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ABSTRACT In many areas of the world accessing professional physicians “when needed/as needed” might
not be always possible for a variety of reasons. Therefore, in such cases, a targeted e-Health solution to
safeguard patient long-term health could be a meaningful approach. Today’s modern healthcare technologies,
often built around electronic and computer-based equipment, require an access to a reliable electricity supply.
Many healthcare technologies and products also presume access to the high speed internet is available,
making them unsuitable for use in areas where there is no fixed-line internet connectivity, access is slow,
unreliable, and expensive, yet where the most benefit to patients may be gained. In this paper, a full mobile
sensor platform is presented, based around readily-purchased consumer components, to facilitate a low
cost and efficient means of monitoring the health of patients with prosthetic lower limbs. This platform is
designed such that it can also be operated in a standalone mode, i.e., in the absence of internet connectivity,
thereby making it suitable to the developing world. Also, to counter the challenge of power supply issues in
e-Health monitoring, a self-contained rechargeable solution to the platform is proposed and demonstrated.
The platform works with an Android mobile device, in order to allow for the capture of data from a wireless
sensor unit, and to give the clinician access to results from the sensors. The results from the analysis, carried
out within the platform’s Raspberry Pi Zero, are demonstrated to be of use for remote monitoring. This
is specifically targeted for monitoring the tissue health of lower limb amputees. The monitoring of residual
limb temperature and gait can be a useful indicator of tissue viability in lower limb amputees especially those
suffering from diabetes. We describe a route wherein non-invasive monitoring of tissue health is achievable
using the Gaussian process technique. This knowledge will be useful in establishing biomarkers related to a
possible deterioration in a patient’s health or for assessing the impact of clinical interventions.

INDEX TERMS Accelerometer, e-health, elastomer, extrapolation, gait, Gaussian processes for machine
learning (GPML), gyroscope, interpolation, lower limb prosthetics, rehabilitation, sensors, tissue health,

wearable sensor platform.

I. INTRODUCTION

With the recent advances in internet and mobile communi-
cations devices, along with ubiquitous computing, there has
been a tremendous growth in the field of wearable tech-
nologies. This has enabled countless possibilities of monitor-
ing patients in the field over extended periods of time [1].

Amputees, especially those suffering from diabetes, are at a
great risk of losing the remaining ‘good’ leg because of the
compromised blood flow to the limbs and predisposition to
skin breakdown. This coupled with volume fluctuation of the
limb within the socket can result in pistionings, skin break-
down as well as a poor gait pattern. A reliable continuous
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monitoring and early warning system that can alert both, the
user and health authority, would reduce admissions to hospi-
tal; reduce the associated costs; improve patient quality of life
and perhaps allow a significant reduction in the frequency of
outpatient check-up appointments and the need to travel to see
with the physician. In addition, the information provided by a
monitoring system on areas prone to damage could contribute
toward improving prosthesis design. While the technologies
and principles considered as candidates may already exist, to
date, no such early warning system has been implemented
and, as such a continuous monitoring system to provide an
early warning of tissue damage presents a novel approach to
injury prevention. This approach can especially be useful for
rural and impoverished countries, wherein the doctors’ work
with limited resources and challenging conditions and often
may not be available at short notice. Thus, the continuous
monitoring of residual limb tissue health of amputee patients
would not only be useful as a part of diagnostic procedure,
routine maintenance or during supervised recovery from a
surgical procedure but also reduce the burden of the over-
worked doctors.

However, the financial costs associated with it are sub-
stantially high as around 75% of those affected by diabetes
live in middle or low income countries [2]. Many healthcare
technologies and products presume that access to internet and
reliable electricity is a given, making them unsuitable for the
developing world. Hence, it is imperative to design a wearable
system which is dependable, low-priced, does not rely on
mains power supply and that can operate in the absence of
internet connectivity. Also, if the sensors are placed directly
in contact with the skin then continuous monitoring could
lead to issues like skin irritation and chaffing. Therefore,
we have developed and tested a non-invasive measurement
approach in which the sensor is placed on the elastomer and
the skin temperature is predicted using our custom developed
mathematical algorithm — Gaussian processes for machine
learning (GPML). Along with the residual limb temperature,
the gait of the user is also analyzed to provide valuable
information regarding the health as well as the shape and
volume changes of the limb tissue. In our work, we describe
the development of such a wearable platform for lower limb
amputees which that is capable of gathering data from the
sensors (placed on the elastomer) and transmitting this data
to an Android mobile device, which relays it to a Raspberry
Pi Zero acting as a server, for the purpose of viewing and
analyzing the data by healthcare professionals in low income
countries.

