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ABSTRACT This paper applied a radial basis function network (RBFN) in coherent Fourier
scatterometry (CFS) to reconstruct the linewidth of periodic line/space (L/S) patterns. The fast, nonde-
structive, and repeatable measurement capability of CFS enables its integration with intelligent lithography
systems. Two steps to reconstruct the linewidth of the L/S patterns were performed in this paper. The first
step was to use the finite difference time domain numerical electromagnetic tool to rigorously establish the
library of modeled diffraction signatures by using the L/S patterns. Each modeled signature was converted
to an intensity vector as the training data to construct the RBFN. The trained RBFN has a simple architecture
consisting of three layers: input, hidden, and output layers. The second step was to collect the experimental
signatures and feed them into the trained RBFN model to predict the linewidth of L/S patterns. This paper
used the transverse electric polarized incident beam at the wavelength of 632 nm in the experimental setup of
the CFS. Five L/S patterns were used to test the constructed RBFN. The experimental results indicated that
the maximal difference was 13 nm between the CFS and the atomic force microscopy (AFM) measurements
for the sample D with an L/S of 200 nm. The minimum difference was 2 nm for the sample A with an
L/S of 140 nm. The correlation coefficient between the CFS and AFM metrology measurement running
through five samples was 0.972. The high correlation between the CFS with the proposed RBFN measure-
ments and the AFM revealed the potential to implement the radial basis learning kernel in optical metrology
to achieve intelligent lithography.

INDEX TERMS Coherent Fourier scatterometry (CFS), critical dimension (CD) reconstruction, holistic
lithography, optical scatterometry, radial basis function network (RBFN).

I. INTRODUCTION
The newly developed holistic lithography technique is an
intelligent method for manufacturing the advanced process
nodes used in the semiconductor industry [1]–[3].
Holistic lithography is enabled through the integration of in-
line metrology and computational tools, which increases the
efficiency and quality of the lithography process. As stated in
an International Technology Roadmap for Semiconductors
report, the metrology tools for linewidth (or critical dimen-
sion, CD) measurement in the semiconductor process must
be nondestructive and compatible with in-line metrology [4].
The CD-scanning electron microscope (SEM) tool has been
commonly used to characterize device structures for decades.
However, because the device structure designs have become
increasingly complicated and diversified to realize multiple
functions on chips, such conventional metrology tools have

become insufficient [5], [6]. Optical scatterometry is emerg-
ing as a complementary tool for CD-SEM [7]–[9] because
it performs fast and nondestructive measurement of periodic
line/space (L/S) patterns.

Several configurations of optical scatterometry exist,
including specular [10], angular [11], polarimetry [12],
and ellipsometry [13]. Recently, coherent Fourier scat-
terometry (CFS) has attracted considerable attention
because of the high-speed and high-sensitivity measure-
ment enabled through this optical configuration [14]–[17].
CFS measurement is based on diffraction by periodic L/S
patterns [18], [19]. Two steps are required to characterize the
linewidth of L/S patterns in CFS. The first step is a forward
modeling process to obtain modeled diffraction signatures
through the periodic L/S pattern, which is treated as the
surface relief grating. Rigorous numerical electromagnetic
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techniques such as rigorous coupled wave analysis, finite
difference time domain (FDTD), and an integral equation
solver can effectively compute the diffraction signatures from
L/S patterns on a nanometer scale [20], [22]. The next step
is to reconstruct the linewidth of the L/S pattern, which is
widely known as the inverse problem [23], [24].

The inverse problem in optical scatterometry has attracted
much attention and is considered essential to characterizing
the linewidth of L/S patterns. The library search method
has been proposed to solve the inverse problem [25], [26].
However, the library search method is limited by the time-
consuming nature of its computation, because the method
requires numerous theoretical signatures to complete the
accuracy measurement [27]–[29]. Various algorithms, such
as the recursive random search and genetic algorithm, can
also be applied in the inverse problem [30]. However, the
reconstruction results from these methods are less accu-
rate than those from the library search method. Another
research direction for improving the drawbacks of meth-
ods for solving the inverse problem is toward the use of
an intelligent algorithm; for example, an artificial neural
network (ANN) [31]–[33].

