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ABSTRACT Spectrum efficiency and energy efficiency are two critical issues in the design of wireless
communication networks. Recently, energy harvesting cognitive radio networks have been proposed to
attempt to solve both the issues simultaneously. In this paper, we consider a cognitive radio network in
which a primary transmitter mainly occupies the channel, and a secondary transmitter equipped with an
energy harvesting device is allowed to opportunistically access the primary channel at any time if it is
detected to be idle. Here, we assume that energy arrival process and primary channel state are random process
and two-state time-homogenous discrete Markov process, respectively. Instead of the expected number of
successful spectrum access attempts per time slot as a design criterion in current literature, we use the
average channel capacity as the achievable throughput to jointly optimize energy harvesting and spectrum
sensing subject to the constraints on the energy causality, collision, and temporal correlation of probability
of sensing the idle/occupied channel, thus achieving or almost achieving both the energy efficiency and the
spectrum efficiency in certain conditions. In addition, the corresponding optimum detection threshold and
the maximum achievable throughput are obtained, which are substantiated by our comprehensive computer
simulations.

INDEX TERMS Cognitive radio network, energy harvesting, spectrum sensing, achievable throughput,
detection threshold.

I. INTRODUCTION
Recently, energy harvesting (EH) and opportunistic spec-
trum access have emerged as the promising solutions to
improve energy efficiency and spectrum efficiency. On one
hand, energy harvested from ambient sources (e.g., solar,
wind, thermal, vibration, and even ambient radio power)
can be utilized to improve the energy efficiency of wire-
less networks [1]–[4]. On the other hand, through dynamic
spectrum access, cognitive radio networks (CRNs) can
improve the spectrum efficiency and capacity of wireless
networks [5]–[10]. Energy harvesting cognitive radio net-
works (EH-CRNs) which combine both of the EH and
dynamic spectrum access techniques have received substan-
tial attention [11]–[20]. In order to achieve both energy effi-
ciency and spectral efficiency simultaneously for EH-CRNs,
two fundamental constraints should be strictly satis-
fied, which are energy causality constraint and collision

constraint [17]–[20]. Specifically, the energy causality con-
straint requires that the total consumed energy should not
exceed the total harvested energy, and the collision constraint
requires that the probability of accessing the occupied chan-
nel is less than or equal to the target probability of a collision
with primary users.

Several energy harvesting wireless communication net-
works have been proposed to improve energy efficiency in
the design of wireless communication networks. A mobile
ad hoc network (MANET) powered by energy harvesting
was proposed in [3], where transmitters were modelled as
a homogeneous Poisson point process (PPP). By applying
the random-walk theory, it was proved that transmission
probability was equal to the smaller of one and the ratio
between the energy-arrival rate and transmission power, and
meanwhile, the maximum space throughput was proportional
to the optimal transmission probability. In [21], a general
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system model consisting of K classes of self-powered base
stations (BSs) was developed, which modelled the temporal
dynamics of the energy level at each BS as a birth-death
process and an energy utilization rate was derived. A harvest-
use-store architecture for energy harvesting wireless systems
was reported in [13], in which the harvested energy was used
to data transmission first and then stored in the storage device
while there was surplus.

In addition, there are some other works on EH-CRNs
proposed to achieve both energy efficiency and spectral effi-
ciency simultaneously. In [12], both the transmission proba-
bility of secondary transmitters and the outage probability of
the primary receivers and secondary receivers were analyzed,
where primary transmitters and secondary transmitters were
considered to be distributed as independent homogeneous
Poisson point processes (HPPPs) and communicated with
their intended receivers at fixed distances, and the optimal
transmission power and density of secondary transmitters
were derived for maximizing the secondary network spatial
throughput when the secondary transmitters harvested ambi-
ent radio frequency energy from transmissions by nearby
active primary transmitters. The optimal cognitive sensing
and access policies for a secondary user was investigated
in [16], which was formulated as a Markov decision pro-
cess (MDP). The optimal channel selection policy for the
secondary user was studied in [22] to select one of the
channels to transmit data when it was idle, and to harvest
radio frequency energy when the primary user was trans-
mitting data. A saving-sensing-transmitting structure was
studied in [23], where the expected achievable throughput
of secondary user was formulated as a mixed integer non-
linear programming (MINLP) problem over all of the idle
channels in one time slot. In [24], sensing strategy and
power allocation strategy were jointly considered to maxi-
mize the throughput of secondary user over multiple con-
secutive time slots, and a sub-optimal online algorithm was
proposed based on the dynamic spectrum state, harvested
energy, and the channel fading level. Recently, by splitting
the EH-CRNs [17]–[20] into a spectrum-limited regime and
an energy-limited regime, an optimal detection threshold
to maximize the expected number of successful spectrum
access attempts per time slot of secondary user was derived
under energy causality and collision constraints in [17] and
then, the optimal sensing decision policy and access policy
were formulated as a constrained partially observableMarkov
decision process (POMDP) in [18], and a sub-optimal myopic
policy was proposed. Furthermore, the relationship between
the optimal sensing duration and the corresponding detection
threshold in order to maximize the average throughput was
studied subject to the energy causality and collision con-
straints in [19]. Besides, the primary traffic was modeled as
a time-homogeneous discrete Markov process in [20], and
the upper bound on expected number of successful spectrum
access attempts per time slot of secondary user was derived.
Nevertheless, the study on EH-CRNs is not sufficient, and
there is still a lot of work to do.