A. CONTRIBUTIONS

This paper makes the following four contributions. Firstly, a
low-power, low-cost wearable sensor platform is presented,
based upon standard consumer-purchasable components, for
self-contained use where there is no reliable electricity supply
or internet connectivity available. Secondly, we have success-
fully implemented, tested and validated GPML to accurately
predict the in-socket residual limb temperature by monitoring
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the temperature between socket and liner without a need for
any skin contact by a sensor. The challenge of calibrating
the mathematical model for various ambient temperatures
has also been addressed in this study by using interpolation/
extrapolation techniques. Thirdly, analysis of walking pattern
of the amputee subject by determining the joint angles (in our
case, the shank angle) of the residual limb will be useful in
differentiating between the normal and abnormal gait profile
of an individual, thereby helping to predict the occurrence of
pressure ulcers. Finally, a machine-learning based approach
to determining bio-markers for use in monitoring tissue via-
bility in amputees has been demonstrated. The versatility
of the platform makes it applicable for use in other regions
where tissue health monitoring is a concern. Sensor data has
been reliably collected, transmitted and stored in a secure
local server for post processing, allowing medical authorities
to access and review user data to identify any possible deteri-
oration in tissue health which could be indicators of residual
limb volume fluctuation.

Il. BACKGROUND

Recent advances in internet and mobile communications
along with a public desire for monitoring gadgets, the devel-
opment of wearable user self-monitoring devices for measur-
ing and logging a wide range of parameters such as calories
burnt, steps taken, body mass index, SpO2 and heart rate
have become extremely popular. In addition, the popularity of
smartphone apps for health monitoring is now commonplace.
“In fact, it is estimated that at least 70% of Americans mon-
itor at least one health indicator with 60% tracking weight,
exercise and diet; while 33% track quantities such as blood
pressure (BP), glucose and sleep patterns” [3]. Although
these devices and apps are designed for the consumer market,
this technology has opened up the possibility of the appli-
cation of e-health towards routine remote patient monitoring
by health authorities [4]. As developing technology allows
e-health devices increasingly to become smaller, lighter and
smarter, they become more attractive for use in the permanent
and continuous monitoring of patients.

Such systems, if implemented for lower limb prosthetic
users, will allow remote monitoring of amputee’s residual
limb tissue health by measuring temperature, gait and pres-
sure levels. This would be useful in studying and perhaps
predicting in advance the volume fluctuation, pistioning, skin
health and poor gait of the amputee patient. The architec-
ture of such medical monitoring systems may consist of
on-body (non-invasive) or in-body sensors along with a
microcontroller unit (MCU) for control and pre-processing.
The communication module may consist of a smart-phone
for user interface and a transmitter for data transfer via the
internet to a central server.

The data collected can be used to provide an early warning
of, serious health threats along with the geographical location
and movement patterns as well. If there is a deviation in
the normal behavioural pattern, it might be an indicator that
medical intervention is required which might then be used
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to trigger an emergency response. This early warning can
have multiple benefits like reduction in hospital admission
in already overstretched health authorities as well potentially
saving lives. Also, the need for scheduled appointments at
outpatient clinics and doctor’s surgeries can be reduced.
Furthermore, this continuous monitoring can be useful in
providing a more accurate evidence of patient health status
that would be otherwise remain unrecorded [1]. Nonetheless,
one major challenge in bringing e-health technologies to the
developing world is the common dependence upon both a
reliable internet connection, and a reliable electricity supply,
along with keeping the cost to a minimum. This is considered
in our solution, since the platform is designed to operate as
a low-power, standalone solution, without requiring exter-
nal connectivity, able to be recharged using a solar panel.
As the sensor platform developed creates its own WiFi net-
work, there is no need for any external infrastructure to be
present for the platform to be used.

Ill. TECHNICAL ARCHITECTURE

The design of the wearable sensor platform has to be such
that it can unobtrusively gather data from a wearable sensor
and transfer this information periodically to a database server,
running on the Raspberry Pi, via a wireless transfer protocol.
It would therefore be of great benefit to prosthetic users and
diabetics in general, and in particular lower limb diabetics,
to be able to detect either the early signs of actual tis-
sue injury before the development of serious complications;
and/or monitor the conditions at the prosthetic socket/residual
limb interface to give a warning of a significant increase in
the risk of injury before it develops. A reliable early warning
system that can alert a health professional of warning signs
may reduce admissions to hospital, reduce the associated
costs, improve patient quality of life and perhaps allow a
significant reduction in the frequency of outpatient check-
up appointments, if platforms like this were to be deployed
to communities for use on an ongoing basis. In addition, the
information gathered by a monitoring system on areas prone
to damage could contribute toward improving prosthesis
design. In scenarios where permanent reliable connectivity
is not available, the platform can also be used in a standalone
mode, where a WiFi network is created by the equipment, and
the remainder of the platform connects to this system. There
is therefore no requirement for internet connectivity to use the
platform.

