professor with the AAU, where
he is involved in theoretical computer science,
complexity theory, security, and cryptography.
He authored numerous papers related to security

and applied statistics and decision theory in security. He has co-authored
the book Cryptography for Security and Privacy in Cloud Computing,
published by Artech House. He participated in various nationally and inter-
nationally funded research projects. His research interests include applied
system security and complexity theory, statistics, decision theory, and
game-theory.

PETER SCHARTNER received the master’s degree
in telematics from the Technical University of
Graz in 1997 with a focus on information security
and the Ph.D. degree in computer science from
the Alpen-Adria-Universitit Klagenfurt in 2001
with a focus on security tokens. He participated
in various nationally and internationally funded
research projects. He is currently an Associate Pro-
fessor with the System Security Research Group,
Alpen-Adria-Universitidt Klagenfurt, where he is

involved in theoretical computer science, algorithms and data structures,
security, and cryptography. He is also a Lecturer with the Trier University of
Applied Sciences. His research interests include applied system security, key
management, security infrastructures, and applications for security tokens,
especially smartcards.

VOLUME 4, 2016

