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ABSTRACT Semantic social engineering attacks are a pervasive threat to computer and communication
systems. By employing deception rather than by exploiting technical vulnerabilities, spear-phishing, obfus-
cated URLs, drive-by downloads, spoofed websites, scareware, and other attacks are able to circumvent
traditional technical security controls and target the user directly. Our aim is to explore the feasibility of
predicting user susceptibility to deception-based attacks through attributes that can be measured, preferably
in real-time and in an automated manner. Toward this goal, we have conducted two experiments, the first on
4333 users recruited on the Internet, allowing us to identify useful high-level features through association
rule mining, and the second on a smaller group of 315 users, allowing us to study these features in more
detail. In both experiments, participants were presented with attack and non-attack exhibits and were tested
in terms of their ability to distinguish between the two. Using the data collected, we have determined practical
predictors of users’ susceptibility against semantic attacks to produce and evaluate a logistic regression and
a random forest prediction model, with the accuracy rates of .68 and .71, respectively. We have observed
that security training makes a noticeable difference in a user’s ability to detect deception attempts, with one
of the most important features being the time since last self-study, while formal security education through
lectures appears to be much less useful as a predictor. Other important features were computer literacy,
familiarity, and frequency of access to a specific platform. Depending on an organisation’s preferences, the
models learned can be configured to minimise false positives or false negatives or maximise accuracy, based
on a probability threshold. For both models, a threshold choice of 0.55 would keep both false positives and
false negatives below 0.2.

INDEX TERMS Security, cyber crime, social engineering, semantic attacks.

I. INTRODUCTION
Semantic social engineering attacks target the user-computer
interface in order to deceive a user into performing an action
that will breach a system’s information security [1]. On any
system, the user interface is always vulnerable to abuse by
authorised users, with or without their knowledge. Traditional
deception-based attacks, such as phishing emails, spoofed
websites and drive-by downloads, have shifted to new and
emerging platforms in social media [2], cloud applications [3]
and near field communications [4]. Efforts towards technical
defence against semantic attacks have lead to the develop-
ment of solutions that are typically specific in design. This
can be attributed to the sheer complexity required to translate
what is essentially human deception into code, as well as
attempting to combine this into a solution that spans disparate

platforms. One example is phishing emails, where filtering
and classification software have proven to be highly success-
ful [5]–[7]. However, these defence mechanisms are built
to function on email systems only, unable to prevent con-
ceptually very similar phishing attacks in instant messaging,
social media and other platforms. Similarly, automated tools
developed to block drive-by downloads via web browsers
have been shown to be highly effective in mitigating the
threat [8], [9], yet the same tools cannot prevent a drive-by
attack in removable media.

Alternative approaches to technical solutions have focused
on managing users themselves, rather than the computer
interface. For example, creation of policy and process for
user compliance [10] has helped to define specific rules
which enforce secure system use, but these are almost never
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applicable to the private user of a computer system and
the Internet. Furthermore, compliance guidelines are usually
static in nature and therefore can quickly become out-of-
date when new attack methods appear. User education and
awareness training have been evaluated extensively and in
practice have been shown to improve user responses to spe-
cific attack scenarios [11], [12], but it is difficult to automate
this process and even more difficult to measure its lasting
effect. Moreover, training material tends to be limited to
known exploitations and requires regular updates to include
new attack vectors. Systems generating visual warnings or
security indicators have also been implemented, presented to
users in real-time by indicating a possible attack or whether a
potential threat exists, but research has shown that in practice
users often do not pay attention to them or do not understand
them [13].

A comprehensive survey by Khonji et al. [14] evaluating
the state of phishing detection provides a valuable insight
into potential future defences. The researchers have high-
lighted the application of machine learning techniques as a
promising approach to defence, producing accurate attack
classifiers and effective defences against zero-day threats.
Measuring the effectiveness of user training has also been
suggested, where research towards a hybrid user/software
solution is indicated as a potential multi-layered approach to
protection.

Given the limitations of defences designed for specific
attacks and platforms, it is attractive to look also towards
the feasibility of predicting a user’s susceptibility to different
semantic attacks in order to augment technical systems with
user-driven defence. For example, user susceptibility profiles
can be used to support systems that are dynamic, by training
predictors with user data collected in real-time or over a
period of time, and allowing dynamic allocation of access
rights dependent on a detected user profile. Furthermore,
they could support the development of context-based user
awareness systems, where training material would be tailored
to users depending on their susceptibility to different decep-
tion vectors. User susceptibility profiles can also provide
useful measurement criteria for predicting the performance
of human sensors of semantic attacks, indicating whether
a user report of a suspected attack is accurate (and worth
investigating); sharing analogies to the learning and predic-
tion capabilities employed in sandbox antivirus defences for
categorising and identifying different malware families [15].
Towards this vision, we have conducted two experiments with
the participants being asked to tell whether particular exhibits
show an attack or not. We have collected data regarding
both the users and their performance in detecting attacks that
employ different deception vectors [1] and have developed
two prediction models. The first experiment helped identify
high level predictors that can be measured ethically, auto-
matically and in real-time, whilst being applicable across the
wider Internet population; we define this study as stage 1.
The second experiment helped build upon the initial pre-
dictor features by further dissecting each into a series of

sub-features used to predict susceptibility against new attacks
using a smaller population; we define this as stage 2.