In this paper, we use the average channel capacity as the
achievable throughput instead of the expected number of
successful spectrum access attempts per time slot as in [20].
In addition, we treat the energy harvesting rate as an optimiza-
tion variable, since the optimal energy harvesting rate is fixed
for the given detection threshold under these constraints,
and hence, higher energy harvesting rate will not improve
the spectrum efficiency. The harvested energy overflowing
the optimal energy harvesting rate can be used for other
purpose. Therefore, our objective function and constraints
are different from [20]. Aiming to attempt to achieve both
the energy efficiency and the spectrum efficiency, joint opti-
mization problem of energy harvesting and spectrum sensing
is studied under the energy causality constraint, collision
constraint and temporal correlation constraints of probability
of sensing the idle/occupied channel. By making use of the
feature of both the objective function and the constraints, our
idea is to solve the optimization problem for any allowably
fixed energy harvesting rate and detection threshold, to first
maximize the objective function with respect to the design
variables probability of sensing the idle/occupied channel,
and then, to maximize the resulting objection function with
respect to the design variables energy harvesting rate and
detection threshold. Finally, the optimal energy harvesting
rate and detection threshold are derived, and the effect of
target collision probability and the temporal correlation con-
straint of sensing the idle/occupied channel on the achievable
throughput are also discussed.

The remainder of this paper is organized as follows: The
primary network and cognitive radio network models are
described in Section II. The joint optimization problem of
detection threshold and energy harvesting to maximize the
achievable throughput of secondary user is formulated in
Section III, in which the optimal detection threshold and the
maximum achievable throughput of the energy harvesting
secondary transmitter subject to the energy causality and col-
lision constraints is derived and the optimal detection thresh-
old is also studied while the energy harvesting rate is under
the optimal value. Finally, numerical results are provided in
Section IV, and our conclusions are presented in Section V.

FIGURE 1. System model.

II. ENERGY HARVESTING COGNITIVE
RADIO SYSTEMS MODEL
In this section, we are interested in a simple EH-CRN consist-
ing of one primary link and one secondary link [17], as shown
in Fig. 1, in which the secondary transmitter is equipped
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with an energy harvesting device and an infinite-capacity
rechargeable battery. For such a system, we assume that
harvested energy will be stored in the rechargeable battery
before it is used, and that it is possible for secondary user to
opportunistically access the primary channel if it is detected
idle.We also assume there is always data for secondary user to
transmit and the communication system is operated in a time-
slotted model. In the following, a primary network model
is briefly reviewed, followed by the description of cognitive
radio network with spectrum sensing and energy harvesting
model.

A. PRIMARY NETWORK MODEL
By assuming the primary user employs a time-slotted network
model with duration T and bandwidth W , a primary channel
occupation state is modeled as a two-state time-homogenous
discrete Markov process. A channel occupation state in slot
n is denoted by Sn , {0(idle), 1(occupied)}, the probability
of transit from state 0 to itself is qi, and the probability of
transit from state 1 to itself is qo. Then, the steady-state
probabilities of spectrum being idle and occupied are given
by πi =

1−qo
2−qi−qo

and πo =
1−qi

2−qi−qo
, respectively. In addition,

we assume that the secondary transmitter is aware of the
state transition probabilities through long-term channel usage
measurements [20].

B. COGNITIVE RADIO NETWORK MODEL
1) SPECTRUM SENSING
The secondary link is assumed to be comprised of an energy
harvesting secondary transmitter and an energy uncon-
strained secondary receiver. Assuming that it always has data
to be transmitted, the secondary transmitter periodically exe-
cutes spectrum sensing with slot duration T , which is divided
into a sensing phase with duration τ and a transmission phase
with duration T − τ . The presence of a primary user is
detected through a binary hypothesis test:

yn(m) =
{

w(m), H0 (1a)

s(m)+ w(m), H1, (1b)

where H0 and H1 mean that primary channel is in idle
and occupied state, respectively, yn(m) is the m-th sample
of the secondary transmitter energy detector in a slot n,
s(m) and w(m) are the primary transmitter signal and noise,
respectively, and they are both assumed to be independent
circularly symmetric complexGaussian (CSCG) random pro-
cesses with respective variances σ 2

p and σ 2
w. If we let f repre-

sent a sampling frequency, then, the number of samples is τ f .
When τ f is large enough, the probability of false alarm Pf (ε)
and the probability of detection Pd (ε) are given by [25]

Pf (ε) = Q
(( ε
σ 2
w
− 1

)√
τ f
)
, (2)

Pd (ε) = Q
(( ε

(σ 2
w + σ

2
p )
− 1

)√
τ f

)
, (3)

where ε ∈ R+ denotes a detection threshold for the energy
detector and Q(x) , 1

√
2π

∫
∞

x exp
(
−
u2
2

)
du. After spec-

trum sensing in slot n, the detection result is denoted as
θn , {0(idle), 1(occupied)}.

2) ENERGY HARVESTING MODEL
Here, the harvested energy arrives randomly in each slot
and is stored in a rechargeable battery of infinite capacity.
We model the energy arrival process {Ehn } ⊂ R+ as an i.i.d.
random process with mean E[Ehn ] = eh, where eh is actually
the energy arrival rate as well as the energy harvesting rate.
The energy consumption of the secondary transmitter during
slot n is given by Ecn(θn) = es+ (1− θn)et , where es = τPs ∈
R+ is the energy consumed during spectrum sensing phase,
Ps is the sensing power, and et = (T − τ )( ξ

ζ
Pt + Pc) ∈ R+

is the energy consumed in the data transmitting phase, with
Pt being the transmission power, ξ being the peak-to-average
ratio (PAR) of the power amplifier (PA), ζ being the drain
efficiency of the PA, and Pc being the power consumed in
various transmitter and receiver electronic circuits, excluding
the PA power [26].

III. JOINT OPTIMIZATION OF HARVESTED ENERGY
AND SENSING THRESHOLD
Our primary purpose in this section is to use the average
channel capacity as the achievable throughput for jointly
optimizing energy harvesting and spectrum sensing. To do
this, let us first introduce the definition of the probability of
sensing the idle/occupied channel.