Our design is architected in order to make as low-power a
solution as possible, using as much off-the-shelf equipment
as practical, such that kits maybe assembled out of com-
monly available items. Minimal equipment is used, in order to
reduce the complexity of the system, and to reduce the cost
of each unit as possible. For example, the data storage and
processing is carried out on a Raspberry Pi Zero embedded
computer. It also acts as a WiFi access point, through a
USB-connected wireless adapter, eliminating the need for
a dedicated wireless access point. The Raspberry Pi Zero
hosts an HTTP-based API, and acts as a DHCP server on the
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WiFi network, allowing for the rest of the platform to be
connected.

The data logger device is comprised of two compo-
nents — the prosthesis-mounted monitor with sensors, and
an Android smartphone. The Android platform was selected
on account of its widespread penetration within emerging
markets, and the relatively low cost of entry-level handsets,
reducing the overall cost of the proposed solution. By con-
necting an Android device to the WiFi hotspot created by the
Raspberry Pi, the application software may be downloaded
directly from the Raspberry Pi, where no internet access is
available.

The prosthesis-mounted equipment requires an Arduino
microcontroller, an HC-05 serial Bluetooth module, two tem-
perature sensors, and a MPU6050 6-axis accelerometer and
gyroscope module. The accelerometer and gyroscope data
is transmitted from the Arduino microcontroller, over the
Bluetooth link, to the Android smartphone running the data
gathering software. The smartphone application maintains a
local copy of the data on its SD card as backup, and transmits
batched data over WiFi to the Raspberry Pi Zero. The Android
smart phone provides an interface to control the data logging,
adjusting parameters as required to ensure that the patient
information is kept separately, and ensuring that it is correctly
associated with the patient the data was gathered from [4].

A. HARDWARE OVERVIEW

Our sensing platform is composed of a number of discrete
components as seen in Figure 1. The center of the platform
is an Arduino (ATmega328 16MHz) microcontroller. The
wearable platform can be interfaced with a number of sensors
but in our design for the prosthetic users, temperature and
gait measurement sensors are introduced. The temperature
and gait of the residual limb of an amputee subject can be
monitored by a medical team at pre-defined sampling rate.
The Arduino platform is capable of communicating via Blue-
tooth, Wi-Fi or cellular networks. Since the Bluetooth module
is as small as 12.7mm x 27mm, with low power consumption
due to reduced range and bandwidth, it was selected for
data communication between the sensor and mobile phone.
The microcontroller was connected to an HC-05 Bluetooth
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FIGURE 1. Architecture of the data flow in the multi-sensor wearable
platform.
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module, which communicated over Serial Port Profile (SPP).
An Android smartphone was paired with this module and
connected over Bluetooth such that the data collected by the
Arduino board is transferred onto the software (customized
mobile app) running on the smartphone. The data is simul-
taneously backed up on the SD card in the wearable sensor
platform and also on the smartphone [5].

After the data is received by the smartphone, it is then
transmitted over Wi-Fi to the Raspberry Pi Zero, acting as
the data collection server, where it is stored in a Postgres
database after being received by the web API. This allows
for the retrieval and processing of the sensor data using
mathematical learning algorithms like Gaussian Processes
modelling technique on a data processing app. This clini-
cally relevant information can be then accessed by medical
personnel, using the secure WiFi link from their own device,
or from the smartphone used for data collection. Where the
system is deployed offline there may be scenarios where there
is only one mobile device available, both for data gathering
and retrieval — the reporting interface is designed for access
from both desktop and mobile browsers to facilitate this.

The clinician has access to data from each of their patients
from within their interface. After selecting a patient iden-
tifier, all previous sessions recorded with the monitoring
platform are visible, and can be accessed. It is possible
therefore to compare the gait profile and predicted resid-
ual limb skin temperature between patients, or to monitor
deterioration or variations over time for one patient. The
clinician interface provides access to the features discussed in
Sections VII and VIII, allowing for feedback to be given to
the patient in real-time (residual limb skin temperature and
the shank angle).

B. OVERALL SOLUTION DESIGN

The two design goals of the overall solution were to minimize
the cost, while also keeping power consumption low. By using
readily available, off-the-shelf components where possible,
the cost of the solution was kept to a minimum, while also
facilitating the sourcing of replacement parts for field repairs.
Where possible, components are designed to be modular,
using standard USB cables for interconnection and power.

Minimization of power consumption was also a consider-
ation, in order to allow for use of the system in areas with
unreliable power supplies. In particular, the overall solution
was designed to operate from a rechargeable USB power
pack, therefore permitting use at night. Combining this with a
USB solar panel would allow the power pack to be re-charged
during daylight hours. Section VI considers the power con-
sumption of the overall solution in more detail.