An ANN is trained by a collection of modeled signatures
and estimates the linewidth of the L/S pattern according to
experimental signatures. However, when an ANN has an
excessive number of input terminals, its architecture becomes
complicated and it tends to become instable, resulting in it
being impractical for implementation in the semiconductor
manufacturing process [34]–[36]. A radial basis function
network (RBFN), an expanded version of the ANN, is an
algorithm with the potential to solve the inverse problem in
optical scatterometry. Compared with the ANN, the RBFN
has architecture that is easy to implement [37]. A Gaussian
activation function is employed in the hidden layer to map the
nonlinear input data. Consequently, the RBFN is sensitive to
noisy data [38]. Several papers have proposed and discussed
the applications of the RBFN in various systems such as
dipole antenna [38], robotic [39], earthquake prevention [40],
and cardiology interval-valued data systems [41].

This paper proposes an RBFN based on the for-
ward selection technique to reconstruct the linewidth
of L/S patterns [42]. The forward selection is expected to
obtain a parsimonious network. Section II of this paper
reviews the diffraction theory used for CFS and presents the
L/S pattern design for producing the theoretical signatures.
Section III explains the proposed RBFN and the linewidth
reconstruction procedure. Section IV demonstrates the exper-
imental results, and Section V provides a conclusion.

II. THEORETICAL SIGNATURES
BY THE DESIGNED PATTERNS
Fig. 1 explains the measurement principle of the optical
scatterometry, with diffraction by the periodic L/S pattern as
the surface relief grating. The grating is characterized by the
following geometrical parameters: linewidth (w), pitch (p),
height (h), and sidewall angle (SWA). When the plane wave,

FIGURE 1. Incident beam on a surface relief grating by the polar θi and
azimuthal ϕi angles being diffracted by the grating into the zeroth,
negative first, and first orders.

as indicated by the wave vector k i, illuminates the grating by
the polar angle θi and azimuthal ϕi, the wave is diffracted into
the directions of the zeroth order, ± first order, and higher
orders. The incident angle θi and the diffracted angle θd for
the nth diffraction order beam are related by the Braggs law
as sinθi + sinθd = nλ/p, where λ is the wavelength and n is
the diffraction order [47]. The total fields diffracted by the
L/S pattern are described as follows:

U (x, y) = A0
∑

exp
[
i
(
k i sin θi +

2πn
p

)
x
]
, (1)

where n is an integer. The diffracted field is indicated by the
wave vector kn = (knx , 0, k

n′
z ), corresponding to the incident

angle θi such that kn sin θd = k i sin θi + 2πn/p.

FIGURE 2. Diffracted plane waves on M(x, y ) plane are collected by an
objective lens and propagated onto the backfocal plane N(x ′, y ′).

An objective lens is placed above the L/S pattern to collect
the diffraction fields, as shown in Fig. 2. TheM (x, y) plane is
placed on the L/S pattern surface. The separation between the
objective lens and the M (x, y) plane is l. The plane N (x ′, y′)
is defined as the backfocal plane of the objective lens with
the focal length f . This study relates the optical field on the
M (x, y) plane with the field on the backfocal plane N (x ′, y′)
in the optical system based on the Fourier optics theory.
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The diffracted beams travel at the angles θx = sin−1λvx
and θy = sin−1 λvy in directions corresponding to the x-axis
and y-axis, respectively. The diffracted beam is mapped using
the lens onto the point (x ′, y′) on the backfocal plane, where
x ′ = θx f = λvx , y′ = θyf = λvy. The complex amplitude on
the backfocal plane N (x ′, y′) is formulated as follows:

N (x ′, y′) ≈ h0F
( x
λl
,
y
λl

)
, (2)

where F(vx , vy) is the Fourier transform of the U (x, y), and
h0 = (j/λd) exp(−jks) is the interference equation [46].
The intensity at each point (x ′, y′) on the backfocal plane
N (x ′, y′) results from the diffraction caused by the L/S pattern
when the incident beam is used at the angles θi and ϕi.
The diffracted angle θd for the nth order is limited by the
numerical aperture (NA) of the objective lens. Therefore, only
the diffracted beams within the NA are further propagated
onto the backfocal plane.

FIGURE 3. Locations of the diffracted beams at the zeroth and negative
first, and second orders observed from the top view of the objective
lens [47].