II. PREDICTING SUSCEPTIBILITY
A. RELATED WORK
In computer security, it is usually computer systems, net-
works, applications and data that are monitored to be able to
detect and mitigate threats. Researchers have also attempted
to monitor and profile unauthorised users [16], [17] or wit-
ting insiders performing unauthorised actions [18]. However,
semantic social engineering attacks target authorised users
and lure them into performing an authorised (albeit com-
promising) action. Recent research in this area has focused
on demographic attributes and psychological indicators as
methods for predicting user susceptibility. For example,
in the field of behavioural science, research has explored
the impact of personality traits [19], influencing and per-
suasion techniques [20] as measurement criteria for pre-
dicting susceptibility to semantic attacks. A study carried
out in [21] has reported that female participants exhibit-
ing neurotic behaviour were more likely to respond to
phishing emails than female and male participants that did
not. More recently, the same researchers have conducted a
spear-phishing field-experiment, where the tendency for
conscientiousness reported a high correlation to phishing
susceptibility [22]. Research in [23] has reported openness,
positive behaviour (e.g., use of language) and high levels of
conversationalist activity as predictors of vulnerability to an
online social network bot. In [24], researchers have conducted
a survey and field experiment of phishing attacks which
found that participants who demonstrated higher degrees of
normative, affective and continuance commitment, obedience
to authority and trust, to bemore susceptible to phishing. Sim-
ilar results were also reported in a recent study in [25], where
submissiveness and trust predicted higher susceptibility to
phishing emails. Crucially, these personality traits were also
found to perform consistently as predictors of susceptibility
amongst participants from different geographical locations,
in this case Australia and Saudi Arabia.

Demographic research has considered Internet usage and
behaviour as prediction criteria of susceptibility to semantic
attacks. In particular, it has been reported that users who
have knowledge of or take guidance from visual cues (secu-
rity indicators, source, design, language, etc.) on technology
platforms are often good predictors of susceptibility. For
example, [26]–[28] and [29] have all reported a lower degree
of susceptibility to phishing attacks in emails and websites
when the participants are aware of security indicators and
visual components. However, in many cases participants did
not understand what the security indicators meant and the
varying severity of their message. In fact, in [30] and [31],
it has been reported that the effect of habitation to the visual
cues and especially security warnings increases susceptibility
to attacks. Where studies have included general demographic
elements such as age and gender, a number of studies have
reported that female participants were found to be more
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TABLE 1. Related research in the field of semantic social engineering attacks.

susceptible to phishing attacks than male participants [22],
[32]–[34]. In [11], users were measured demographically as
to whether they have had training on the phishing email train-
ing system PhishGuru, where the number of training sessions
taken by users are used as input features to identify the lasting
effect of the training. It was found that having completed
training sessions on PhishGuru is an accurate predictor of
lower susceptibility to phishing emails.

Technical prediction systems have been previously pro-
posed in [35] and more recently [36]. The first describes a
system which would present users through a series of infor-
mation security related questions within a web pop-up. Then,
the system uses a series of weighted decision algorithms
to quantify the user’s degree of susceptibility based on the
responses to the questions, and accordingly displays a visual
indicator of susceptibility to the user as a form of aware-
ness mechanism. No security enforcing functions are imple-
mented. To date, there is no further information regarding
its practical implementation and evaluation. The latter, and
more recent study empowers user to report whether an email
is a suspected phishing attack. Based on prior knowledge
and in-line warnings, correct reporting conversely highlights
predictor features for phishing susceptibility.

Table 1 provides an overview of the literature associated to
susceptibility research in semantic social engineering attacks.
In the ‘‘Technical measurement’’ set of columns, we have
identified for each study whether the predictors of suscep-
tibility can be realistically measured by a technical system

in real-time, automatically and ethically. By ethical, we refer
to aspects of diversity and inclusion related to protected
personal characteristics [37], and we extend this to also
include personality traits, where decision making based on
assessment of personality types are argued to be a form of
discrimination [38].

The available literature for predicting user susceptibility
to semantic social engineering attacks is not as mature as
other areas of computer security. Most related studies have
been constrained by small sample sizes and predictors that are
difficult to generalise across a multitude of semantic attacks.
To some extent, this is due to the fact that most researchers
focus only on phishing attacks, which is only one section of
the problem space [1]. Specialised training systems have been
shown to work well [11], as well as technical models combin-
ing demographic and behavioural attributes [31], but they are
application-specific and do not consider other deception vec-
tors that might be employed in semantic attacks. Therefore, it
is difficult with the results produced from current studies to
generalise across a wide range of attack types and it is unclear
which of the research results could be realistically integrated
into a technical system for defence.