A. PROBABILITY OF SENSING THE
IDLE/OCCUPIED CHANNEL
Pi , Pr(active|H0) and Po , Pr(active|H1) are defined as
the probabilities that the secondary transmitter will select the
active mode to execute spectrum sensing while the primary
channel is idle or occupied, respectively, under any spectrum
access policy for given energy harvesting rate eh and detec-
tion threshold ε [20].
Normally, when optimizing energy harvesting and

spectrum sensing, we need to consider the following three
constraints:

B. ENERGY CAUSALITY CONSTRAINT
It is required that energy can not be consumed before it is
harvested, which means Ecn ≤ Ehn in each slot. Since the
capacity of the battery is assumed to be infinite, the harvested
energy that can not be consumed in each slot will be stored
in the battery for further use. From the long term operation
perspective, we obtain the energy causality constraint:

Eci (ε)Pi + E
c
o(ε)Po ≤ eh, (4)

where Eci (ε) =
(
es +

(
1 − Pf (ε)

)
et
)
πi and Eco(ε) =

(
es +(

1− Pd (ε)
)
et
)
πo are the expectation of energy consumption

during an idle/occupied slot of the secondary transmitter,
respectively [20].
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C. COLLISION CONSTRAINT
It requires the probability of accessing the occupied channel
is less than or equal to the target collision probability, which
is expressed as:

Po
(
1− Pd (ε)

)
≤ Pcol, (5)

where Pcol is the target collision probability that the primary
user can tolerate.

D. TEMPORAL CORRELATION CONSTRAINTS
OF PROBABILITY OF SENSING THE
IDLE/OCCUPIED CHANNEL

αPi ≤ Po ≤ βPi, (6)

where

α = max
(
1−max(1− qo, qi)
max(1− qo, qi)

,
min(1− qi, qo)

1−min(1− qi, qo)

)
×
1− qo
1− qi

, (7)

β = min
(
1−min(1− qo, qi)
min(1− qo, qi)

,
max(1− qi, qo)

1−max(1− qi, qo)

)
×
1− qo
1− qi

. (8)

The derivations of (6), (7) and (8) are provided in [20].
There are two scenarios under which the secondary net-

work can operate in the primary channel.
• Scenario I: When the primary channel is idle (H0) and
the detection result is θn = 0, the achievable throughput
of the secondary link is T−τ

T Ci, and the probability of
this scenario is given by Pi(1− Pf (ε))πi.

• Scenario II: When the primary channel is occupied (H1)
and the detection result is θn = 0, the achievable
throughput of the secondary link is T−τT Co, and the prob-
ability of this scenario is determined byPo

(
1−Pd (ε)

)
πo.

As a result, the average throughput for the secondary network
is determined by [25]

R(Pi,Po, eh, ε) = 8iPi
(
1−Pf (ε)

)
+8oPo

(
1−Pd (ε)

)
, (9)

where 8i =
T−τ
T Ciπi, 8o =

T−τ
T Coπo, Ci = W log(1+ γs),

Co = W log(1+ γs
1+γp

), and γs and γp are received signal-to-

noise ratio (SNR) of secondary signal and primary signal at
the secondary network, respectively.

Therefore, our objective in this paper is to find the optimum
detection threshold ε, energy harvesting rate eh and probabil-
ities of sensing the Idle/occupied channel for maximizing the
throughput of the EH-CRN, i.e.,
Problem 1: Find the probabilities of sensing the idle/

occupied channel, the energy arrival rate and the detection
threshold such that

max
Pi,Po,eh,ε

R(Pi,Po, eh, ε),

s.t. Eci (ε)Pi + E
c
o(ε)Po ≤ eh,

Po
(
1− Pd (ε)

)
≤ Pcol,

αPi ≤ Po ≤ βPi. (10)

�

In order to efficiently solve Problem 1, we need to inves-
tigate the effect of probability of sensing the idle/occupided
channel on the achievable throughput for any given energy
harvesting rate and detection threshold. By making use of the
feature of both the objective function and the constraints, our
idea to solve Problem 1 is for any allowably fixed eh and ε,
to first maximize the objective function with respect to the
design variables Pi and Po, and then, to solve the resulting
optimization problem with respect to the variables eh and ε.
To do that, we need to first establish the following lemma:
Lemma 1: Let R(eh, ε) = maxPi,Po R(Pi,Po, eh, ε). Then,

the following two statements are true.
1) If α > Pcol , we have

R(eh, ε)

=



8i
(
1− Pf (ε)

)
+8o

(
1− Pd (ε)

)
,

(eh, ε) ∈ �1;
8i
(
1− Pf (ε)

)
+8oPcol,
(eh, ε) ∈ �2;

8i
Pcol

(
1− Pf (ε)

)
α
(
1− Pd (ε)

) +8oPcol,

(eh, ε) ∈ �3;
8i
(
1− Pf (ε)

)
+8oµ(eh, ε)

(
1− Pd (ε)

)
,

(eh, ε) ∈ �4;
λ(eh, ε)

(
8i
(
1− Pf (ε)

)
+8oα

(
1− Pd (ε)

))
,

(eh, ε) ∈ �5.

(11)

where µ(eh, ε) =
(
eh − Eci (ε)

)
/Eco(ε), λ(eh, ε) =

eh/
(
Eci (ε)+ αE

c
o(ε)

)
, and

�1 =
{
(eh, ε)|µ(eh, ε) ≥ 1,

Pcol
1− Pd (ε)

≥ 1
}
,

�2 =
{
(eh, ε)|α ≤

Pcol
1− Pd (ε)

< min
(
1, µ(eh, ε)

)}
,

�3 =
{
(eh, ε)|

Pcol
1− Pd (ε)

<αmin
(
1, λ(eh, ε)

)}
,

�4 =
{
(eh, ε)|α ≤ µ(eh, ε) <min

(
1,

Pcol
1− Pd (ε)

)}
,

�5 =
{
(eh, ε)|λ(eh, ε)≤min

(
1,

Pcol
α(1− Pd (ε))

)}
.