Fig. 3 illustrates the top view of the objective lens and
the relation between the incident beam and the diffracted
beam within the NA. The solid circle represents the effec-
tive lens area defined by the NA divided by four quadrants
on an x-y Cartesian plane. Each circle with a dotted line
represents a polar angle θi mapped to the Cartesian plane.
The grating is placed parallel to the y-axis and perpendicular
to the x-axis. The beam is incident on the grating by the
polar angle θi and the azimuthal angle ϕi. The xi and yi on
the Cartesian plane are related to the incident angles by the
xi = sin θi cosϕi and yi = sin θi sinϕi [47]. Equation (5)
describes the location of xnd and ynd standing for the nth
diffracted beam on the x-y Cartesian plane. For example, the
beam is incident on the grating by the angles of θi = 60◦ and
ϕi = 45◦ when in quadrant I. The zeroth order diffracted
beam is located in quadrant III. The negative first- and
second-order diffracted beams are located in quadrant II.

FIGURE 4. The degree of overlap, F , between the diffracted orders on the
backfocal plane.

However, the first- and second-order diffracted beams are
outside of the NA of the objective lens. Equation (3) is
also applicable when the incident beam (xi, yi) is located
in quadrants II, III, or IV. The intensity distribution map
on the N (x ′, y′) plane is obtained by adding the diffracted
beams from various incident angles. The diffraction intensity
map indicates the overlap of diffracted beams, as depicted in
Fig. 4. The degree of overlapping between the negative first,
zeroth, and first diffraction orders is described in (4). Overlap
exists between the negative first and first orders when F < 1;
overlap also exists between the negative first and zeroth, and
the zeroth and first orders when 1 < F < 2. Otherwise, no
overlap exists between diffraction orders when F > 2 [19].(

xnj , y
n
j

)
= (−xi − n

λ

p
,−yi), (3)

F =
λ

NA× p
. (4)

TABLE 1. Geometrical parameter of designed grating.

Although (3) predicts the location of the nth diffracted
beam, rigorous electromagnetic modeling is still required
to calculate the intensity of the nth diffracted beams. The
diffraction field of the L/S pattern was calculated using the
Lumerical FDTD software in this study. Table 1 summarizes
the L/S pattern design parameters used in the study. Five
designed L/S patterns were used, with the h = 300 nm,
SWA = 90◦, and various w/p including 140 nm/700 nm,
160 nm/800 nm, 180 nm/900 nm, 200 nm/1000 nm, and
220 nm/1100 nm. The L/S patterns were formed on the
Si substrates as one-dimensional surface relief gratings. The
incident beam with transverse electric (TE) field polarization
was at the wavelength of 632 nm. The incident polar angle
θi was between 0◦ and 33◦, including the NA effect. The
azimuthal angle ϕi was between 0◦–360◦. The refractive
index was 3.825 and k was −0.026 for the modeling of
the Si gratings. The modeled diffraction intensity from each
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L/S pattern in Table 1 was defined as the modeled signature
for the pattern. The library of model signatures contained the
diffraction intensity from the L/S patterns listed in Table 1.
The library also contained the signatures of the various L/S
patterns including the designed linewidth range of ±20 nm
with a 1 nm step each, the designed height of ±20 nm with a
5 nm step each, and the designed SWA of 86◦–90◦ with a 2◦

step. Therefore, the number of modeled signature maps was
1107 for each grating sample.

FIGURE 5. Modeled signatures of the designed gratings for
w/p = (a) 140/700 nm; (b) 160/800 nm, (c) 180/900 nm; (d) 200/1000
nm; (e) 220/1100 nm.

This research only computed the signature map with the
± first diffraction orders because they were more sensitive
to the grating structure variations than the zeroth order [9].
Fig. 5 illustrates the modeled signature maps with the
± first diffraction orders for the five designed cases listed
in Table 1. The maximal diffraction efficiency was 0.3168
for the A pattern, 0.1654 for the B pattern, 0.1964 for the
C pattern, 0.1361 for the D pattern, and 0.0852 for the E pat-
tern.We further verified the degree of overlap for themodeled
signatures, as displayed in Fig. 5. The calculated F was 1.64,
1.43, 1.27, 1.14, and 0.14 respective to the cases illustrated in
Figs. 5(a), 5(b), 5(c), 5(d), and 5(e). The F results indicated
that the degrees of overlap between the modeled first and
zeroth diffraction orders, and themodeled zeroth and negative
first diffraction orders, were consistent with the predictions
achieved using (4).