To overcome these limitations and as our aim is focused
on facilitating the development of technical defence systems,
we only select predictor terms that can be collected and
measured in real-time, automatically and ethically. We argue
that in order to predict susceptibility to a wide range of
semantic attacks, the mechanism for measuring susceptibility
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should be naive to low-level and attack-specific parameters
(e.g., sender source and body of text within an email, URL
composition in website post, etc.).

B. INDICATORS OF SUSCEPTIBILITY
To identify practical indicators, we start with five high-
level concepts associated to user knowledge, experience and
behaviour:

1) SECURITY TRAINING (S)
Refers to the individual’s type of computer security training.
Prediction of susceptibility by computer security training
has been shown to produce accurate results [11], but the
approach can be limited by the specialised system delivering
the training or the specific training curriculum. For example,
it is likely that a user who is self-trained will cover a wider
range of material relevant to their technology profile than an
employee who has only received work-based training on sys-
tems the organisation uses. Moreover, the long-term benefit
of training and skill fade is not clear.

2) FAMILIARITY (FA)
Refers to the familiarity the individual has with a given plat-
form. Familiarity is a key enabler of distinguishing between
what visually looks normal and what is normal behaviour.
For example, in [27] and [28], the researchers have identi-
fied familiarity with specific attacks and visual cues as key
predictors of susceptibility, both of which describe how a
user identifies what is normal visually or behaviourally on
a system and what is not. Similar findings were also reported
in [29], with knowledge of visual cues being attributed to
familiarity with the type of platform used. In this context,
platform habitation [30] is a factor that can increase sus-
ceptibility to semantic attacks, facilitated in part by platform
familiarity. At the same time, without familiarity a user may
be unaware how a system should normally look and behave,
and consequently may fail to detect an attack or may see
threats where they do not exist.

3) FREQUENCY (FR)
Refers to the frequency with which the individual accesses
the type of platform. A user who accesses a specific type of
platform (e.g., social media websites) very frequently may
be more aware of the kind of attacks that occur within that
type of platform, regardless of their actual familiarity with
the specific providers platform (e.g., with Google+ social
network site).

4) DURATION (DR)
Refers to the duration for which the individual accesses the
type of platform. Similarly to FR, a user who uses a specific
type of platform for long periods may be more aware of
the kind of attacks that occur within that type of platform.
However, it is also possible that the longer the duration the
higher risk of platform habitation which may or may not have
an adverse effect [41].

5) COMPUTER LITERACY (CL) AND SECURITY
AWARENESS (SA)
Refers to the user’s self-efficacy in respect to their computer
literacy and computer security awareness. A user’s self-
identified level of computer literacy and computer security
awareness has been observed to be an important predic-
tor in numerous studies seeking to identify what influences
reduced susceptibility to phishing emails [22], [39], [43].
Overall, self-efficacy was found to accurately represent a
user’s expectation of their ability to use a computer system
competently and securely. However, self-efficacy implicitly
harbours a degree of bias depending on the user’s honesty
and the accuracy and practicality of the measurement scale
used. While we count it here as practical, we assume that
in actual application, both CL and SA would need to be
validated against evidence (e.g., with some form of testing,
certification, etc.).

FIGURE 1. Experiment approach and methodology.

III. METHODOLOGY
Figure 1 summarises our two-stage experimental approach.
In stage 1, we have conducted a large scale experiment,
where we applied data mining techniques to try and identify
whether relationships and associations exist between the dif-
ferent indicators of susceptibility described in Section II-B.
In stage 2, we have utilised the results from the stage 1
analysis to apply a greater degree of granularity (and mea-
surability) to each of the indicators highlighted through the
data mining process. These refined predictor features were
then employed in a second experiment in order to determine
practical predictors of susceptibility and develop a model to
form a susceptibility classifier.

Both experiments were designed to be quantitative in
nature in order to generate numerical data that could be
transformed into usable statistics. Some qualitative data was
captured in experiment 2, where users were asked to explain
in free-text for each exhibit why they had classified it as an
attack or non-attack; this data was used to eliminate sam-
ple ‘‘noise’’, such as participants who guessed or marked
all exhibits as attacks (or non-attacks). Furthermore, attack
exhibits were randomised so that participants could not guess
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the order between attack and non-attack exhibits in the sus-
ceptibility test.

Both experiments were implemented in the online survey
platform Qualtrics and consisted of a short survey that col-
lected demographic and platform behaviour data, followed
by an exhibit-based susceptibility test. In total, after sample
cleaning and pre-processing, experiment 1 consisted of 4,333
participant responses, and experiment 2 consisted of 315 par-
ticipant responses. Both experiments provided participants
with a study brief prior to commencing the survey, so as to
ensure they understood how to proceed with answering the
survey and exhibit test questions.

