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ABSTRACT Diffraction-based overlay (DBO) accuracy is critical to the intelligent nanolithography process
control for producing advanced semiconductor fabrication nodes. Optical gratings located on various layers
are commonly used as the targets for the detection of the overlay displacement offset in DBO measurement.
The asymmetry in intensity between the 1st and -1st beams diffracted by the targets is used for the prediction
of grating displacement offset. This paper describes the effect of grating targets with sidewall angles (SWAs)
on asymmetry in intensity and proposes an artificial neural network (ANN) method for enhancing the
accuracy of grating displacement offset prediction. Grating targets with a 1:3 line-to-pitch ratio and SWA
profiles varying from 86◦ to 90◦ were employed in this paper. The asymmetry in the intensity of the designed
targets was computed for incident beams with transverse-electric and transverse-magnetic polarization at
visible wavelength. An ANN feed-forward model was developed for the displacement offset prediction.
The ANN, the conventional linear model, and the regression models were evaluated using diffraction data
calculated by a numerical electromagnetic solver. The mean square error and the mean of the residual
indicated that using the ANN model and incident beams at wavelengths of 600, 650, and 750 nm is
substantially more effective for prediction than the conventional linear model is.

INDEX TERMS Artificial neural network (ANN), diffraction based overlay (DBO), nanolithography, optical
scatterometry, sidewall angle (SWA).

I. INTRODUCTION
The intelligent manufacturing known as Industry 4.0 will
radically change howmanufacturing is completed. The usage
of greater connectivity and information sharing enabled by
new capabilities in data analytics and modeling will lead
to increased efficiency, raised quality, and reduced costs,
for example, the intelligent nanolithography in the semi-
conductor manufacturing process on the 193nm immersion
lithography systems [1]–[3]. A nanolithography technique
has been proposed to realize the intelligent manufactur-
ing to push Si-based semiconductor process toward to the
single-digital nanometer scale. The newly developed process
for the sub-20 nm nodes on the 193-immersion platforms,
such as self-aligned double patterning process, multiple pat-
terning process, require the stringent control of placement
errors between the two process layers to maintain yield
and performance [4]–[6]. The overlay parameter is used to
define the placement error between the two layers. According
to the international technology roadmap for semiconduc-
tors (ITRS) report, themajor contributors to overlay errors are

overlay metrology tools, lithography systems, and pro-
cessing; metrology tool errors contribute to 20% of error
budgets [7]–[9].

In overlay measurement schemes, overlay targets are
arranged on the scribed lanes of the wafers for overlay detec-
tion by the metrology tool. For advanced technology nodes
such as those of 20-nm and below, the overlay target locations
are expected to be close to the device patterns and more
specialized in-die targets are required for the control of on-
product overlay. In this contex, smaller targets are essential
for a better representation of device overlay. However, the
overlay precision and uncertainty depend upon 1/

√
L where

L is the target pattern length [10]–[13]. These requirements
resulted the conventional critical dimension scanning elec-
tron microscope (CD-SEM) tool suffering from characteriz-
ing overlay in the advanced node [14].

Diffraction based overlay (DBO) metrology is favored
because it has fast, non-destructive, stable, and repeat-
able measurement capability compared-with the CD-SEM
[15]–[17]. In addition, DBO metrology is well-suited to
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being integrated with a 193-immersion lithography system
for controlling the lithography process variations from die-
to-die, wafer-to-wafer, and lot-to-lot [18]. DBO metrology
is based on an optical scatterometry setup and records the
diffraction response according to the designed overlay targets
on the process layers. Each overlay target consists of a pair
of binary grating stacks [19]. The first grating on the layer
before the layers to be measured is treated as a reference. The
lithography engineer sets the line-to-pitch ratio for the second
grating on the layer to be measured. The lateral displacement
between the two gratings results in an intensity difference
between the+1st and−1st diffraction orders. The diffraction
intensity map is recorded in the CCD and converted into the
overlay at the overlay target location [20], [21].