The main components used by the presented solution,
along with their approximate retail costs for individual quan-
tities, are as follows. A Raspberry Pi Zero (£4), micro
SD card (£3) and USB WiFi adapter (£6) are used as a
server. The sensor utilizes an Arduino Uno (£6) and an
HC-05 Bluetooth module (£4), with an MPU-6150 movement
sensor (£5) and two thermistors (£1). A 20,000 mAh power
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bank (£20) is used as the main power supply for use off-grid,
along with a USB output solar panel (£36). Finally, a LiPo
charge controller (£1) is used to control the charging of the
wireless sensor module’s Lithium Polymer battery (£2), and
various USB and micro USB cables are used to supply power
to the various components. The only additional requirement
is an Android smartphone, to be connected to the sensor
platform.

C. SOFTWARE OVERVIEW

The comma- separated data from the sensors interfaced on
the Arduino platform are transmitted via the Bluetooth link
between the HC-05 module and Android smartphone. Each
of these samples was transmitted over a single line of text
data. Within the mobile app in the Android smartphone, the
incoming data over Bluetooth is stored after each sample is
tagged as a part of the ‘stream’. The concept of streams is
introduced in order to differentiate between samples of differ-
ent scenarios, such that it can be analyzed later. This allows
for comparisons to be carried out, either between patients
or for one patient over time, making it possible to compare
previous experiments, identifying trends or deterioration.

The platform is equipped to handle connection failure
scenarios like loss of Bluetooth link between HC-05 mod-
ule and Android smartphone; and a lack of Wi-Fi network
for the Android smartphone to connect to the server. If the
Bluetooth connection is lost, then the HC-05 module buffers
the unsent data (if sufficient memory is available) and then
tries to retransmit the un-sent samples upon re-establishing
the connection. In the event of no Wi-Fi/cellular network
being available on the Android smartphone to connect to the
server, Android application creates a local database and stores
all samples and timestamps. When connectivity is available
it carries out a synchronization routine with the server. The
synchronization process involves identification of the last
received sample ID for a given stream and then recognizing
if any further samples with a larger sample ID exist for
that stream. It should be noted that for this synchronization
logic to be work the sample ID should always monotonically
increment over time, as implemented in the application. Con-
sidering the need for the system to be both usable when given
to a patient for use away from the clinician, as well as used
with a clinician monitoring the readings being reported to
the Raspberry Pi server for analysis, the application permits
either use-case, transparently and without configuration, by
carrying out the synchronization process whenever connec-
tivity to the server is possible.

The data retrieval interface was implemented as a Flask-
based web application, written in Python. A responsive Boot-
strap interface was created, to allow the same management
and data retrieval interface to be used from both fixed and
mobile devices. The Flask application also presents an API
for the synchronization of data to the server from the mobile
application. The underlying data gathered from sensors is
stored in a local Postgres database, held on the Raspberry
Pi Zero. In order to ensure that no personal or identifying

7443



IEEE Access

N. Mathur et al.: Practical Design and Implementation of a Low Cost Platform

information (even a patient identifier) is held on the smart-
phone (which may be shared between users, or also used by
the clinician), a stream-based model for the upload of data
is implemented. Within the stream-based model, the Android
application requires only a single setting to be adjusted prior
to issuing the device to a new patient for use. This is designed
to facilitate use of the one platform, where all equipment must
be self-contained and brought by the clinician, who may not
be an expert in configuring the platform. Rather than con-
figuring accounts within the application, the clinician simply
creates a new stream from the server configuration interface.
This displays a numerical stream ID, which is entered into
the Android application. Having set the stream ID, the server
is able to map this stream to a patient, but no information
pertaining to the patient is exposed to the smartphone [5].

D. BATTERY MONITORING

The wearable platform is entirely dependent on battery power
for the realization of monitoring the tissue viability in lower
limb amputees. Continuous monitoring along with transmis-
sion of sensor data will deplete the battery powering the
Arduino microcontroller over a period time, thereby lead-
ing to failures. In order to alleviate this situation, a battery
monitoring unit is included in our design of the multi-sensor
wearable platform. The design of the battery monitoring unit
simply consists of a two resistor voltage divider circuit which
converts the terminal voltage of the battery powering the
board (typically 9-12Volts) to a lower voltage in order to be
read by the Arduino microcontroller. Utilizing Ohm’s law, the
voltage drop V,,; across resistor Ry as seen in equation 1, is
fed to the analog input pin V;;, of the microcontroller.

R
Ri+Ry

The reduced lower voltage seen by the microcontroller
analog input pin is then converted to the actual battery
voltage Vganery by multiplying it with the voltage conversion
ratio. The system is designed such that when the battery
monitoring circuit detects that Vguyery < 5V, which is
the minimum for arduino board to operate, a battery level
warning message is sent to the user’s smartphone. This alerts
the user with both a visual and audible indication, using the
platform’s notifications API. This enables the user to detect
low battery levels of the platform and charge it, in order to
minimize the risk of failing to capture data due to power
failures [1], [6].

