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ABSTRACT In this paper, we investigate the feasibility of recognizing human hand gestures using micro-
Doppler signatures measured by Doppler radar with a deep convolutional neural network (DCNN). Hand
gesture recognition using radar can be applied to control electronic appliances. Compared with an optical
recognition system, radar can work regardless of light conditions and it can be embedded in a case.
We classify ten different hand gestures, with only micro-Doppler signatures on spectrograms without
range information. The ten gestures, which included swiping from left to right, swiping from right to left,
rotating clockwise, rotating counterclockwise, pushing, double pushing, holding, and double holding, were
measured using Doppler radar and their spectrograms investigated. A DCNN was employed to classify the
spectrograms, with 90% of the data utilized for training and the remaining 10% for validation. After five-fold
validation, the classification accuracy of the proposed method was found to be 85.6%. With seven gestures,
the accuracy increased to 93.1%.

INDEX TERMS Hand gesture, micro-Doppler signatures, Doppler radar, deep convolutional neural
networks.

I. INTRODUCTION
Recognizing human hand gestures can facilitate a number of
important applications in the area of electronic device con-
trol, biomechanics research, computer gaming, and defense.
Controlling devices without physical contact has the advan-
tage of convenience for a user. In particular, hand gestures
can be used as an input modality in automobiles where, for
safe driving, physical contact with buttons is highly undesir-
able. In addition, it could be used in small-sized electronic
devices, instead of a small button being employed. Replacing
buttons in devices can also improve the reliability and design
flexibility of products.

In the hand gesture recognition research area, several opti-
cal sensor methods, in which vision or depth camera are
utilized, have been proposed [1]–[3]. Optical sensors have a
high resolution that enables tracking and recognition of the
motions of the finger and wrist. Temporal pattern recogni-
tion techniques such as hidden Markov model are usually
employed to classify the gestures in these cases. Using a
camera system, overall accuracies of more than 90% were
obtained for 20 gestures [2]. With a depth camera sen-
sor, recognition accuracy of 93.9% has been achieved for
10 motions [4]. Acoustic Doppler has also been used to
detect hand motion, with accuracy of approximately 94% for

five motions. However, it requires continuous transmission
of audible waves, which is reported to be annoying [5].
Methods that recognize human hand gestures using radar
have also been proposed [6]–[8]. Unlike optical applications,
radar usage is not restricted by lighting condition. In addition,
a miniaturized radar sensor can be embedded inside devices
because radar has through-object capability. Embedding a
sensor inside a device enables easier maintenance as well as
robust operation as the possibility of buttons malfunctioning
is avoided. Thus far, pulsed radar and frequency-modulated
continuous-wave (FMCW) radar have been employed to
measure the range to the fingers in order to track their motion.
Using FMCW radar, the accuracy was approximately 89%
for 10 gestures [7]. However, to the best of our knowl-
edge, Doppler radar has never been applied for hand gesture
recognition. Using Doppler sensors would result in a simple,
cost effective, and easy approach to capturing radial velocity
response.

In this letter, we investigate the feasibility of recogniz-
ing hand gestures using only micro-Doppler signatures, i.e.,
no range information is utilized. When a target has non-
rigid body motions, micro-Doppler signatures are generated.
These micro-Doppler signatures have served as features for
recognizing humans and their motions [9]–[11]. However,
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micro-Doppler signatures are represented as overlapped sig-
natures in the joint time-frequency domain when several
scatterers, such as fingers, exist. As a result, they have to be
carefully investigated in detail in order to distinguish reveal-
ing signatures associated with gestures. This study focused
on analyzing micro-Doppler signatures in spectrograms from
diverse hand gestures and investigated the feasibility of clas-
sifying them based on the measured signatures. Ten hand ges-
tures, including swiping, rotating, pushing, and holding, were
investigated. Because the spectrograms of these gestures only
have subtle differences, instead of the conventional super-
vised learning approach, a powerful classifier is necessary.
We employed deep convolutional neural network (DCNN)
for spectrogram-based hand gesture classification. DCNN,
which is inspired by the human visual cortex, is one of
the most successful deep learning algorithms [12]–[14].
It has been effectively used in the field of image recog-
nition. By training the convolutional filter and the fully
connected multi-layer perceptrons, DCNN simultaneously
extracts and classifies important features. DCNN does not
require a handcrafted feature extraction process. Conse-
quently, it can be employed in any image classification appli-
cation. Because micro-Doppler signatures are represented as
images in spectrograms, we were able to apply DCNN in
this study as well. In this letter, we report on the measure-
ment setup, measured data, DCNN, and classification results
obtained.