The research was approved by our institution’s research
ethics committee and participants were informed of the pur-
pose of the study prior to providing online consent and con-
firmation of being over 18 years of age. Furthermore, all data
were anonymised and participants were also given the oppor-
tunity to opt out of the study analysis after completing the
test; participants who opted out had their responses removed
from the study.

A. RECRUITMENT
1) EXPERIMENT 1
In the first experiment, participants were cultivated via an
online advertisement challenging people to take a test of
their susceptibility to semantic social engineering attacks.
This advertisement was posted in a number of popular online
forums and social media communities, including Reddit,
StumbleUpon, Facebook and Twitter. Additionally, under-
graduate and research students were recruited via email. The
recruitment methodology of presenting the questionnaire pri-
marily as a challenge and secondarily as a research medium
proved successful because participants were eager to test
themselves on a real-world skill that is becoming increasingly
important. As a result, our advertisement gained reputation
quickly by being up-voted and shared within a variety of
social media platforms, resulting in a substantial sample size
that allows meaningful statistical analysis (4,333 responses).
Our sample included participants across a broad range of
online platforms, as well as technical and non-technical envi-
ronments from within our university’s undergraduate popu-
lation. Also, in many studies in this area, the real nature of
the study is initially hidden from the participants, so that the
strength of a deception attempt is not weakened by suspicion.
Here, instead we use the participants as human binary classi-
fiers of exhibits into attack versus non-attack. In this manner,
we can reveal the nature of the study from the beginning,
which addresses key technical and ethical challenges asso-
ciated with temporarily deceiving the participants.

2) EXPERIMENT 2
In the second experiment, a controlled recruitment policy
was employed in order to achieve a balanced sample of
participants who had received some security training and
were technology savvy and generic online users with little

or no training. New undergraduate and research students
were invited to participate in the experiment if they were
studying a computer security program and the professional
serviceQualtrics Panelswas used to recruit participants from
a wider, more generic population demographic. Specifically,
participants from the US ranging between the ages ranging
from 18-65, both female and male, were defined as the par-
ticipant selection criteria. No specific technology or security
training attributes were defined in theQualtrics Panel recruit-
ment. Figures 2 and 3 shows the geographical distribution of
the participants for both experiments.

FIGURE 2. Number of survey participants by geographical location for
Experiment 1.

FIGURE 3. Number of survey participants by geographical location for
Experiment 2.

B. EXPERIMENT DESIGN
The survey portion of the experiment required participants to
answer a series of questions related to age, gender, general
education, security training (S), platform familiarity (FA),
frequency (FR) and duration of access (DR), computer
literacy (CL) and security awareness (SA):

1) SECURITY TRAINING (S)
Formal computer security education (S1), work-based com-
puter security training (S2) and self-study computer security
training (S3), each coded as a binary response: Yes (1),
No (0). In relation to the terminology used in [47], we
directly map formal education as ‘‘Formal Learning’’, work-
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FIGURE 4. Experiment 1: Exhibit 5 (screenshot) - Fake ‘‘Clickbait’’ app on Facebook.

based training as ‘‘Non-formal learning’’, and self-study as
‘‘Informal learning’’.

2) FAMILIARITY (FA)
We use FA for familiarity with a particular provider’s plat-
form (e.g., GMAIL), coded as: Not very familiar (1), Some-
what familiar (2), Very familiar (3).

3) FREQUENCY (FR)
For each platform category presented in the susceptibility
test, coded as: Never (1), less than once a month (2), once
a month (3), weekly (4), daily (5).

4) DURATION (DR)
For each platform category presented in the susceptibility
test, coded: None (1), less than 30 mins (2), 30 mins to
1 hour (3), 1 to 2 hours (4), 2-4 hours (5), 4 hours+ (6).

5) COMPUTER LITERACY (CL)
Self-reported level of computer literacy using a 0-100 scale.

6) SECURITY AWARENESS (SA)
Self-reported level of security awareness using a 0-100 scale.

Each experiment included a series of 12 exhibits (6 attacks
and 6 non-attacks), each containing a concise scenario fol-
lowed by an exhibit, consisting of one or more screenshots,
GIF animations or videos. For each, participants were asked
to examine the exhibit and provide a binary response to
categorise each one as: ‘‘Most likely an attack’’ or ‘‘Most
likely not an attack’’. In our analysis, correct responses were
coded as 1 and incorrect ones as 0.