Vour = VBattery (1

IV. CONNECTIVITY SELECTION

Our initial design of the platform incorporated WiFi con-
nectivity directly within the Arduino module, but we revised
this design decision on account of considerably higher power
consumption experienced. When considering the goals of
minimizing cost and inconvenience of our solution, a stan-
dard Android smartphone was used for the network-based
connectivity for two reasons. Firstly, the clinician is able to
use the smartphone as a web browser to access the results
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from the platform, removing the need for a second device
to access the interface. Secondly, it is likely that Android-
based smartphones may already be available to clinicians
in developing countries, further reducing the cost of each
system.

In order to ensure that the platform is as usable as possible
within developing countries, the full solution is designed to
be self-contained, and able to be charged from a single small
solar cell. To also permit use at night, indoors, or during
inclement weather, an off-the-shelf 5V 20Ah battery power
supply is contained within the platform. This battery pack is
charged by the solar panel. By using a USB-based equipment
for all charging and power components of the system, it is
possible to easily replace the battery pack, or use an alterna-
tive USB-based power supply where needed.

V. IMPLEMENTATION OF THE WEARABLE

SENSOR PLATFORM

The capability of the designed mobile wearable sensor plat-
form was tested on a trans-tibial traumatic amputee subject
in a climate controlled chamber. This investigation was car-
ried out under ethical approval granted by the University of
Strathclyde Ethics Committee (Ref UEC13/04). The subject
was asked to perform a 35 minute protocol which consisted
of resting (sitting) for 10 minutes, walk at a self-selected
speed of 0.54 meters/second on a treadmill for 10 minutes,
and finally rest for 15 minutes. The subject wore a 6mm
Pelite liner with a resin laminate socket with the wearable
sensor platform attached on to the shank segment (near to
the knee joint) of the prosthetic limb. Figure 2 indicates the
positioning of the wearable sensor platform in relation to the
prosthesis of the subject during different activity levels. Four
thermistors and an MPU-6050 module interfaced with the
wearable platform, providing the residual limb and liner inter-
face temperature profile at the lateral and medial sides and the

‘(b).

FIGURE 2. The wearable sensor platform positioned on the prosthesis of
the amputee subject during various activity levels as (a) walking on
treadmill at a self-selected speed (b) sitting/resting.
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orientation of the limb respectively. Data from the sensors
was sampled at 25Hz for the entire 35 minute protocol. This
study was conducted in Scotland for the Spring/Summer
profile where the ambient temperature ranges from approx-
imately 10°C-25°C. Hence, the temperatures from this range
were picked. We conducted the experiment at 10°C and then
repeated for 15°C, 20°C, and 25°C. The temperature profile
of the residual limb and the liner were analyzed for different
ambient temperatures and it was noted that in all the cases
the trace of the liner temperature was very closely correlated
with that of the residual limb temperature. This enabled us
to implement the Gaussian processes modelling technique
to predict the residual limb temperature by monitoring the
liner interface temperature with an accuracy of 95% [7],
thereby providing a non-invasive measurement practice. The
accelerometer and gyroscope data from the inertial measure-
ment unit MPU-6050 is fused together to provide an indica-
tion of the shank angle during different activity levels. This
would help to understand and analyze the gait, its different
phases and thus would provide significant information about
the amputee’s normal and abnormal limb profile at different
ambient temperatures.

As per the overall design, the residual limb skin tempera-
ture and gait profile data was reliably collected, transmitted
and stored in a secure local server for post processing by
the wearable platform. These trials verified the design and
implementation strategy of the wearable platform in a clinical
environment. This work will enable us to determine the enve-
lope in estimating the statistical power i.e. how many subjects
are needed to make the trials clinically significant and thus
will be useful in extending it on a greater amputee population
for further testing before its deployment.

VI. OVERALL POWER CONSUMPTION

As discussed previously in Section III.B, the overall power
consumption of the platform was designed to be minimized,
in order to facilitate use in areas without reliable grid-based
electricity. The monitoring platform’s power consumption
can be split into two main components — the usage of
the Raspberry Pi-based server, and the wireless sensor unit
(including mobile phone, if necessary). Note that the power
consumption of the Android mobile phone is not considered
within these measurements, since different devices have sig-
nificantly different power profiles, and it is likely that an
existing Android device would be used in order to reduce the
overall cost of this system. The peak current consumption of
the Raspberry Pi (including all connected peripherals includ-
ing WiFi interface) was measured during initial power-up to
be 357 mA. This settled in under a minute to a steady-state
idle consumption of 190 mA. During active data logging, the
current consumption rose to 218 mA. These current draws
were measured at 5V DC, using a PortaPow Premium USB
power monitor, and are accurate to +0.2%. Therefore, with a
20 Ah 5V USB power bank used as the power supply, a run-
time of in excess of 3 days was achievable from a full charge
of the power bank. The wireless sensor unit draws 8§0.7mA
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during the data acquisition and transfer of the sensor data via
Bluetooth to the Android device.