II. EXPERIMENTAL SETUP AND MEASUREMENT
We employed Doppler radar in order to obtain micro-Doppler
signatures of ten hand gestures from a single participant.
Bumblebee Doppler radar (Samraksh Co. Ltd.), which oper-
ates at 5.8 GHz, was employed. This radar produces a quadra-
ture output at an average output power of 4.5 dBm. It has an
antenna beam width of 60 degrees, and responds to radial
velocities between 2.6 cm/s and 2.6 m/s, which make it
suitable for detecting hand gestures. We affixed the radar to
a table and executed the hand motions in the main lobe of
the radar antenna. The average distance from the radar to the
hands was approximately 10 cm.

The ten hand gestures employed in this study were
(a) swiping from left to right, (b) swiping from right to left,
(c) swiping from up to down, (d) swiping from down to up,
(e) rotating clockwise, (f) rotating counterclockwise,
(g) pushing, (h) holding, (i) double pushing, and (j) dou-
ble holding. The employed gestures are depicted in Fig. 1.
The upper half of each picture is a snapshot of the start-
ing posture, whereas the bottom half is that of the end-
ing posture. Because double pushing and double holding
are repeats of each motion, we omitted the corresponding
pictures.

Because theDoppler device only detects radial velocity, the
motions depicted in Figs. 1(a)–(d) required a slight variance
from each other. Swiping left to right, Fig. 1(a), was a quick
snap that involved the wrist and all fingers together. For swip-
ing right to left, the wrist was no longer stationary and moved

FIGURE 1. Eight of the ten hand gestures measured using Doppler radar:
(a) swiping from left to right, (b) swiping from right to left, (c) swiping
from up to down, (d) swiping from down to up, (e) rotating clockwise,
(f) rotating counterclockwise, (g) pushing, and (h) holding.

a few inches during the motion. Another defining feature of
this motion is the finger position, which involved only three
fingers facing the Doppler instead of five. Similarly, the up
to down swiping motion had the same finger positioning but
the total distance traveled by the wrist was nearly twice as
much as that from right to left. The swiping down to up
motion involved all five fingers, but necessitated a more sig-
nificant change in wrist positioning than all the othermotions.
Clockwise and counterclockwise are also very similar to each
other; both have all five fingers towards the Doppler with the
only changes stemming from the starting position of coun-
terclockwise and ending position of clockwise. The counter-
clockwise rotation starts with the palm facing upwards and
ends in the same starting point as clockwise. Finally, pushing
and holding are opposite gestures, as shown in the figure.
The differences between push and hold are simply based on
whether the fingers are together or separated. In pushing and
double pushing, the fingers are kept together through the full
motion, whereas in holding and double holding the fingers
are separated.

To investigate micro-Doppler signatures, spectrograms of
finger motions were observed through short-time fast Fourier
transform (FFT). We set the size of the FFT to 256 ms
and the time step of non-overlapping samples to 1 ms.
Examples of the ten spectrograms obtained are shown in
Fig. 2. It can be seen that the micro-Doppler signatures of
a single hand motion occur within 200 ms–300 ms, and
they exhibit marginally different features in the joint time-
frequency domain. Each gesture was measured 50 times;
consequently, we obtained 500 pieces of data in total. From
a Doppler radar perspective, gestures (a), (b), (c), and (d) are
almost similar because their radial velocities are analogous
even though the directions of motion are different. However,
because of the small variation in hand movements described
in Section II, peculiar features that distinguish them can be
observed. To differentiate those subtle differences, a powerful
image recognition technique, rather than classification meth-
ods based on handcraft features, is necessary.
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FIGURE 2. Spectrograms of eight hand gestures: (a) swiping from left to
right, (b) swiping from right to left, (c) swiping from up to down,
(d) swiping from down to up, (e) rotating clockwise, (f) rotating
counterclockwise, (g) pushing, (h) holding, (i) double pushing, and
(j) double holding.