In the lithography process, resist patterns exhibit profiles
that have varying sidewall angles (SWAs) because of the
exposure and development process. The gratings on the target
layer inherit the SWA profiles from the lithography process.
The grating’s SWA plays a critical role in the intensity distri-
bution of the diffraction beams. Researchers have reported
that the performance of unsymmetrical SWAs differs from
that of symmetrical ones; in this case, an incident light
is divided into unequal distribution intensities according to
the symmetrical diffraction orders [22], [23]. Therefore, this
SWA profile causes DBO measurement errors and results in
asymmetry uncertainty in the intensity distribution within the
linear window [24]–[27].

This study investigated the effect of SWA profiles on
the overlay target and proposed a correction scheme for
enhanceing the overlay measurement accuracy. In Section II,
we describe the construction of an overlay target by using
a stack grating model and an evaluation performed using
a numerical tool. In Section III, we present the correc-
tion scheme and demonstrate the numerical results and
verification. In Section IV, we present our conclusion.

II. DBO TARGET THEORY BASED ON
FIRST ORDER APPROXIMATION
DBO measurement in the nanolithography process is based
on the intensity of backward diffraction by a pair of stack
gratings used as an overlay target, as shown in Fig. 1 [28].
In Fig. 1, the overlay target profile is an arrangement of two

FIGURE 1. Overlay target consisting of a pair of stacked gratings.

gratings that is displacement offset s. One grating is on the
first layer and the other one is on the second layer. Each
grating has a 90◦ SWA profile. A plane wave illuminates the
overlay target at an angle θi. The diffracted beams from the
overlay target comprised of the 0th, +1st, and −1st orders.
A grating equation describes the relationship between the
pitch and the diffraction orders as p(sin θi + sin θr ) = mλ,
where m is the diffraction order, p is the pitch, λ is the
incident beam wavelength, θi is the incident angle, and θr is
the reflection angle [29]–[31]. The Si grating is placed on the
first layer and the SiO2 grating on the second layer shifts away
from the normal axis horizontally when the overlay is induced
during the lithography process. A negative sign in s denotes
the grating sifting to the left side of the normal axis.

The finite difference time domain (FDTD) method by
lumerical commercial software was used to analyze the
diffraction response by the overlay target described in Fig.1.
The transverse-electric (TE) polarized beam parameters for
the backward diffraction calculation were an incident wave-
length of 532 nm, a 1:3 line-to-pitch ratio, and a grating
height of 94 nm. The normalized diffraction intensity maps
are depicted in Table 1 with respect to the displacement
offsets +s, 0, and −s, respectively. When the displacement
offset is 0, the diffraction intensities of the−1st and 1st orders
are equal to each other. When the second grating shifts left
from the normal axis by −s, the diffraction intensity of the
+1st order is stronger than that of the −1st order. When
the second grating shifts to the right from the normal axis
by s, the diffraction intensity of the −1st order is stronger
than that of the +1st order. The displacement of two grat-
ing offsets causes unequal distribution intensity between the
+1st and −1st order.

TABLE 1. Normalized backward diffraction intensity maps with and
without overlay displacement offset.

The asymmetry in intensity between the +1st and −1st
orders having the displacement offset s is characterized by
the subtraction of normalized intensity between the+1st and
−1st orders and defined as 1I = I+1 − I−1. Fig. 2 presents
the asymmetry in intensity1I between the two first orders as
a function of the displacement offset s. In the linear window
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FIGURE 2. Asymmetry in intensity 1I as a function of displacement
offset s.

between +50 and −50 nm, the asymmetry in intensity 1I is
proportional to the displacement offset s and can be denoted
as 1I = K · s, where K is a proportional factor. The
induced overlay OV, and the designed bias d are combined
as the s, where the bias d is intentionally introduced to elim-
inate the K factor for OV retreving. Equation (1) describes
the asymmetry in intensity with the positive bias +d , and
Equation (2) describes the asymmetry in intensity with the
negative bias −d . Therefore OV as a function of asymmetry
in intensity can be derived in (3) [32], [33].