Using a 20W USB output solar charger, capable of supply-
ing 2.4A to a single USB output, the 20 Ah power pack could
be recharged in around 12 hours, assuming sufficient sunlight
was available for the solar panel to operate without available
light being a constraint.

VII. TEMPERATURE MONITORING

A mathematical model utilizing the Gaussian processes for
machine learning (GPML) to predict the residual limb skin
temperature of the amputee has been developed [6]. The
challenge of non-invasively monitoring the residual limb skin
temperature has been addressed in the modeling technique.
That study was conducted on a subject performing various
tasks in an environmental chamber at different ambient tem-
peratures, and clearly indicated that the residual limb skin
temperature and the liner temperature are majorly affected
by both the ambient temperature and the activity level of the
subject.

The GPML approach is non-parametric in nature i.e. it
utilizes the training data provided to determine the underlying
function. It enables the implementation of Bayesian frame-
work in a simple way [8], [9] by inferring the joint probability
distribution over all possible outputs for all inputs. Bayes’
theorem states that the posterior probability of a condition is
given by the product of the prior probability and the likeli-
hood in the light of the evidence.

The model designed takes the liner temperature as the
input x and the predicted output is the residual limb skin tem-
perature y. Processing was performed with custom developed
software (using MATLAB, Mathworks). Since the tempera-
ture profile of the residual limb and the ambient temperature
are closely correlated, individual Gaussian process models
were defined using the obtained data from experimentation
(as discussed in Section V) for temperatures of 15°C, 20°C
and 25°C. The Gaussian model was individually trained for
each of the ambient temperatures on which the tests were
done.

The predictive model developed led to results which are
in 95% confidence interval and translate to an accuracy
of = 0.5°C. However, with the residual limb temperature
profile varying with changes in environmental temperatures,
the Gaussian model has to be trained with individual datasets
which correspond to changes in ambient temperature. The
clinical trials required to calibrate the model are quite inten-
sive as well as expensive. Hence, the introduction of esti-
mation techniques, namely interpolation and extrapolation,
can be utilized for prediction of residual limb temperature
(at a given environmental temperature) from the GPML
model calibrated for a different ambient temperature.

Consider that there are a set of N data points xp, x2, ... xy
with function value f(x). The determination of f(x) for any
arbitrary x in between the smallest and largest x;’s is known as
interpolation; if x lies outside the given range then it is known
as extrapolation. For these estimation process, there are two
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stages involved — fit an underlying function for the given data
points and then evaluate that function for the target point x.
However, this two stage method is computationally less effi-
cient and more prone to round off errors. Interpolation done
locally using the nearest neighbor approach is better than the
previous but the interpolated values f(x) might not have a
continuous first order or higher derivative. This is because the
interpolated function might become discontinuous because of
the switching of the local points [10].

In our predictive modeling using GPML, continuity of the
derivatives is a concern and hence cubic spline interpola-
tion/extrapolation technique is used. The basic principle of
cubic spline is that on each interval between the data points
the interpolation formula is represented by a cubic function.
For N data points, the spline function S(x) can be represented
as

Cix), x=x=<x
S@)=19C(x), xi1<x=<ux ()
Cy(x), xy—1=<x=xpy

where each C; is a cubic function. A general cubic function
has the form

Ci(x) =a; + bix + c,')c2 + d,~x3 3)

To define the spline function, the coefficients a;, b;, ¢; and
d; are to be determined for each i by utilizing the boundary
conditions. Since there are 4N coefficients to be determined
by 4N conditions, the known values can be plugged into
the 4N conditions to solve the system of equations. Because
the coefficients of the function are determined non-locally,
the cubic spline function is continuous through the second
derivative. They also tend to be more stable than polynomial
function thereby reducing wild oscillations between the data
points [11]. It should be noted that the extrapolation also
follows the same estimation routine as interpolation.

The cubic spline interpolation/extrapolation technique is
studied for various scenarios and compared with the actual
predicted in-socket temperature. It can be seen from Figure 3
that the actual GPML model prediction at ambient tempera-
ture of 15°C is compared with its counterpart extrapolated
value obtained from the models at 20°C and 25°C. Other
scenarios are also illustrated in Figure 4 and Figure 5.

A. RESULT ANALYSIS

In this study the performance of the estimation techniques
are compared with the prediction of the Gaussian model.
The degree of closeness of interpolated and extrapolated
values with the actual predicted values are compared using
the Root Mean Squared Error (RMSE). Calculation of RMSE
involves squaring the difference between the predicted and
corresponding observed values, averaging it over the sample
and then finally taking its square root. This can be written as

RMSE = 4
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where the error is given by |e;| = |fi — yil; fi is the interpo-
lated/extrapolated value and y; the predicted value from the
Gaussian model. RMSE has a quadratic error rule, where the
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errors are squared before being averaged. This could be useful
when large errors are undesirable in a statistical model [12].
The RMSE of different interpolation/extrapolation scenarios
is compared in Table 1.