III. DEEP CONVOLUTIONAL NEURAL NETWORKS
(DCNNS)
To classify targets based on spectrograms, a process com-
prising feature extraction followed by classification is usually
employed. There are five main approaches to feature extrac-
tion: i) handcraft features [10], ii) empirical mode decom-
position [11], iii) linear predictive code [15], iv) principal
component analysis [16], and v) DCNNs [17], [18]. Of these
approaches, DCNNs exhibit the best classification accuracy.

Consequently, we employed DCNNs to classify our hand
gestures. Whereas most classification algorithms utilize a
normalization process, which is quite cumbersome and can be
subjective, DCNN does not require signature normalization
as it can recognize a target regardless of the location.

Among deep learning algorithms, DCNN is regarded as
one of most powerful classifiers and it has been success-
fully used in image recognition applications. Compared
to other conventional machine learning algorithms, DCNN
employs amulti-layer structure to improve generalization and
abstraction performance. Because of limited computational
resources and diminishing backpropagation error, in the past
it was not feasible to train such a multi-layer structure. How-
ever, with the development of graphics processing units that
can carry out parallel processing and improve training algo-
rithms, deep learning models can now be properly trained.

FIGURE 3. (a) Process of applying a 5-by-5 convolution filter to the input
data (in orange) to generate the output (in green). (b) Examples of 2-by-2
pooling (max-pooling or mean-pooling) that reduces the data dimension
by half.

A DCNN primarily consists of a convolutional filter,
an activation function, and a pooling layer. The combina-
tion of convolution filters, activation function, and pooling
constitutes one layer and multiple layers are consecutively
connected in a DCNN. The convolutional filter extracts the
features of a spectrogram through its convolution process,
as shown in Fig. 3(a). The coefficients of the convolutional
filter are trained by a given dataset. The number of con-
volution filters is determined empirically; for spectrogram
recognition, this number is usually in the range five to twenty.
The convolutional filter is followed by an activation function.
This activation function is highly nonlinear such that it can
describe the nonlinear relationship between inputs and out-
puts. Instead of the sigmoid function, deep learning employs
restricted linear units, f (x) = max(0, x), because it can
achieve better empirical results [19] owing to its piecewise
linear characteristics. The third stage is a pooling layer that is
used for data dimension reduction. This pooling layer enables
the final output to be more robust to noise. Pooling can be
performed by selecting a maximum value or a mean value, as
shown in Fig. 3(b).

Finally, a general perceptron is connected in the last layer
for classification purposes. Fig. 4 shows the architecture of a
simple DCNN, which consists of three convolution layers and
one final fully connected layer. A DCNN also omits hidden
nodes through a predetermined probability that is indepen-
dent of the test samples. The dropout [20] of these nodes is
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FIGURE 4. (a) Structure in DCNN with three layers, and (b) Structure of
each layer.

used to prevent overfitting in a regularization scheme. This
enables the neural network to prevent co-adaption among its
nodes.

The coefficients of convolution filters and weighting val-
ues of the final fully connected layers, are trained via a
dataset. A backpropagation algorithm with a stochastic gra-
dient descent (SGD) is usually used as a training algorithm.
Trained convolutional filters work as a feature extractor, and
the fully connected perceptron functions as a classifier. Even
though DCNNs are predominantly applied to RGB images,
they are also effective in spectrogram recognition applica-
tions [17], [18].

IV. HAND GESTURE CLASSIFICATION
In our study, to generate the training dataset, a two-second
time window was used to crop the spectrograms. Then, each
spectrogram was resized to 60-by-60 and the values normal-
ized from zero to one. Among the 500 pieces of datameasured
from the single participant, we used 90% as training data and
10% as testing data. We used 5-fold validation to obtain valid
accuracy by dividing the measured data into five different
training datasets and test datasets. For the DCNN structure,
we used three layers, with five, four, and two convolutional
filters. At each layer, the convolutional filter had dimensions
5-by-5 and the reduction ratio was 2:1 in all pooling layers.
The number of layers and filters were empirically optimized
for the highest accuracy. In the training process, the iteration
was set to 90 because the error saturates. The batch size was
two. The training error curve for Fold 1 is shown in Fig. 5.

For the investigated ten activities, the averaged classifica-
tion accuracy was 85.6%. The 5-fold validation accuracies
are shown in Table I. For the analysis of misclassification, the
confusion matrix for all 5-folds is presented in Table II. The
values in the table are for classification accuracy (%). From
the table, it can be seen that gestures (a) and (b) each have a
high inaccuracy, as expected, because there were similarities
between activities (a), (b), (c), and (d). We evaluated the
performance of DCNNs again with a total of eight activities

FIGURE 5. Test error curve with epochs.