To determine general indicators of susceptibility, the attack
exhibits chosen spanned a range of semantic social engineer-
ing attacks across different platforms. We have developed
each semantic attack according to the three different types of

deception vectors of the semantic social engineering taxon-
omy in [1]. In accordance with this, deception vector refers
to the mechanism by which the participant is deceived into
facilitating a security breach. It can be cosmetic (DV1), where
the semantic attack is visually convincing, but does not nec-
essarily conform to expected platform behaviour; behaviour-
based (DV2), where the attack behaves in a manner that
is expected or accepted within platform convention, but is
not visually convincing; and both cosmetic and behaviour-
based (DV3), where the attack needs to be both visually and
behaviourally convincing to deceive the user.

A breakdown of the 24 exhibits developed for the two
experiments is presented in Table 2, along with the par-
ticipants’ average score in each exhibit. The average score
can serve as an indication of the difficulty of each exhibit.
To illustrate the style of the presentation of the exhibits to the
participants, we have also included three indicative examples
of attack exhibits (Figures 5, 4 and 6, which correspond
to exhibits Exp1.11, Exp1.5 and Exp2.11 respectively). For
presentation purposes here, we have added red outlines to rep-
resent visual attack indicators in the exhibit. These outlines
were obviously not visible to the participants.

C. OVERALL PARTICIPANT PERFORMANCE RESULTS
To determine overall accuracy and precision, we follow the
approach defined in signal detection theory [48], [49], which
is geared towards analysing data generated from human
experiments, where the task is to categorise participants’
responses generated by a known process or by chance. This
approach is common in analysing experiments that involve
semantic attacks, such as phishing [33]. In the standard for-
mulas used below, for exhibit k ∈ [1,K ], Tp,k is the number
of true positives (i.e., correctly identified as attack), Tn,k is
the number of true negatives (i.e., correctly identified as non-
attack), Fp,k is the number of false positives (i.e., incorrectly
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TABLE 2. Brief description of the 24 exhibits developed for the two experiments. The overall score (percentage of correct answers) of the participants for
each exhibit is an indication of its difficulty. SA refers to the existence or not of a semantic attack in each exhibit (Y/N). For the exhibits where there was
an attack, DV is the deception vector (DV1: cosmetic; DV2: behaviour-based; DV3: both cosmetic and behaviour-based).

FIGURE 5. Experiment 1: Exhibit 11 (screenshot) - ‘‘Qrishing’’ attack
leading to Steam phishing site.

identified as attack), and Fn,k is number of false negatives
(i.e., incorrectly identified as non-attack). Note that in this
case, K = 12, and by accuracy and precision, we are refer-
ring to the average accuracy and average precision across

FIGURE 6. Experiment 2: Exhibit 11 (Video) - ‘‘Typosquatting’’ attack on
Microsoft Edge browser leading to an attack website with a malicious
update prompt for Google Chrome browser.

all 12 exhibits.

Accuracy =
1
K

K∑
k=1

Tp,k + Tn,k
Tp,k + Tn,k + Fp,k + Fn,k

(1)

Precision =
1
K

K∑
k=1

Tp,k
Tp,k + Fp,k

(2)

To facilitate the analysis of the participants’ responses, we
developed an equal number of attack and non-attack exhibits
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for each platform category used in the experiment. In this
section, our aim is to simply evaluate the overall performance
of the users in our samples as human classifiers of the given
exhibits. We also note the performance of individual groups
that are commonly studied in this space, including groups by
country, age and gender. We derive the country based on the
IP of the participant, assuming that there is no strong reason
to believe that several participants would have spoofed their
IP while taking part in this experiment. Also, age and gender
are self-reported. Again, we do not have any strong reason to
believe that several participants would provide false details in
this case.

TABLE 3. Experiment 1 participant performance by country.

TABLE 4. Experiment 1 and 2 participant performance by age and gender.

Table 3 summarises the performance of users from dif-
ferent countries, which we observe to be almost identical
across the world, with mean accuracy of 0.74 (with variance
of 0.0002) and mean precision of 0.77 (with variance of
0.0002). For this reason, we did not consider the geographical
factor in the second experiment. Also, this is advantageous
when developing a prediction model to be applied across
all populations. Table 4 summarises the performance of
participants of experiments 1 and 2 based on age and gender.
Here, we observe slightly more pronounced performance
differences between the different groups. For example, we
can see that female participants were less accurate and less
precise (68%, 67%) than male participants (74%, 77%),
which is in accordance with most of the related
literature ( [32]–[34]). We also observe that accuracy and
precision are fairly consistent between the ages of 18 and 44,
but drop in the 45+ age groups. Overall, the performance
of the samples of participants in both experiments is largely
coherent and consistent. The sample sizes of the groups that
performed slightly worse in both experiments were relatively
low. Moreover, they represent protected personal character-
istics, and are thus impractical for our purposes. As we aim
to develop prediction models suitable for use in a technical
system, age and gender need to be omitted as candidate
predictors because they do not satisfy the ethical criterion
that we have set. For example, an organisation implementing
security controls that are stricter or less strict based on age or

gender would be seen as discriminatory. Overall, the reported
performance of the participants provides no strong indication
that omitting these demographic variables (geography, gen-
der, age) would have a major impact on the chosen predictor
features’ accuracy and precision.