2) If α ≤ Pcol , we have

R(eh, ε)

=



8i
(
1− Pf (ε)

)
+8o

(
1− Pd (ε)

)
,

(eh, ε) ∈ �1;
8i
(
1− Pf (ε)

)
+8oPcol,
(eh, ε) ∈ �̄2;

8i
(
1− Pf (ε)

)
+8oµ(eh, ε)

(
1− Pd (ε)

)
,

(eh, ε) ∈ �4;
λ(eh, ε)

(
8i(1− Pf (ε))+8oα(1− Pd (ε))

)
,

(eh, ε) ∈ �̄5.

(12)

where �̄2 =
{
(eh, ε)|

Pcol
1−Pd (ε)

< min
(
1, µ(eh, ε)

)}
,

�̄5 =
{
(eh, ε)|λ(eh, ε) ≤ 1

}
. �
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FIGURE 2. Distribution of (eh, ε) while α > Pcol .

FIGURE 3. Distribution of (eh, ε) while α ≤ Pcol .

The proof of Lemma 1 is given in Appendix A. To make
Lemma 1 understandable more clearly, the feasible domain
of (eh, ε) is shown in Figs. 2 and 3, in which the param-
eters eh and ε of Pd (ε),Eci (ε),E

c
o(ε), µ(eh, ε), λ(eh, ε) are

omitted for simplicity. We can see from Lemma 1 that the
feasible set of (eh, ε) to maximize the achievable throughput
is divided into five regions if α > Pcol and four regions if
α ≤ Pcol . There are different expressions for the achievable
throughput in each region of (eh, ε), and each of them is a
continuous function at the edge between adjacent regions.
To further maximize R(eh, ε), let us study the monotonicity
property in each region. We need to establish the following
lemma.
Lemma 2: Let F(ε) = 1−Pf (ε)−

P′f (ε)

P′d (ε)

(
1−Pd (ε)

)
. Then,

there exists such ε̃ ∈ (
σ 2w(σ

2
w+σ

2
p )

σ 2p+2σ 2w
, σ 2

w + σ
2
p ) that F(ε) < 0 if

ε < ε̃ and F(ε) > 0 if ε > ε̃. �

The proof is postponed to Appendix B. After having all the
above preparations, we are now in a position to formally state
our main result in this paper.
Theorem 1: The solution to Problem 1 is given

below:
1) If α > Pcol , we have εopt = (Q−1(1 − Pcol

α
)/
√
τ f +

1)(σ 2
w + σ

2
p ), eh,opt = Eci (εopt ) + αE

c
o(εopt ), Pi,opt = 1

and Po,opt = Pcol/(1 − Pd (εopt )). In addition, the resulting
maximum value is given by

R(Pi,opt ,Po,opt ,eh,εopt )=8i
(
1−Pf (εopt )

)
+8oPcol .

for any eh ≥ eh,opt .
2) If α ≤ Pcol , we have R(Pi,Po, eh, ε) < 8i + 8oPcol .

Furthermore, we can obtain

lim
ε→∞

R(1,Pcol, eh, ε) = 8i +8oPcol .

for any eh ≥ eh,1, where eh,1 = (es + et )(πi + Pcolπo). �
The proof of Theorem 1 is provided in Appendix C. To make
Theorem 1 more understandable, Figs. 4 and 5 are plotted to
show the achievable throughput for α > Pcol and α ≤ Pcol ,
respectively. From Fig. 4, it can be seen that the throughput
achieves maximum at εopt and eh ∈ [eh,opt ,∞). In addition, it
can be also observed from Fig. 5 that R(eh, ε) is an increasing
function in terms of ε for eh ≥ eh,1 and exponentially
approaches to the upper bound 8i + 8oPcol , i.e., limit.
In fact, we find that R(eh, ε) keeps almost unchanged when
ε ≥ 1.15σ 2

w. Hence, the limit of the throughput can be
approximately treated as the maximum achievable through-
put at ε ≈ 1.15σ 2

w.
However, in some practical environments where the energy

harvesting rate is fixed. Therefore, instead of totally opti-
mizing the throughput in Problem 1, we now consider to
optimize the throughput subject to the optimal probabili-
ties of sensing the idle/occupied channel, as suggested by
Lemma 1, and a fixed energy harvesting rate, i.e., find a
detection threshold such that R(Pi,opt ,Po,opt , eh, ε) can be
made as large as possible when the primary signal SNR
is low.
Theorem 2: The following statements are true.
1) α > Pcol . If eh ∈ [eh,3, eh,opt ) , eh,3 = 1

α
(es + et )

(πi + απo)Pcol , then, the maximum R(eh, ε) with
respect to ε is given by

R(eh, εopt,2) = 8i
Pcol(1− Pf (εopt,2))
α(1− Pd (εopt,2))

+8oPcol

with εopt,2 = Y−1(0), where Y−1(ε) denotes the
inverse function of Y (ε) = λ(eh, ε)−

Pcol
α(1−Pd (ε))

.
If eh ∈ (0, eh,3), then, we have R(eh, ε) <
eh(8i+α8o)

(es+et )(πi+απo)
, and furthermore,

lim
ε→∞

R(eh, ε) =
eh(8i + α8o)

(es + et )(πi + απo)
.

2) α ≤ Pcol . In this case, if eh ∈ [eh,2, eh,1),
eh,2 = (es + et )(πi + απo), then, we attain
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FIGURE 4. The maximum achievable throughput vs detection threshold
and energy harvesting rate while α > Pcol .

FIGURE 5. The maximum achievable throughput vs detection threshold
and energy harvesting rate while α ≤ Pcol .

R(eh, ε) < 8i +8o
( eh
(es+et )πo

−
πi
πo

)
, and

lim
ε→∞

R(eh, ε) = 8i +8o
( eh
(es + et )πo

−
πi

πo

)
.