FIGURE 6. Process flow of formatting the modeled signature into an
intensity vector.

Each modeled signature map illustrated in Fig. 5 was con-
verted to a set of intensity vectors then used as the training
data for constructing the subsequent RBFN. Fig. 6 depicts
the transformation process flow from a modeled signature
map to the sets of intensity vectors. First, each modeled
signature map was formatted as an image with 50×50 pixels.
Effective pixels among the 2500 pixels were assigned to
minimize the computation resources used in this research.

In this study, the effective pixels were defined as the pixels
for which the diffraction efficiency was not 0. The effective
pixels of the imagewere grouped as a region of interest (ROI).
Each column in the ROI was extracted and all columns were
recombined in the ROI as an intensity vector. The number
of intensity vectors was 1107 for each grating sample. Each
element in the intensity vector corresponded to one node in
the input layer. The number of input nodes was equal to
the number of elements in the intensity vector. The intensity
vector of the input layer and the linewidth of the output layer
were used as the training data to construct the RBFN. Table 2
summarizes the number of intensity vectors and nodes of
the input layer for each grating pattern listed in Table 1.
The number of intensity vectors was 1107 for all patterns
and the numbers of input nodes were 388, 760, 1084, 1380,
and 1612 respective to grating patterns A, B, C, D, and E.
A larger modeled signature map size was correlated with the
generation of a higher number of input nodes.

TABLE 2. Number of intensity vectors and input nodes for constructing
the RBFN.

III. RBFN ALGORITHM IN CFS
This research proposed using an RBFN to solve the inverse
problem of CFS. The proposed RBFN applies the idea of
a receptive field to the ANN. A receptive field is a region
in which a sensory field of cells elicits a response [43].
Fig. 7 illustrates that the architecture of the proposed RBFN

FIGURE 7. Architecture of radial basis function network.
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consists of three layers: input, hidden, and output layers.
The receptive field is represented as the Gaussian activation
function located in the hidden layer. The nonlinear function
by the Gaussian function converts the intensity vector in
the input layer to a scalar number in a node in the hidden
layer. The linear transformation maps the hidden layer to the
output layer. The parameters in the proposed RBFN, of the
number of hidden layers (h), the location of the Gaussian
center (c), the radii of the center (σ ), and theweighting factors
(ω) are closely related to the performance. The number of
neurons in the hidden layer is determined when the RBFN
with the neurons has a minimized root-mean-square error
(RMSE). Through a conventional method, the location of the
Gaussian center is determined using the training data (ci = xi,
1 ≤ i ≤ s). However, such a center selection tends to be
overly sensitive to the input vectors and results in an overfit-
ting problem. To avoid this problem, we applied Tikhonov
regularization and forward selection techniques [41]. The
radii of the center were initially selected. The performance of
the proposed RBFN was analyzed using two cross-validation
methods, resubstitution and k-fold cross validation, to obtain
the optimal network [42].

Equation 5 relates the output ŷi and the inputs xi, ∈, and Rn

through the hidden layer function8i for the proposed RBFN,
in which the yi corresponds to the grating linewidth w and the
xi corresponds to the ith column in the training data:

ŷi =
h∑
j=1

ωj8ji(
∥∥xi − cj

∥∥), (5)

where ωj is the weighting factor and 8ji is the Gaussian
activation function, denoted as follows:

8ji=exp

(
−

∥∥xi − cj
∥∥

σ 2
j

)
, i=1, 2, . . . , s, j=1, 2, . . . , h,

(6)

where the norm is the Euclidean distance. The cj and σj are
the jth center and radii used in the function, respectively.
Equation (5) can be formulated to a linear system equation
to simplify the calculation of Tikhonov regularization and
forward selection [41]:

ŷ = 9ω + e, (7)

where 9 is the hidden layer response to the n-intensity vec-
tor and y = [y1. . .yp]T is the set of the s linewidth. The
vector e represents the s errors between the estimated ŷ and
the desired y. The purpose of using (7) is to determine the
combination of 9 and ω to obtain the estimated ŷ with the
minimized RMSE of e.
In Tikhonov regularization, the regularization penalty 0 is

added to E =
∑

(ŷ− y)2 + 0ωTω to reduce the value of the
center. The regularization penalty parameter is used to adjust
the balance between the estimated ŷ and the penalty 0ωTω.
If0 decreases, the estimated ŷ is fitted tightly to the desired y.