TABLE 1. RMSE for different scenarios of estimation.

Scenario RMSE (°C)
Extrapolated in-socket temperature at 15°C from the 143
Gaussian models at 20°C and 25°C ’
Interpolated in-socket temperature at 20°C from the 046
Gaussian models at 15°C and 25°C :
Extrapolated in-socket temperature at 25°C from the 158
Gaussian models at 15°C and 20°C ’

The results indicate that the RMSE error is substantially
more in the extrapolation scenarios as compared to that with
the interpolation. This can be easily explained as extrapola-
tion is the process of estimating a variable that is outside the
observation range and does is subject to greater uncertainty.
In spite of this, this estimation technique is able to identify the
trend of the predictive model to a great extent. It can be easily
further improved by reducing the 5°C temperature interval for
which the interpolation and extrapolation is been done.

VIII. GAIT ANALYSIS

In order to analyze human motion, the standard technique
is by utilizing high-speed cameras to capture the human
motion. Studies have been done by integrating the three-
dimensional motion using multi-camera systems and reaction
force measurement to track the movement of human body
parts in a complex [13], [14]. However, this technique of
optical motion analysis requires complex signal conditioning
and is time consuming in nature. It also needs to be pre-
calibrated, thereby making it expensive and limited to labo-
ratory research. For the application in daily life with different
environments, it is imperative for the gait monitoring system
to be flexible, low-cost and wearable in nature. To imple-
ment this philosophy of home-based rehabilitation and tele-
rehabilitation, many kinds of wearable (body-fixed) sensor
system based on single or multiple accelerometer and gyro-
scope combinations can be utilized [15]-[18]. This would
especially be useful for monitoring and detecting the early
signs of tissue damage for lower limb amputees’ activities
outside of a laboratory [19]-[22].

Wearable sensor systems for biomedical applications in
gait monitoring can be used in two different ways: one
is about walking feature assessment for daily physical
activities [23]-[30], wherein the data obtained from iner-
tial sensors - accelerometer or gyroscope, are directly used
as inputs of some inference techniques; and another direc-
tion is for determining the joint angle, body position and
orientation accurately by fusing the data of different iner-
tial sensors so as to decrease the errors of the quantitative
human motion analysis [31]. In our research, the data from
accelerometer and gyroscope is combined to estimate the
shank angle of the amputee’s residual limb, so our approach
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focuses on the second option for quantitative human motion
analysis [31].

Inertial measurement units (IMUSs) or inertial sensors, mea-
sure acceleration, angular rate and sometimes the magnetic
field vector of a body in their own three-dimensional local
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coordinate system [32]. An IMU detects the current change
in position by using the accelerometer and detects changes
in rotation like yaw, pitch, and roll by using the gyroscope.
Because the accelerometer measures all the forces working
on the system, it is quite prone to noise. The data from the
accelerometer is reliable in long term and so a low pass
filter can be used. The gyroscope on the other hand, has a
tendency to drift significantly over a period of time. Since the
gyroscope data is reliable only on short term, a high pass filter
can be utilized. Many algorithms for determining the sensor
orientation estimation have been proposed [33]; however in
this work, in order to estimate the absolute angle is derived
by combining the accelerometer and gyroscope data using
a complementary filter. The integration of the output of a
gyroscope gy, feeds into a high pass filter and the output
of an accelerometer 6,...; feeds into a low pass filter as seen
in Figure 6.

The basic concept of this filter is to enhance advantages
of each sensor. For example, the angular estimation using
a gyroscope has a good accuracy in the sense of angular
direction at high frequencies and the angular estimation using
an accelerometer has a good accuracy at low frequencies.
Hence for the complementary filter, if G (s) is the low
pass filter for the accelerometer then the high pass filter
for the gyroscope is 1 — G(s). These can be written as in
equations (5) and (6) where t is the time constant and deter-
mines the filter cut-off frequencies.

1
GO =0 ®)
1-G(s) = — ©)
14+ 1ts

The transfer function of the angle 6 of the complementary

filter can be written as
1 TS . Ouccel + Tégyro
= 0, Ooyro = 7
T os e T S gy 8 1+ s @)

Digitizing this and using backward difference yields
equation (8) as

T
1 =<1 )——*1 8
+ 15 +At NS ®)
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Substituting this in equation (7) and rearranging leads to
O = o (Ok—1 + Ogyro A1) + (1 = @) Oaccetk (9)

where o = 7/(t + Af)

In our design, the optimum filter coefficient « is 0.98 which
is computed by running the filter at different time constants
with a fixed sampling rate of 25 Hz. It should be noted that
the lower the time constant, the more horizontal acceleration
noise will be allowed to pass through. Figure 7 indicates the
acceleration, angular velocity and the computed shank angle
of the amputee subject at an ambient temperature of 10°C
during the 35 minute experimental protocol.