If eh ∈ (0, eh,2), then, we obtain R(eh, ε) <
eh(8i+α8o)

(es+et )(πi+απo)
, and

lim
ε→∞

R(eh, ε) =
eh(8i + α8o)

(es + et )(πi + απo)
.

�
The proof of Theorem 2 is given in Appendix D. Some obser-
vations similar to Theorem 1 can be also made for Theorem 2
from Figs. 4 and 5. Specifically, we can see from Fig. 4 that
the throughput increases with ε increasing and exponentially
approaches to the limit when eh < eh,3. However, when
eh ∈ [eh,3, eh,opt ), there is an optimal detection threshold to
maximize the throughput. From Fig. 5, we can also see that
the throughput increases with ε increasing and exponentially
approaches to the limit when eh < eh1 . From both figures,
we can observe that R(eh, ε) keeps almost unchanged when
ε ≥ 1.15σ 2

w. Hence, the limits in Theorem 2 can also be

approximately regarded as the maximum achievable through-
put in practice.

IV. NUMERICAL RESULTS
In this section, the performance of the proposed schemes
are presented through computer simulations (MATLAB). The
system parameters are summarized in Table 1, which is
mainly drawn from [20].

TABLE 1. Value of parameters in numerical result.

Fig. 4 shows the maximum achievable throughput of sec-
ondary user for α > Pcol where qi = 0.9, qo = 0.6,
α = 0.4444. Fig. 5 shows the condition that α ≤ Pcol ,
where qi = 0.9875, qo = 0.95, α = 0.0506. From Fig. 4,
it can be observed that the achievable throughput increases
with eh before it reaches the optimal value, and then, it
keeps unchanged, since the harvested energy is sufficient to
occupy all the opportunity to implement data transmitting
under the collision constraint. It can be also observed that
the achievable throughput increases with ε when eh ≥ eh,opt ,
and decreases with ε after it obtains the optimal ε, which
means that Pf is high when ε is small and most of the
opportunities to access the primary channel is missed, result-
ing in low throughput. On the other hand, with ε increas-
ing, more collision will happen and thus, the achievable
throughput decreases. In addition, we can see that there is
no optimal ε when α ≤ Pcol , as shown in Fig. 5, which
means that secondary user can access the primary channel as
long as the probability of secondary user accessing the occu-
pied primary channel is not larger than the target collision
probability and hence, there is no need to operate spectrum
sensing.

Fig. 6 depicts the optimal energy harvesting rate to achieve
the maximum achievable throughput of EH-CRNs for differ-
ent πi and α. For discussion convenience, eh,1 is also called
the optimal energy harvesting rate for the case of α ≤ Pcol .
From the figure we can see that the optimal eh to achieve
the maximum achievable throughput increases with πi, and
increases as α decreases before α = Pcol , and then, keeps
unchanged when α < Pcol . On one hand, since the secondary
user can obtain more spectrum access opportunities with πi
increasing, more energy is needed to execute data processing
and transmission. On the other hand, if α > Pcol , εopt
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FIGURE 6. The optimal energy harvesting rate vs the probability of
channel being idle and the temporal correlation constraint.

FIGURE 7. The maximum achievable throughput vs the energy harvesting
rate and the temporal correlation constraint.

increases with α decreasing, and eh,opt increases. If α ≤ Pcol ,
eh,1 is independent of α and hence, it keeps unchanged.
The maximum achievable throughput versus α and energy

harvesting rate is shown in Fig. 7, where eh changes from 1mJ
to (es+et ) mJ. From the figure, we can see that the throughput
increases with the energy harvesting rate until the energy
harvesting rate achieves the optimal value, then it will keep
unchanged. Besides, the maximum achievable throughput
increases with α decreasing, and the energy needed to achieve
the maximum throughput increases with α decreasing, which
means that more opportunities are available for secondary
user to access, meanwhile, more energy is needed to achieve
the maximum achievable throughput. The maximum achiev-
able throughput versus α and πi is also plotted as shown in
Fig. 8. It is observed that themaximum achievable throughput
increases with πi increasing while α is fixed, meanwhile the
throughput increases with α descending, and keeps unchange
while α < Pcol .
The optimal sensing threshold ε versus energy harvesting

rate eh and α is shown in Fig. 9. It is shown that in the upper

FIGURE 8. The maximum achievable throughput vs the probability of
primary channel being idle and the temporal correlation constraint
while eh = 50mJ .

FIGURE 9. Optimal detection threshold vs energy harvesting rate and α.

figure of Fig. 9 the optimum detection threshold decreases
as the increasing of energy harvesting rate until the energy
harvesting rate reaches the optimal value, then the optimal
detection threshold keeps unchanged. As the increasing of
energy harvesting rate, more energy can be used by sec-
ondary transmitter to operate the data transmission, and the
probability of collision with primary user increases. Thus,
high detection probability is need, which results into the
decreasing of detection threshold until the target collision
probability is reached, then the detection threshold keeps
unchanged. Besides, there is no optimum detection threshold
for low energy harvesting rate when the energy harvesting
rate is very low, which is because the limited harvested energy
to operate the secondary transmitter is not enough to bring
about more collision than the target collision probability.

From the lower plot of Fig. 9, it is seen that the optimum
detection threshold decreases as the increasing of α for a
given energy arrival rate when α > Pcol , and there is no
optimum detection threshold when α ≤ Pcol as we have
mentioned above. That is because the probability of primary
channel being occupied given secondary transmitter in active
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state increases with α, then the detection probability should
increase in order to keep the target collision probability.