IV. STAGE 1: ASSOCIATION RULE MINING ON
THE RESULTS OF EXPERIMENT 1
While performing prediction based on the large dataset col-
lected in experiment 1 would be an attractive prospect,
in practice, the high-level features used (described in
Section II-B) would not be granular enough. Our attempts
to produce prediction models solely based on them produced
relatively low accuracy rates, just above the null rate for
each exhibit. Instead, the primary objective of experiment 1
was to use it as a mechanism to determine which features
should be explored further. For this purpose, we have per-
formed association rule mining (ARM). ARM is a standard
data mining methodology successfully employed in network
intrusion detection [50], bioinformatics [51], recommender
systems [52], social network advertising [53] and several
other applications. It can help identify frequent itemsets
(collections of attributes that frequently occur together) and
association rules to determine whether strong relationships
exist between two or more items.

As brief introduction to ARM, an association rule is com-
posed of an itemset, which comprises an antecedent, consist-
ing of one or more attributes and forming the ‘‘IF’’ of a rule,
and a consequent, which forms the ‘‘THEN’’. The percentage
of cases of an item’s existence amongst frequent itemsets is
referred to as support, while the conditional probability of
observing a particular exhibit response under the condition
that the participant attributes contain a particular set of partic-
ipant attributes is referred to as confidence. Here, we employ
the apriori algorithm [54] to create association rules by com-
paring frequent itemsets to a specified support/confidence
threshold that determines the strength of the rule.

Using the Arules package in R [55], we have conducted
frequent itemset discovery and association rule generation
configuring a threshold for support larger than the system
default and the default threshold for confidence, which are
0.15 and 0.8 respectively. For each association rule, we
evaluate its importance using five commonly used met-
rics: support/confidence as the primary interest measure
for each rule, as well as lift, coverage and odds ratio of
each rule as individual measures of independence. For each
metric’s formula below, X refers to the frequent itemset
attribute(s) that consist of the participant indicators defined in
section III-B, forming the rule antecedent(s). The rules con-
sequent Y defines a correct response to an attack exhibit,
coded as RESPONSE=1 (i.e., for participants who classified
particular exhibit correctly). In summary:

Support: supp(X ⇒ Y ) = P(X ∪ Y ) (3)

Confidence: conf (X ⇒ Y ) =
P(X ∪ Y )
P(X )

(4)
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Lift: lift(X ⇒ Y ) =
P(X ∪ Y )
P(X )P(Y )

(5)

Coverage: cover(X ⇒ Y ) = P(X ) (6)

Odds Ratio: α(X ⇒ Y ) =
P(X )/1− P(X ))
P(Y )/1− P(Y )

(7)

Note that on investigation, no rules were reported for
RESPONSE=0 (i.e., for participants who classified partic-
ular exhibit incorrectly) to satisfy the support/confidence
threshold 0.15/0.8. This indicates that within the data there
exists a high degree of variability between participants who
were susceptible and no distinguishable pattern between their
attributes could be determined.

For lift, a value of 1.0 indicates independence of X and Y ,
while values greater than 1.0 indicate that participants with
attributes X contain more correct attack exhibit responses
Y (i.e., RESPONSE=1), than those without these attributes.
An Odds Ratio of 1 indicates that Y is not associated to X,
which is to say that an exhibit response is not related to the
participant attributes.

Using the apriori algorithm, a total of 24 association rules
were initially identified. These were then pruned by removing
super rules of any other rule that has the same or higher
lift. Pruning resulted in reduction from 24 to 10 association
rules.

FIGURE 7. Association Rules graph with items and rules as vertices. The
size of each circle linking vertices relates to the support of a rule, while
the colour indicates the lift.

In Figure 7, the 10 association rules are shown where
each item and vertex indicates the formation of a rule, where
vertices leading to ‘‘RESPONSE=1’’ show the consequent
of the rule. The size of each circle linking vertices is related
to the support of a rule, while the colour indicates the lift.
In Table 5, the importance measure of each rule is sum-
marised, in order of confidence, lift and odds ratio (OR).

TABLE 5. Pruned association rules reported for participants with correct
exhibit response.