If0 increases to cause the penalty, the estimated ŷ is nullified.
The solution to (7) is as follows:

ω = (FTF+ 0Ip)−1FT ŷ, (8)

where Ip is the p × p identity matrix, F is the full design
matrix constructed using the vector intensity extracted from
the training data, and each vector intensity corresponds to the
selected radii.
In the forward selection technique, a subset center 9k−1

in (11a) is updated by adding a new center fi from the full
design matrix F in each iteration. The updated subset center
9k is used to calculate the regularized weighting factor ωk
in (10). The energy Ek at the kth step used as the cost function
to construct the RBFN is then calculated on the basis of the
regularized weighting factor in (11a) or (11b). A new center
fi is determined using (12). This fi is again added to the subset
center 9k−1 until the maximal energy difference is achieved
in (13):

9k = [9k−1 fi] (9)

ωk = (9T
k 9k + 0kI)−19T

k y, (10)

E (i)
k = eTk ek + 0kω

T
k ωk (11a)

E (i)
k = ŷTPk ŷ, (11b)

where k is the kth iteration, i is the ith column, and

Pk = Ip −9k (9T
k 9k + 0kIk )−19T

k ;

E (i)
k ≤ E (j)

k , 1 ≤ j ≤ p (12)

Ek−1 − E
(i)
k =

(ŷTPk−1fi)2

0k + fTi Pk−1fi
. (13)

For 0k > 0, the 0k is re-estimated using generalized
cross-validation (GCV), given as follows:

GCVk =
1
s

∥∥Pk ŷ∥∥2
((1/s)trace(Pk ))2

, (14)

where s is the number of training data and

Pk = Ip −
k∑
j=1

ψ jψ
T
j

0k + ψ jψ
T
j

.

Here, GCVk indicates the variance of the estimated ŷ in
the RBFN. The ψk represents the new selected center fi for
updating the subset center 9k−1. The re-estimated 0k+1 is
calculated using the differentiating (14) with respect to 0k ,
formulated as follows:

0k+1 =
ŷTk P

2
k ŷk trace(A

−1
k − 0kA

−2
k )

ωTk A
−1
k ωk trace(Pk )

, (15)

where Ak = (9T
k 9k + 0kI).

The derivation of (14) to (15) is discussed in [41].
This research developed the procedure listed in Tables III

to construct the RBFN by using the equations from (5) to
(13). The first step was to normalize the training data and
initialize the radii of the center σ , the regularization penalty
00, GCV, and the number of hidden layers h. The normalized
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TABLE 3. RBFN procedure with the forward selection technique.

training data and the defined radii were added to construct
the full design matrix F. After the new center fi was selected
from the F, the new center was added to 9k . The new subset
center 9k was used to calculate the regularized weighting in
step 6. The current energy in each iteration was determined
in step 7. The energy at the kth − 1 iteration was compared
with the energy at the kth iteration. If the maximal energy
difference between the two iterations was achieved in step 8,
the iteration was stopped. Otherwise, the iteration in the pro-
cedure returned to step 5 and the new center fi was determined
again. The regularization penalty 0k was re-estimated, and
the iteration was continued until the number of iterations was
equal to the h. Two methods exist to evaluate the RBFN
developed in this research: resubstitution validation and
k-fold cross validation [42].

The resubstitution validation was performed by varying
the number of neurons in the hidden layer to verify that the
developed RBFN was the optimal network with the min-
imized RMSE. The full design matrix F was constructed
using the training data corresponding to the radii σ varying
from 0.5 to 2.5.The number of neurons in the hidden layer
was varied from 300 to 700 to verify the minimized RMSE.
The regularization parameter was 0.01 and the GCV was
10. Fig. 8 illustrates that the RMSE was a function of the
number of neurons in the hidden layer. When the trained
RBFN that employed the theoretical signatures of sample A
used 382 neurons, the error achieved the minimized RMSE
of 0.083. This result meant that the maximal difference of
energy was achieved by 382 neurons in the hidden layer. The
RMSE for sampleAwas higher than that of the other samples.
This result could have been caused by the limited vector
intensity pixels of sample A. For samples B and C, the trained
RBFN used 465 and 477 neurons to achieve the minimized
RMSE of 0.009 and 0.008, respectively. This result indicated

FIGURE 8. RMSE as a function of the number of neurons in the hidden
layer.