V. CONCLUSION
In this paper, we have considered a cognitive radio network
in which the secondary transmitter equipped with an energy
harvesting device is allowed to opportunistically access the
primary channel. By utilizing the average throughput for
the secondary network as a design criterion and jointly
optimizing energy harvesting and spectrum sensing, we
have achieved both the energy efficiency and the spectrum
efficiency. The corresponding optimal detection threshold,
energy harvesting rate and the maximum achievable through-
put has been obtained under the energy causality and collision
constraints. In addition, the effect of target collision probabil-
ity and the temporal correlation constraint on the achievable
throughput has been also discussed. Finally, comprehensive
computer simulation results have presented to validate the
theoretical analysis and to demonstrate the performance of
the proposed maximum achievable throughput and the opti-
mal detection threshold.

APPENDIX A
PROOF OF LEMMA 1
Fixing eh and ε, the maximization of the objective func-
tion (9) can be split into two main conditions α > Pcol
and α ≤ Pcol . Then, each condition is further split into
several sub-conditions. Taking α > Pcol for example, three
different sub-conditions are shown in Figs. 10, 11 and 12.
It is seen that each sub-condition is further split into several
small cases for ease to understanding. Note that maximiza-
tion of R(Pi,Po,eh,ε) for fixed eh and ε in our work is a
problem of linear programming, since the objective and all
constraint functions are linear. As a result, the extreme points
exist at the intersections of the straight-line boundary seg-
ments of the feasible domain [27]. Because the objective is
increasing function of Pi and Po, the maximum R(Pi,Po,eh,ε)
achieves at point A (PAi ,P

A
o ) or point B (PBi ,P

B
o ). For ease

to recount the proof, we first denote 1 = R(PAi ,P
A
o ,eh,ε) −

R(PBi ,P
B
o ,eh,ε). If 1 < 0, the maximum R(Pi,Po,eh,ε)

achieves at point B, otherwise, it achieves at point A. Specif-
ically, we investigate the maximization problem one case by
another case in the sequel. Firstly, we study the condition
α > Pcol .

1) µ(eh, ε)≥1
as shown in Fig. 10. In this case, the feasible domain of
(Pi,Po) changes with the collision constraint:

a: Pcol/(1−Pd (ε))≥1
As shown in Fig. 10(a),

max
Pi,Po

R(Pi,Po,eh,ε)=8i
(
1−Pf (ε)

)
+8o

(
1−Pd (ε)

)
. (13)

FIGURE 10. Maximization of the secondary throughput with fixed
eh and ε, while µ(eh, ε) ≥ 1, α > Pcol .

FIGURE 11. Maximization of the secondary throughput with fixed
eh and ε, while α ≤ µ(eh, ε) < 1, α > Pcol .

b: α ≤Pcol/(1−Pd (ε))<1
As shown in Fig. 10(b),

max
Pi,Po

R(Pi,Po, eh, ε) = 8i
(
1− Pf (ε)

)
+8oPcol . (14)

c: Pcol/(1−Pd (ε))<α and α > Pcol
As shown in Fig. 10(c),

max
Pi,Po

R(Pi,Po,eh,ε)=8i
Pcol

(
1−Pf (ε)

)
α
(
1−Pd (ε)

) +8oPcol . (15)

2) α≤µ(eh, ε)<1
as shown in Fig. 11. In this case, the feasible domain
of (Pi,Po) is split into four sub-conditions on collision
constraint:
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a: Pcol/(1− Pd (ε)) ≥ 1
As shown in Fig. 11(a). R(Pi,Po, eh, ε) achieves the maxi-
mum value at point B, and

max
Pi,Po

R(Pi,Po, eh, ε)=8i
(
1−Pf (ε)

)
+8oµ(eh,ε)

(
1−Pd (ε)

)
.

(16)

Since 1 =
T−τ
T

(
eh − Eci (ε) − Eco(ε)

)( Ci
es/(1−Pf (ε))+et

−

Co
es/(1−Pd (ε))+et

)
< 0, where Ci > Co, 1− Pf (ε) > 1− Pd (ε),

es/
(
1 − Pf (ε)

)
+ et < es/

(
1 − Pd (ε)

)
+ et , eh −

Eci (ε)− E
c
o(ε) < 0.

b: µ(eh, ε)≤Pcol/(1−Pd (ε)) < 1
As shown in Fig. 11(b). R(eh, ε) obtains the maximum value
at point B, and

max
Pi,Po

R(Pi,Po,eh,ε)=8i(1−Pf (ε))+8oµ(eh,ε)(1−Pd (ε)).

(17)

Since 1 = T−τ
T

(
eh−Eci (ε)−E

c
o(ε)

Pcol
1−Pd (ε)

)( Ci
es/(1−Pf (ε))+et

−

Co
es/(1−Pd (ε))+et

)
< 0, where eh − Eci (ε)− E

c
o(ε)

Pcol
1−Pd (ε)

< 0,
Ci > Co, 1 − Pf (ε) > 1 − Pd (ε), es/

(
1 − Pf (ε)

)
+ et <

es/
(
1− Pd (ε)

)
+ et , eh − Eci (ε)− E

c
o(ε) < 0.

c: α ≤ Pcol/(1− Pd (ε)) < µ(eh, ε)
As shown in Fig. 11(c),

max
Pi,Po

R(Pi,Po, eh, ε) = 8i
(
1− Pf (ε)

)
+8oPcol . (18)

d: Pcol/(1− Pd (ε)) < α and α > Pcol
As shown in Fig. 11(d),

max
Pi,Po

R(Pi,Po,eh,ε)=8i
Pcol

(
1−Pf (ε)

)
α
(
1−Pd (ε)

) +8oPcol . (19)

3) µ(eh, ε) < α

As shown in Fig. 12. The feasible domain is split into three
sub-conditions on the collision constraint:

a: Pcol/(1− Pd (ε)) ≥ 1
As shown in Fig. 12(a), R(eh, ε) obtains the maximum value
at point B, and

max
Pi,Po

R(Pi,Po, eh, ε) = λ(eh, ε)

×
(
8i
(
1− Pf (ε)

)
+8oα

(
1− Pd (ε)

))
. (20)