1I+d = K ∗ (OV + d) (1)

1I−d = K ∗ (OV − d) (2)

OV = d ∗
(
1I+d +1I−d

1I+d −1I−d

)
, (3)

FIGURE 3. Effect of a target with an SWA profile on the asymmetry in
intensity 1I as a function of displacement offset s.

Fig. 3 illustrates the effect of varying SWAs profiles on
the overlay target, it shows the 1I discrepancy between the

grating with 90◦ SWA and that with 86◦ SWA. This discrep-
ancy affects the accuracy of the overlay estimation in (3).
Therefore, a revision of the conventional linear model for
the grating target with finite SWA profiles is necessary to
enhance the overlay estimation accuracy of the DBO mea-
surement.

FIGURE 4. Stacked grating target with an SWA profile characterized
by α and β.

III. ANN MODEL FOR GRATING TARGETS
WITH SWA PROFILES
A schematic layout of a grating target with a finite SWA pro-
file is shown in Fig. 4. The displacement offset s describes the
lateral shift between the two layers and includes the designed
bias and induced overlay, a negative sign in s denotes the
grating shift being to the left side of the normal axis. The
gratings on the first and second layers were made of PolySi
and PR respectively. Each grating had a line-to-pitch ratio
(L : P) of 1:3. The inter-layer between the two gratings
was SiO2, the h1 and h2 were 200 nm, and the left and right
SWAs for the PR gratings were characterized by α and β
respectively. The SWA α and β were varied from 90◦ to 86◦.
The incident beam for the study is at the wavelength from
400 nm to 700 nm. The normally incident beam was
applied at 400 to 700 nm wavelengths. TE and transverse-
magnetic (TM) polarization were used. Fig. 5 displays
the numerical results for the asymmetry in intensity-
displacement offset data sets for SWAs with α of 90◦, 89◦,
88◦, 87◦, and 86◦ and an SWA β of 90◦. A SWA α of 90◦

indicates a grating target without an SWA profile in which
the conventional linear model can be adopted for the overlay
estimation. In Fig. 5, the TE beam is set at a wavelength of
400 nm for the computation of 1I . When the displacement
offset increased, the 1I discrepancy between gratings with
SWA profiles and those without SWA profiles increased. The
1I for the grating with an SWA α of 86◦ showed the largest
deviation from the grating with an α of 90◦; this uncertainty
regarding the1I distribution affects the grating displacement
offset prediction in overlay metrology.

The 1I sensitivity to s variation was analyzed to iden-
tify the most sensitive wavelengths for overlay detection, as
shown in Fig. 6. The1I sensitivity was determined according
to slope in (4) for TE and TM polarization at wavelengths
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FIGURE 5. Asymmetry in intensity distribution 1I with respect to various
α when β = 90◦ and the incident TE beam wavelength is 400 nm.

FIGURE 6. Asymmetry in intensity 1I distribution with respect to α and β
of 90◦ at various wavelengths when using (a) TE polarization and
(b) TM polarization.

from 400 to 700 nm. The term 1I+d describes the asymme-
try in intensity with the positive bias +d ; 1I−d describes
the asymmetry in intensity with the negative bias −d .

A higher slope is more advantageous because it can dis-
tinguish s variation more clearly [34], [35]. According to
Table 2, wavelengths of 600 nm, 650 nm, and 700 nm are
the most sensitive wavelengths to the s variation for both
TE and TM polarization.

slope =
1I+d −1I−d

(+d)− (−d)
. (4)

TABLE 2. 1I sensitivity analysis for displacement offset variation using
TE and TM polarization.

The 1I sensitivity to the s variation was further analyzed
by investigating the presence of the SWA profiles in the
grating target at wavelengths of 600, 650, and 700 nm with
TE and TM polarization. The results in Table 3 demonstrate
that TE polarization is more effective for distinguishing s
variation in various SWA profiles than TM polarization is
(Table 4). Thus, a TE polarized beam incident on the grating
target was used for the correction scheme study.

TABLE 3. The 1I sensitivity to the displacement offset including side wall
angle profiles for the TE polarization beam.