TABLE 4. RBFN performance by k-fold cross validation.

that the RBFN was optimized by the number of neurons
in the hidden layer. For samples D and E, this study used
700 neurons because the RMSE for both caseswas below 0.01
for the proposed number of neurons in the hidden layers.

After the number of neurons was validated, the RBFN
performance was further characterized using the k-fold cross
validation. The modeled signature data was divided into two
parts: 90% of the data was used to train the network and 10%
of the data was used to test the generalization of the network.
The trained RBFN used the optimized number of neurons for
the k-fold cross validation. Table 4 lists the validation results
of the constructed RBFN. The Table 4 column indicated by
the training data reports the comparison between the designed
linewidth and the reconstructed linewidth determined using
the trained RBFN. The Table 4 column indicated by the test-
ing data reports the k-fold cross validation results. The RMSE
values between the designed and the reconstructed linewidth
determined using the training data were 0.107, 0.015, 0.012,
0.009, and 0.007 respective to samples A, B, C, D, and E.
The constructed RBFN for sample A had an RMSE that was
higher than the RMSE of the RBFNs for the other samples
because it had a lower density of intensity pixels.

The RMSE was 0.170, 0.047, 0.053, 0.072, and 0.169
respective to samples A, B, C, D, and E when the k-fold cross
validation was used for the network performance evaluation.
The constructed networks with a higher RMSE for samples
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FIGURE 9. The k-fold cross validation used to test the constructed RBFN
performance for (a) sample A; (b) sample E.

A and E implied a poorer generalization for the networks
than did the networks of samples B, C, and D. This research
further traced the performance of the RBFN for samples A
and E during the linewidth reconstruction process, as shown
in Fig. 9. In Fig. 9, the searching trend of the ŷ indicated by
the blue dot line follows the trend of y as indicated by the
red line. Because of this, the networks were still acceptable
in this research. The RMSE for the networks corresponding
to the B, C, and D samples was lower than 0.01, indicating
that the linewidth could be adequately reconstructed.

IV. EXPERIMENTAL MEASUREMENT
The measurements performed using the constructed RBFN
were conducted through five fabricated Si gratings by using
e-beam lithography and reactive ion etching techniques. The
designed profiles of the five gratings are summarized in
Table 1. Each grating was patterned onto a 2×2 mm sample.
Sample A had 2857 L/S pairs. Sample B had 2500 L/S
pairs. Samples C, D, and E had 2222, 2000, and 1818 L/S
pairs, respectively. The number of L/S pairs was sufficient in
the CFS measurement because the measurement required at
least 250 L/S pairs to achieve a stable diffraction map [8].
In Table 5, the second column lists the separate SEM images

TABLE 5. Measurement results achieved using SEM and AFM metrology.

of the top surfaces of the Si gratings on the five samples. The
third column reports the linewidth measurements of the Si
gratings on the five samples achieved using AFM metrology.

The experimental setup of CFS is depicted in Fig. 10. This
research used a TE polarized He–Ne laser at the wavelength

FIGURE 10. Experimental setup of CFS.
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of 632 nm to acquire the experimental signatures. The laser
output was 15 mW. The laser beam passed through a spatial
filter of a collimation lens to generate the collimated beam.
The polarization of the collimated beam was regulated by
a TE polarization filter, followed by a beam expander to
uniformly distribute the beam intensity. To avoid charge-
coupled device (CCD) saturation, two neutral-density filters
were installed on the optical path to enable beam intensity
transmission rates of 25% and 10%. The beam was then
divided by a beam splitter at a ratio of 50:50. The first beam
was focused using an objective lens with an NA of 0.55. The
focused beam illuminated the sample on a controllable stage
capable of achieving the x-y-z translation and a 360◦ rotation.
The diffracted beam caused by the sample was collected
by the objective lens and refocused to the CCD camera on
the backfocal plane through the telescopic lens consisting of
several best-form lenses. The diffraction intensity map was
captured by the high resolution CCD camera with 2560 ×
1920 pixels and a 2.2 × 2.2 µm pixel size. This study used
the second beam from the beam splitter as a reference beam
to remove the image noise caused by the optics.

FIGURE 11. Illustration of the beam stopper inserted in the CFS
experiment setup to extract the first diffraction order beam.