Since 1 =
T−τ
T

αeh−Eci (ε)−αE
c
o (ε)

Eci (ε)
(
Eci (ε)+αE

c
o (ε)
)(1 − Pd (ε)

)(
1 −

Pf (ε)
)
πiπo

(
Ci
( es
1−Pd (ε)

+et
)
−Co

( es
1−Pf (ε)

+et
))
< 0, where

Ci > Co, 1−Pd (ε) < 1−Pf (ε), αeh−Eci (ε)−αE
c
o(ε) < 0.

b: αλ(eh, ε) ≤ Pcol/(1− Pd (ε)) < 1
As shown in Fig. 12(b), R(eh, ε) obtains the maximum value
at point B, and

max
Pi,Po

R(Pi,Po, eh, ε) = λ(eh, ε)

×
(
8i
(
1− Pf (ε)

)
+8oα

(
1− Pd (ε)

))
. (21)

FIGURE 12. Maximization of the secondary throughput with fixed eh and
ε, while

(
eh − Ec

i (ε)
)
/Ec

o (ε) < α, α > Pcol .

Since1=
αeh−(Eci (ε)+αE

c
o (ε))

Pcol
1−Pd (ε)

Eci (ε)(E
c
i (ε)+αE

c
o (ε))

(
8i
(
1−Pf (ε)

)
Eco(ε)−8o

(
1−

Pd (ε)
)
Eci (ε)

)
< 0, where αeh−(Eci (ε)+αE

c
o(ε))

Pcol
1−Pd (ε)

< 0,
8i
(
1− Pf (ε)

)
Eco(ε)−8o

(
1− Pd (ε)

)
Eci (ε) > 0.

c: Pcol/(1− Pd (ε)) < αλ(eh, ε) and α > Pcol
As shown in Fig. 12(c),

max
Pi,Po

R(eh, ε) = 8i
Pcol

(
1− Pf (ε)

)
α
(
1− Pd (ε)

) +8oPcol . (22)

Consequently, 1) Feasible set (eh, ε) of (13) is denoted by�1;
2) Feasible set (eh, ε) of (14) and (18) are combined into �2;
3) Feasible set (eh, ε) of (15), (19) and (18) are combined
into �3; 4) Feasible set (eh, ε) of (16) and (17) are combined
into �4; 5) Feasible set (eh, ε) of (16) and (17) are
combined into �5.

On the other hand, if α ≤ Pcol , (15), (19) and (18) do
not exist, and thus, �3 is empty. Meanwhile �2 and �5
change to �̄2 and �̄5, respectively. This completes the proof
of Lemma 1. �

APPENDIX B
PROOF OF LEMMA 2
The first order derivative of F(ε) is given by

F ′(ε) =
τ f σ 2

p

σ 4
w

(
σ 2
p + 2σ 2

w

σ 2
w(σ 2

w + σ
2
p )
ε − 1

)
4,

where 4 =
(
1−Pd (ε)

)
exp

(
−
τ f
2

(
(ε−σ 2w)

2

σ 4w
−

(ε−σ 2w−σ
2
p )

2

(σ 2w+σ 2p )2

))
. Let-

ting F ′(ε) = 0 yields ε = ε̄ =
σ 2w(σ

2
w+σ

2
p )

σ 2p+2σ 2w
. In addition,

we have F ′(ε) > 0 when ε > ε̄, and F ′(ε) < 0 when
ε < ε̄. Thus, F(ε) is an increasing function of ε in (ε̄,∞)
and a decreasing function of ε in (0, ε̄). As a consequence,
F(ε) achieves its minimum value at ε = ε̄ and F(ε̄) < 0.
Since lim

ε→0
F(ε) → 0 and lim

ε→∞
F(ε) → 1, there is only one
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ε = ε̃ > ε̄ satisfying F(ε̃) = 0. Therefore, we obtain
that F(ε) < 0 when ε < ε̃, and F(ε) > 0 when ε > ε̃.
On the other hand, if we let G(ε) = P′d (ε) − P′d (ε), there
must be one ε̇ ∈ (σ 2

w, σ
2
w + σ

2
p ) that satisfies G(ε̇) = 0, since

G(σ 2
w + σ

2
p ) > 0 > G(σ 2

w). In other words, there must be one
ε̇ ∈ (σ 2

w, σ
2
w + σ

2
p ) such that P′d (ε̇) = P′f (ε̇). Therefore, we

have F(ε̇) = Pd (ε̇)−Pf (ε̇) > 0. In addition to ε̄ < ε̃ < ε̇, we
obtain that there is a ε̃ ∈ (ε̄, σ 2

w+ σ
2
p ) that satisfies F(ε̃) = 0.

This completes the proof of Lemma 2. �

APPENDIX C
PROOF OF THEOREM 1
Let us first consider the case when α > Pcol . Note that
R(eh, ε) increases with eh increasing in �4 and �5, since
µ(eh, ε) and λ(eh, ε) are both increasing functions of eh.
In addition, R(eh, ε) is independent of eh in the feasible
domains �1, �2 and �3, and R(eh, ε) is continuous on the
edge of each domain. Therefore, R(eh, ε) achieves maximum
with respect to eh in�1,�2 or�3.We also notice thatR(eh, ε)
increases with ε increasing in �1 and �2, since Pd (ε) and
Pf (ε) are both decreasing functions of ε. Then, it can be
further obtained that R(eh, ε) achieves maximumwith respect
to ε in �3. Notice that in �3, we have ε ≥ ε1, where ε1 =
(Q−1(1 − Pcol

α
)/
√
τ f + 1)(σ 2

w + σ
2
p ), with Q−1(x) being the

inverse of Q-function. Since Q−1(1 − Pcol
α
)/
√
τ f ≈ 0 when

τ f is large enough, we have ε1 ≈ σ 2
w + σ

2
p and thus, ε1 ≥ ε̃.