The association rule with the highest lift indicates that
participants who had had security training through self study
and also used the type of platform shown in the exhibit
daily and were very familiar with the exhibit platform itself
were highly likely to correctly identify a semantic attack on
this platform. In other words, the rule antecedent ‘‘S3=1,
FR=5, FA=3’’ was reported by 18% of the total partici-
pants in the survey, where 15% of the total participants who
also reported these attributes correctly identified a semantic
attack ‘‘RESPONSE=1’’; resulting in a 85% confidence that
these participants were not susceptible. Of course, this was
expected. In respect to odds ratio, participants with these
attributes were 82% less likely to be susceptible to a semantic
attack. Here, a lift value of 1.1means that the participants who
were not susceptible (RESPONSE=1), who have security
training through self-study, use the target platform type daily
and are very familiar with the specific platform, are observed
10% more than the percentage of the participants that were
not susceptible in the total participant dataset. Within the
10 pruned rules, the appearance of frequently occurring items
provides insight into association between specific attributes
and reduced susceptibility to attacks. For example, familiarity
with the specific platform provider (FA), frequency of access
with a particular type of platform (FR), self-study (S3) and
computer literacy (CL) are consistently reported attributes.
On the contrary, duration of access (DR) and security aware-
ness (SA) do not appear in the rules at the support/confidence
threshold. Overall, the association rules indicate that security
training through self-study, daily access to a type of platform
and familiarity with a specific platform in this type category,
as well high confidence with computer literacy are associated
to reduced susceptibility to semantic attacks. However, given
the minor variations in lift between these rules, the lack
of 100% confidence in any rule and relatively low support,
a large proportion of non-susceptible users without these
attributesmay not be represented. Therefore, employing these
rules as classification criteria would likely result in suscepti-
bility prediction that produces many false negatives. Instead,
we utilise these findings to identify the attributes that we
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TABLE 6. Predictor variables utilised in Experiment 2.

should study in greater detail in stage 2 of our analysis, as
presented in Section V.

V. STAGE 2: EXPERIMENT 2 MODEL
AND FEATURE SELECTION
Following on from the initial investigation of each high-
level feature studied in experiment 1, experiment 2 was con-
ducted on a smaller participant base (315 respondents), where
participants were tested on a new set of semantic attacks,
consisting of screenshots, animations and videos, and were
asked to provide considerably more detail on their profile.
In experiment 2, we add further granularity to the high-
level features identified in the ten ARM rules of Section IV.
In detail, we extend FR and FA to include both specific
provider platforms (FR1, FA1) in combination with types
of platform (FR2, FA2). Also, we adapt and extend secu-
rity training as follows: S1, S2 and S3 are converted from
a binary answer to a length of time since last training for
S1, S2 and S3, with a scale of: Never, over 1 year, up to
1 year, up to 6 months, up to 3 months, up to 1 month,
up to 2 weeks. The second measures security training by
platform types and specific provider platforms, including
length of time since last training. Each high-level security
category is also extended to include the training methods
commonly used for each respective security category, such
as: self study (S3) through online videos, formal education
(S1) through coursework, etc. Features SA and CL are not
altered. In order to identify whether features DR and SA are
truly non-informative, redundant features, we include them
in the model feature selection process alongside the newly
expanded, granular feature-set; extending DR to specific
provider platforms (DR1 - platform type, DR2 - platform
provider). As a result of expanding and adapting the feature-
set, we increase from 8 candidate predictors in experiment 1
to 22 in experiment 2, as summarised in Table 6.

With the adapted feature-set from experiment 2, using
R [55] and the Caret package [56], we identify machine
learning models that can predict a user’s ability to detect
attacks. Firstly, we select and compare two distinct machine
learning algorithms; modelling both a linear and non-linear
approach to prediction. Secondly, for each model we have
applied automatic feature selection with sequential backward
selection in Recursive Feature Elimination (RFE); obtaining
an optimal model for each machine learning algorithm.

1) LOGISTIC REGRESSION Vs. RANDOM FOREST
For a user susceptibility model to be practically usable by a
technical security system, it must employ predictor features
that can be practically measured in real-time, automatically
and ethically. To evaluate whether a linear model can be
sufficient, we first employ logistic regression (LR), which
performs well in linear spaces, functioning by definition as
a special case generalised linear model using a Bernoulli
distribution for a binary response [57]. LR is relatively robust
to noisy data and over-fitted models, where the data contains
high variance. In comparison to LR, another method that is
resilient to variance in model predictions is a method known
as bagging (also known as Bootstrap Aggregating [58]),
where the algorithm produces replicates of the original data
sample by creating new datasets by random selection with
replacement.With each dataset, multiple newmodels are con-
structed and gathered to form an ensemble of models. Within
the prediction process, all of the models in the ensemble
are polled and the results are averaged to produce a result.
Random forest (RF) is a popular bagging algorithm that can
also be described as an ensemble decision tree classifier.
In RF, a number of decision trees are trained with different
re-sampled versions of an original dataset and then used
to predict data that was omitted from each sample as an
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embeddedmeasure of training accuracy; this is called the out-
of-bag error. Here, RF reduces the high variance inherent in
a decision single tree by creating n trees that are averaged
to reduce the variance of the final model [59]. Unlike LR,
RF handles nonlinearity naturally. Predictor variables are
randomly chosen at each decision split in the decision tree
which results in a randomised, non-linear approach.