The region of interest in the clinical trial is when the
amputee subject is walking on the treadmill for 15 minutes.
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Analyzing this would give insight into the movement of the
residual limb with the corresponding shank angle during the
gait cycle. As shown in Figure 8, an off-line analysis was
made to analyze the leg motion during the walking period for
an 8 seconds timeframe at an ambient temperature of 10°C.
The experiments data were processed using MATLAB,
Mathworks, in which a complementary filter was designed
(as described earlier) to estimate orientation of the shank.

Similarly, the orientation angle of the shank is computed
for ambient temperatures of 15°C, 20°C, and 25°C as seen in
Figure 9. From Figures 8 and 9 it can be noted that, the shank
angle profile of the amputee subject have been consistent in
all ambient temperatures.

The human walking pattern can be analysed by phases
more accurately as it signifies the functional effect of dif-
ferent motions on joints and segments. A normal walking
gait cycle can be divided into eight different gait phases
including initial contact, loading response, mid stance, termi-
nal stance, pre-swing, initial swing, mid swing and terminal
swing [32]. The phases of the gait pattern on the IMU sensor
were calibrated with measurements of a commercial high-
speed cameras. In order to determine the gait phase from the
IMU sensor, the movement of the amputee’s residual limb is
captured using a high-speed camera. The camera is capable
of shooting video at 120 frames per second in HD 720p. The
climate-controlled chamber where the measurements were
done was a medium lighted room to minimize noise due to
high sun activity. The camera and the wearable system were
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synced in time, such that both the IMU data and the video
from the camera could be correlated by their timestamps. The
amputee subject with the positioned wearable platform while
walking on the treadmill for 15 minutes was video recorded.
For each measurement, a single video file was created using
the camera software. Using video editing tools, videos were
edited such that only one full gait cycle was left from the
original file video. The shank angle so deduced by fusing the
accelerometer and gyroscope data is then linked with the gait
cycle video to correctly analyse and identify the gait phase.
This can be seen from the shank angle profile in Figure 10
wherein the profile for the mid stance phase can be correlated
with the angular velocity obtained from the gyroscope and
the shank angle computed by fusing the inertial sensor data.
Similarly, profiles for the other gait phases can be calibrated
and studied.

IX. DISCUSSIONS AND CONCLUSION

The feasibility of a multi-sensor wearable platform has been
demonstrated for use in monitoring tissue viability in trans-
tibial amputees. Both temperature and gait sensors can be
used to predict the health of the residual limb in lower limb
amputees. In particular, in order to bring about the benefits
of being able to use this technology in areas of the devel-
oping world where there is no reliable network connectivity
or electricity, the sensor platform has been designed to be
both low power and low cost. Therefore, the priorities of the
design were to use readily available off-the-shelf hardware as
possible, to facilitate ease of construction and maintenance
of the sensor platform, while also ensuring it had sufficiently
low power consumption to make battery-operated operation
feasible, with solar energy used to recharge the battery pack.
Since the residual limb skin temperature is affected by the
ambient temperature to a great extent, the wearable platform
will also be interfaced with a temperature sensor to pro-
vide information about the ambient temperature in real-time
before its deployment. This will enable the presence of the
estimation techniques as described previously in an accurate
fashion for a non-clinical environment. With the inclusion
of estimation techniques in the GPML algorithm we have
been able to develop, demonstrate and validate a generalized
model for contactless temperature prediction of the residual
limb. This estimation technique is an added feature for the
wearable sensor platform and is essential in reducing the
cost of calibration for the model, thereby making it easier
to roll out to a greater amputee population. Cubic spline
interpolation or extrapolation was introduced in the model at
a given ambient temperature to predict the residual limb tem-
perature profile at another ambient temperature. We have also
shown that if the RMSE are subtracted from the respective
interpolated/extrapolated value then these estimates are as
good as the predicted values which are in the 95% confidence
interval. Also, human motion analysis i.e. identification of
the various stages of the gait cycle was demonstrated and
implemented using a developed wearable sensor system by
calibrating the IMU. Sensor data has been reliably collected,
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transmitted and stored in a secure server application within a
Raspberry Pi Zero, allowing for post processing in an offline
environment where no internet connectivity is available. This
permits a clinician to access and review user data to identify
any possible deterioration in health. However, depending on
the duration of the wearable platform usage, only a small
time snippet of movement and skin temperature is recorded
and processed, and this may not be necessarily representative.
This remote monitoring platform would prove most useful
aid for doctors and clinicians in the developing world, taking
into account the unique challenges in such regions (lack of
connectivity and reliable power supplies). But it should be
noted that it does not do away with the need of having face to
face appointments with them.
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