If we let f (ε) = (1− Pf (ε))/(1− Pd (ε)), then, the first order
derivative of f (ε) is given by f ′(ε) = P′d (ε)F(ε)/

(
1−Pd (ε)

)2.
Using Lemma 2 and P′d (ε) < 0, we arrive at the fact that
f ′(ε) < 0 for ε > ε1. Hence, the maximum R(eh, ε) achieves
at εopt = ε1. The optimal eh is at the intersection of �2, �3,
�4 and �5.
Similarly, when α ≤ Pcol , we can prove that R(eh, ε) is

increasing in terms of eh in �4 and �̄5 and is independent of
eh in �1 and �̄2. In addition, R(eh, ε) is continuous on the
edge of each domain, and R(eh, ε) increases with respect to ε
in �1 and �̄2. Therefore, the limit of R(eh, ε) with respect to
eh and ε lies in �̄2. Since Pf (ε) > 0, R(eh, ε) < 8i+8oPcol .
Furthermore, lim

ε→∞
Pf (ε) = 0, and lim

ε→∞
R(1,Pcol, eh, ε) =

8i + 8oPcol for any eh ≥ eh,1 = lim
ε→∞

Pcol
1−Pd (ε)

Eco(ε) +
Eci (ε) = (es + et )(πi + Pcolπo). This completes the proof
of Theorem 1 �.

APPENDIX D
PROOF OF THEOREM 2
Let us firstly deal with the situation where α > Pcol .
As we have proved that R(eh, ε) increases with ε increasing in
�1 and �2, decreases with ε increasing in �3, and increases
with eh increasing in �4 and �5, we need only to investigate
the monotonicity of R(eh, ε) on ε in �4 and �5 to obtain the
maximum R(eh, ε).
In �4, the first order derivative of R(eh, ε) with

respect to ε in �4 is given by ∂R(eh,ε)
∂ε

=
(
−

P′f (ε)E
c
o(ε)9 − 8o

(
eh − Eci (ε)

)
P′d (ε)esπo

)
/Eco(ε)

2, where

9 = 8iesπo +
(
1 − Pd (ε)

)
et (8iπo − 8oπi). Since 8iπo −

8oπi =
T−τ
T πiπo(Ci − Co), Ci > Co and 8iπo −8oπi > 0,

we obtain 9 > 0, meanwhile, we also obtain eh−Eci (ε) > 0
due to µ(eh, ε) > α in �4, In addition to P′f (ε) < 0 and
P′d (ε) < 0, we obtain that ∂R(eh,ε)

∂ε
> 0 and thus, R(eh, ε)

is an increasing function of ε in �4. As a consequence, the
maximum throughput in �4 is obtained on the boundary.

In �5, the first order derivative of R(eh, ε) with respect to
ε is given by ∂R(eh,ε)

∂ε
=

−ehG(ε)
(Eci (ε)+αE

c
o (ε))2

, whereG(ε) = es(πi+

απo)
(
P′f (ε)8i + P′d (ε)α8o

)
− αet (8iπo −8oπi)P′d (ε)F(ε).

Since the primary signal SNR is low, we consider Ci ≈ Co
and then,8iπo−8oπi =

T−τ
T πiπo(Ci−Co) ≈ 0. Therefore,

we have G(ε) ≈ es(πi + απo)
(
P′f (ε)8i + P′d (ε)α8o

)
< 0,

because of the fact that P′d (ε) and P
′
f (ε) are negative and other

variables are all positive. Hence, we obtain ∂R(eh,ε)
∂ε

> 0 and
as a result, R(eh, ε) is an increasing function of ε in �5.

From Fig. 2, we can see that �5 can be further split into
two sub-conditions on eh :1) eh ≤ eh,3, 2) eh,3 ≤ eh < eh,opt ,
where eh,3 = (es + et )(πi + απo)Pcol/α is the energy value
at the edge between �4 and �5 with ε→∞.

1) When the harvested energy eh ≤ eh,3, the limit of the
achievable throughput is given by

lim
ε→∞

R(eh, ε) =
eh(8i + α8o)

(es + et )(πi + απo)
. (23)

Consequently, there is no optimum detection threshold
for this condition.

2) When the harvested energy eh,3 ≤ eh < eh,opt , the
achievable throughput reaches the maximum at the
edge between �3 and �5, where λ(eh, ε) =

Pcol
α(1−Pd (ε))

.
Let Y (ε) = λ(eh, ε) −

Pcol
α
(
1−Pd (ε)

) . Then, εopt,2 =
Y−1(0) is the optimum detection threshold for given eh,
and

max
ε
R(eh, ε) = 8i

Pcol
(
1− Pf (εopt,2)

)
α
(
1− Pd (εopt,2)

) +8oPcol .

(24)

In addition to R(eh, ε) is continuous at the edge of
adjacent two feasible sets, the maximum achievable
throughput with eh < eh,opt is expressed as (23)
and (24) when Pcol < α.

Now, let us consider the case when α ≤ Pcol . Just as we
have proved above, R(eh, ε) is an increasing function of ε in
�4 and �̄5. If eh,2 ≤ eh < eh,1, where eh,2 = (es + et )(πi +
απo) is the energy value at the edge between �4 and �̄5 as
shown in Fig. 3, then, the limit of the throughput in �4 is
determined by

lim
ε→∞

R(eh, ε) = 8i +8o

(
eh

(es + et )πo
−
πi

πo

)
. (25)

If eh < eh,2, since the throughput in�4 and �̄5 increases with
ε for the given eh, and the throughput at the edge between�4
and �̄5 is continuous, the limit of the throughput in �̄5 is
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determined by

lim
ε→∞

R(eh, ε) =
eh(8i + α8o)

(es + et )(πi + απo)
. (26)

Therefore, there is no optimum detection threshold
under these two conditions. This completes the proof of
Theorem 2. �
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