The artificial neural network (ANN) technique is proposed
as the correction scheme for the prediction of the grating
displacement offset and associated uncertainty of the SWA
profiles in the DBO target. A neural network consists of
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TABLE 4. The 1I sensitivity to the displacement offset including side wall
angle profiles for the TM polarization beam.

FIGURE 7. Architecture of neural network having one input layer, two
hidden layers, and an output layer. The 1I dataset is considered as the
data input and the displacement offset s is presented as the output.

an array of interconnected nodes (nominally representing
neurons) that are arranged as an input layer, hidden layer, and
output layer. A node in a given layer is generally connected to
all nodes in the subsequent layer [36]. The architecture of the
neural network applied in this study consisted of four layers:
one input layer, two hidden layers, and one output layer, as
shown in Fig. 7. The 1I dataset in Table 3 was introduced
in the input layer, which contained five nodes. Those input
nodes X1, X2, X3, X4, and X5 were constructed as the 1I
by using a grating with SWA α of 90◦, 89◦, 88◦, 87◦, and
86◦.W k

i,j is the weighting coefficient, bk is the bias, φ
k
j is the

neuron function, i is the index of neuron inputs, and j and k are
the indices of the neurons. The proposed ANN uses a feed-
forward model having two hidden layers followed by an out-

put layer. The hidden layers apply a sigmoid transfer function
and the output layer applies a linear transfer function. This
setup enables the proposed network to learn relationships
between the input 1I and the output s [37].
The proposed feed-forward ANN model was trained

using the Levenberg-Marquardt (LM) backpropagation learn-
ing process from the output layer backward to the input
layer. The LM algorithm combines the steepest descent and
Gauss–Newton algorithms during the ANN model training
process [38], [39]. Equation (5) describes the difference ε
between the actual displacement offset Yj based on the FDTD
numerical computation and the predicted displacement off-
set Ŷj calculated by the proposed ANN model. The mean
square error (MSE, e) in (6) and the mean of the residual ε̄
in (7) were employed to evaluate the training process, where
N is the total number of displacement offset data. In total,
565 offset data points were used for the ANN model training
process. The values of 282 offset data points among the
565 data points were calculated according to the positive dis-
placement offset. The values of 283 offset data points among
the 565 data points were calculated according to the negative
displacement offset. In addition, the values of 240 displace-
ment offset data from the FDTD computation were used for
verification. The implemented LM algorithm in the ANN
model updated the weighting coefficients according to (8),
where J represents the Jacobian matrix, W is the weighting
coefficient matrix, I denotes the identity matrix, µ is the
combination coefficient, and n is the index of iteration [40].

εj = Yj − Ŷj (5)

e =
1
N

N∑
j=1

(εj)2 (6)

ε̄ =
1
N

N∑
j=1

∣∣εj∣∣ (7)

W (n+1) = W (n) − (JT(n)J (n) + µI)
−1JT(n)ε(n). (8)

Table 5 describes the implementation of the proposed
feed-forward ANN model trained using the LM backprop-
agation algorithm. The procedure first involves initializing
parameters used in the proposed ANN model: the neuron
function φkj , the weight W k

i,j, the input Xi,j, and the bias bk .
The term ite is introduced as the looping parameter and
maxite is the iteration criterion for terminating the learning
procedure. The feed-forward ANNmodel is constructed from
the 4th to 14th steps, which propagate the input Xj forward
through the network. The sigmoid transfer function is used
in the hidden layer at the ninth step, and the linear transfer
function is used in the output layer at the seventh step. The
section from the 15th to 25th steps in the procedure is for
the error control of the constructed ANN model, where the
actual output Yj from FDTD is used to verify the training
error εj. The error propagates from the output layer backward
through the network to the input layer for further updating
the weighting matrix W. The matrix W is updated during
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TABLE 5. Procedures for the artifical network model with the LM
backpropagation algorithm.

the training process at the 22nd step according to the LM
algorithm in (8). The 25th step entails defining the MSE and
ε̄ to evaluate the training process. The convergence of the
proposed ANN model was verified through the MSE as a
function of iterations, as shown by Fig. 8. An MSE of 0.0534
at the 134th iteration achieves an error percentage of less than
1%; the MSE in the proposed ANN model showed stable
behavior after the 150th iteration. In addition, this research
validated the proposed ANN architecture. Table 6 and Table 7
report theMSE results when using various number of neurons
and hidden layers respectively. Table 8 reports the run-time
when using various number of hidden layers.