TABLE 1. Accuracies of the DCNN for each fold and their average.

TABLE 2. Confusion matrix (%).

by omitting activities (a) and (b). With the eight activities,
the accuracy increased to 91.4%. With seven gestures, by
omitting (a), (b), and (c), the accuracy reached 93.1%.

V. CROSS-VALIDATION THROUGH DIVERSE SCENARIOS
In the previous measurements, it was assumed that the DCNN
is trained by data from a particular user and are used to
recognize that user’s hand gesture in a controlled environ-
ment. The hand gestures of a specific user should be recorded
first to train the machine before the system is actually used.
How the trained DCNN would effectively recognize hand
gestures in uncontrolled environments is an interesting ques-
tion. Therefore, we set up four practical scenarios. For each
scenario, we measured data three times for seven gestures
and investigated the classification accuracy. The four scenar-
ios included measurements i) with different incident angles,
ii) with different aspect angles, iii) with different distances,
and iv) with a second participant.

In the first scenario, we measured the hand gestures of
the participant when the incident angle to the radar was
−45 degrees and +45 degrees, as shown in Fig. 6(a). In this
case, the Doppler signatures did not change, as it is the same
situation as the previous case from the Doppler radar point of
view. However, we noticed that the signal to noise ratio (SNR)
of the Doppler signal decreased because the hand was not
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FIGURE 6. (a) With zero aspect angle, (b) With non-zero aspect angle.

TABLE 3. Classification accuracy with distance (%).

aligned with the main lobe of the radar antenna. The antenna
has a limited beam width of 60 degrees such that the received
power decreases with the incident angle.

In the second scenario, we measured hand gestures for
non-zero aspect angles. In this case, the hand had an off-
set in position to make the aspect angle. When θ1was
15 degrees and θ2 45 degrees, we measured the data from the
participant and calculated the accuracy. The accuracies were
81.12% and 57.5%, respectively, when the previously trained
DCNN was utilized. The aspect angle causes variations in
the micro-Doppler signatures because Doppler corresponds
to radial velocity only, which is calculated by the cosine
term [21], [22]. In addition, the signature became attenuated
due to the low SNR as the hand was not aligned to the
antenna’s main lobe.

In the third scenario, we measured the gestures with differ-
ent distances when the aspect angle of the hand was zero. The
measured distances were 15 cm, 30 cm, 45 cm, and 60 cm.
As shown in Table III, in general, the classification accuracy
decreased with distance because of the low SNR and the
variation of micro-Doppler signatures.

In the fourth scenario, we measured the seven gestures
from the second participant with the same conditions as
before. When the previously trained DCNN was used, the
classification accuracy was 71.5%. This accuracy reduction
is a result of the gesture difference between users. Con-
sequently, when the data from the second participant was
included in the training dataset, the accuracy increased to
90.48% with a newly trained DCNN. This test implies the
possibility of implementing a user-independent classifier
trained by a massive dataset comprising data from multiple
human subjects.

VI. CONCLUSION
In this study, we investigated the feasibility of a pro-
posed method that classifies human hand gestures using
micro-Doppler signatures with a DCNN. Ten hand ges-
tures were measured using Doppler radar and their spectro-
grams analyzed. The DCNN was employed to classify the

micro-Doppler signatures of the hand gestures. The classi-
fication accuracy of the proposed method was found to be
85.6% for ten gestures. With seven gestures, the accuracy
increased to 93.1%. Because high classification accuracy is
required in practical applications, it would be reasonable
to use the suggested seven gestures when Doppler radar is
employed. However, it is possible to include more gestures if
they produce unique signatures in a spectrogram.

However, it should also be noted that micro-Doppler signa-
tures can vary depending on aspect angle and distance to the
radar, as shown in our experiments. For robust and practical
operation, data from diverse scenarios should be included
in the measurement process. In addition, multiple human
subjects should be measured to construct a user-independent
classifier. As the diversity and complexity of data continue
to increase, the use of DCNN as a classifier will become
more suitable as a result of its powerful learning capability.
In future work, we plan to measure many gestures from
various human subjects to train a DCNN for general-purpose
hand gesture recognition.
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