FIGURE 12. Process flow of converting the raw images of the ± first
diffraction order to the masked diffraction efficiency map.

The experiment required acquiring the ± first diffraction
orders separately. A stopper was inserted in front of the tele-
scopic lens to block the unwanted diffraction orders, as shown
in Fig. 11. To acquire the negative first diffraction orders, the
zeroth and first diffraction beams were blocked. Similarly,
each first diffraction order was acquired by blocking the
negative first and zeroth diffraction beams. Fig. 12 illustrates
the process flow of the transformation from the raw image
data to the diffraction efficiency maps. After the raw images
of the ± first diffraction orders were separately acquired,

FIGURE 13. Masked diffraction efficiency maps from the five Si gratings
with the designed linewidth w = (a) 140 nm; (b) 160 nm; (c) 180 nm; (d)
200 nm; (e) 220 nm.

the raw images were further converted into the diffraction
efficiency maps on the basis of the η = pdiffs/pinc, where
pdiffr was the measured power for the diffracted beams and
pinc was the power for the incident beam. Next, the ± first
diffraction efficiency map was masked using the mask func-
tion created from the modeled signatures. The mask function
filtered the non-0 diffraction intensity pixels on the basis of
the modeled signature data. Fig. 13 illustrates the masked
diffraction efficiency maps corresponding to the five grating
samples. The experimental images were not as smooth as the
modeled signature images because of the noise that occurred
in the measurement process. This research removed the noise
pixels when the pixel intensity level was out of the range of
the maximal intensity level in the modeled signature data.
In addition, the removed noise pixels were used as references
for the modeled intensity vectors to retrain the RBFN. Each
experimental signature was then converted into an intensity
vector as the input to the retrained RBFN to reconstruct the
linewidth of each Si grating.

This research further compared the measurement results
between the CFS with the constructed RBFN and the AFM.
Each grating sample was measured five times by using the
CFS with the constructed RBFN, and each measurement
point was separated by 100 µm. The average of five mea-
surement results was used as the CFS reconstruction results
for each Si grating sample. Table 6 summarizes the mea-
surements from the AFM in its fourth column. The CFS
with the RBFN reconstructed the linewidth of the gratings
as 139 nm, 153 nm, 176 nm, 181 nm, and 217 nm respec-
tive to samples A, B, C, D, and E. These results were in
good agreement with the AFM measurements. The maxi-
mal difference between the two measurements was 12 nm
for sample D, whereas the minimum difference was 2 nm
for sample A. The CFS measurement was the average of
the linewidth on the beam illumination area and the AFM
measurement was conducted on an isolated spot as the local
measurement. The error sources included the small NA being
unable to collect full diffraction beams, insufficient imaging
pixel resolution, fabricated gratings with linewidth roughness
and line-edge roughness, and numerical errors in the calcula-
tion of theoretical signatures. The measurement of the CFS
also revealed higher standard deviations for samples A and
B (3.48 nm and 3.77 nm, respectively) and lower standard
deviations for samples C, D, and E (less than ±1.5 nm). The
higher than average standard deviation could be caused by the
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TABLE 6. Comparison between the designed grating linewidth, the CFS
measurement, and the AFM measurement.

lower than average number of inputs to the trained RBFN.
The result of correlation coefficient R2 = 0.9720 indicates
that the linewidth measurements achieved using the CFS
with the constructed RBFN were strongly correlated with the
measurements achieved using AFM.

V. CONCLUSION
This research successfully demonstrated that the RBFN could
reconstruct the linewidth of L/S patterns. Both the RBFN pro-
cedure and the optical scatterometry setup were presented for
the measurement of five various L/S patterns on Si substrates.
The study determined the experimental measurements by
using optical scatterometry with the proposed RBFN. These
results were highly correlated with the measurement results
achieved using the AFM metrology tool. The contribution of
this research is the integration of the Gaussian-based learning
kernel into optical scatterometry for potential use in the pro-
cess control of semiconductor device manufacturing on the
nanometer scale. The proposed RBFN metrology application
could be for measuring L/S patterns with uncertainties such
as line-edge roughness and linewidth roughness in an intel-
ligent lithography system. Future works should include the
introduction of multiple wavelengths and polarizations into
the constructed RBFN to enhance measurement accuracy and
further reconstruct the completed three-dimensional geomet-
rical parameters of the nanostructures.
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