TABLE 6. Summary of MSE when using various number of neurons in one
hidden layer.

To compare the performance of the proposed ANN model,
a multiple regression model for the prediction of the displace-
ment offset was used, as shown in (9) [41]. In (9), Ŷi is the

FIGURE 8. Convergence test for the proposed ANN model with the LM
backpropagation algorithm.

TABLE 7. Summary of MSE when using five neurons in various number of
hidden layers.

TABLE 8. The run-time when using various number of hidden layers.

ith predicted displacement offset,X1i, X2i, X3i, X4i, and X5i
are the 1I of the gratings with SWA α of 90◦, 89◦, 88◦,
87◦, and 86◦, respectively; b1, b2, b3, b4, and b5 are the
coefficients to be calculated. The multiple regression model
was developed using 565 offset data points in the positive
and negative displacement offset regions. Table 9 summarizes
the procedure applied to construct the multiple regression
model. When the order equals 1, the multiple regression
model reverts to the conventional linear model for the offset
estimation. Two quality factors were used to evaluate the
capability of the proposedANN andmultiple regressionmod-
els for predicting the grating offset: MSE, e in (6), and the
mean of the residual ε̄ in (7). The e in (6) denotes the standard
deviation between the actual displacement offset value Yi and
the predicted displacement offset Ŷi. The ε̄ in (7) describes the
average of the absolute residual between Yi (as the referenced
displacement offset calculated by the numerical FDTD tool)
and the predicted displacement offset Ŷi evaluated by the
regression model. The values of 240 displacement offset data
points from FDTD were used for the verification.

Ŷi = b0 + b1X1i + b2X2i + b3X3i + b4X4i + b5X5i. (9)

Tables 10, 11 and 12 summarize the quality factor results
with respect to various wavelengths when using the ANN and
multiple regression models. The numerical results in Table
10 demonstrate more effective prediction of the displacement
offset by the ANN model when using an incident beam with
a longer wavelength. This is a consequence of the incident
beam with a longer wavelength being more sensitive to the
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TABLE 9. Multiple regression procedure for the prediction of the
displacement offset.

TABLE 10. Quality factors for the displacement offst estimation using the
ANN model.

TABLE 11. The training Proces for the displacement offset estimation
using the multiple regression model with various orders.

grating offset than a beam with a shorter wavelength is.
The results also reveal that the ANN model has more favor-
able prediction capability than the regression model does.
Table 11 and 12 present the numerical results of e and ε̄ for
the training and verification process usingmultiple regression

TABLE 12. The verification process for the displacement offset estimation
using the multiple regression model with various orders

model. Lower e and ε̄ occur when the regression models are
at higher orders than the first and second orders (i.e., the third,
fourth, and fifth orders). The factors e and ε̄ in Table 11 and 12
decreased substantially for the third order and converged for
the fourth and fifth orders. The results of e and ε̄ show that the
ANNmodel predicts the displacement offset more effectively
than the multiple regression model does.

IV. CONCLUSION
The feed-forward ANN model for predicting displacement
offset of the stack grating targets with various SWAs was suc-
cessfully demonstrated. The MSE and mean of the residual
results showed that the ANN model provides more effective
displacement offset prediction than the linear and high order
regression models do. The ANNmodel substantially reduced
the impact of the asymmetrical intensity variation within the
linear window caused by the SWAs in the overlay targets. In
addition, the results demonstrated that the regression model
provides a lowerMSE at the third and higher orders than at the
lower orders. These findings indicate that the combination of
the ANN model and optical beams with a longer wavelength
can be integrated with the optical scatterometry tool for in-die
overlaymeasurement. Analysis of the line width roughness of
the overlay target will be included in the ANN self-learning
process in future.
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