2) RECURSIVE FEATURE ELIMINATION
Employing the predictor features summarised in Table 6, for
both LR and RF models, we have used an automatic feature
selection method to identify the most informative predictor
features and build a single prediction model for each indi-
vidual attack exhibit. Recursive Feature Elimination (RFE) is
an automatic backwards feature selection algorithm. It starts
by fitting a model to all 22 features, ranking the latter based
on their variable importance to the model, and gradually
excluding the features with the lowest importance in each
iteration, recursively considering smaller and smaller feature
sets. In RF, variable importance is calculatedwithin themodel
by recording the out-of-bag prediction accuracy for every
predictor variable permutation in each decision tree. At each
feature iteration, model accuracy is compared between the
prior and permuted model, averaged over all trees and then
normalised by the standard error. Since LR has no model-
specific method to estimate importance, the Caret package
conducts receiver operating characteristic (ROC) curve anal-
ysis on each feature iteration by evaluating the area under the
ROC curve (AUROC), which is used as the variable impor-
tance for LR [60]. A ROC curve illustrates the performance
of a binary classifier at different prediction probabilities by
plotting the true positive rate (TPR) against the false positive
rate (FPR) at various thresholds. AUROC represents the area
under the ROC curve, where a random guess area of 0.5 (0,0
to 1,1) is typically used as the reference area from which to
evaluate model performance. The result of LR is the selection
of those features that have a statistically significant impact on
the probability of a user’s correct prediction.

One possible drawback of RFE is the potential for over-
fitting to predictor variables, as the procedure can focus
on nuances in the sample data that may be anomalous and
therefore not present in future data. For example, where pre-
dictors randomly correlate with the dependent variable being
predicted, RFE may assign a good importance ranking to
these variables, even if they were to make no practical sense.
During training, this would indeed lower prediction error,
but when validating the model on new data it might reveal
that the predictors are actually non-informative, in a case
referred to as ‘‘selection bias’’ [61]. To avoid this problem,
and as is standard practice in supervised machine learning
experiments and models, we have employed an outer layer
of resampling through a repeated 10-fold cross-validation
to provide a robust estimate of model feature-selection and
test error as evaluated by RFE. Cross-validation (CV) is a
model validation technique for assessing model performance
on unseen, independent data sets and is an important tool

for avoiding exaggerated model accuracy results (e.g. over-
fitting a model by testing it on the same data the model has
been trained on). In the 10-fold CV process, the data sample
is partitioned into 10 equal folds, where nine folds are used to
train the model and the remaining one fold is used to test it.
This process is repeated 10 times so that the model is tested
on each fold in order to produce an average model test error,
which in our case reports model test error at each variable
selection step in RFEs backwards selection process. With
repeated 10-fold CV, for each 10-fold training process, the
process is repeated another 10 times.

In Figure 8, we present the results of LR and RF CV
test error for each attack and the optimal set of predictors
selected by RFE. We compare LR and RF with each other, as
well as with a naive classifier, which, for each exhibit would
always select the answer (0 or 1) that is the most common
in the sampled population (the sample response rate). This
is the maximum accuracy of a model that uses no features
for predicting the sample population outcome. For five out of
six attack exhibits, both LR and RF models reported supe-
rior classification accuracy than the sample response rate.
RF outperformed LR in four of the six attack exhibits.

Table 7 shows where each feature was selected for an
exhibit’s final prediction model (whether it was the LR or
the RF model that was best performing). We observe that
frequency of access to the specific provider platform in the
exhibit (FR1) was included in the best performing prediction
model for 5 out of 6 exhibits, followed by length of time since
security training through self-study and formal education,
which appeared in 4 out of 6 exhibits’ final models.

On the other end, familiarity with the exhibit platform type,
security training with a particular platform type, security self-
study through games, work-based through tests and formal
education through lectures were not selected for any exhibit’s
final prediction model. Removing these five features, we
prune the candidate-feature set from 22 to 17 within a final
RFE model selection process process with the aim to build
a final model for susceptibility prediction. In order to build
a prediction model that can potentially be employed across
any platform and with any semantic attack, we combine
each of the exhibits’ sample responses into a stacked data
sample, where all users’ responses are included in a single
dataset for all attacks. So, the values for each feature relate
to the particular attack’s settings in a particular entry in the
dataset. For instance, the feature ‘‘familiarity with platform
type’’ in an attack that utilises Facebook would refer to the
familiarity with platform of type ‘‘social network’’. This
approach enables the construction of a single model that con-
tains a range of semantic attacks, platform types and specific
provider platforms. Creating a single model for each attack
would be impractical, as we would need one model for each
platform/attack combination. Training a model based on a
wide-range of disparate platforms and attacks, and using a
combined dataset for a single prediction response, enables
more widely applicable prediction of susceptibility that can
be utilised in a technical security system.
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FIGURE 8. Each graph presents the results of 10 times repeated 10-fold cross-validation for each exhibit, using recursive feature elimination with a LR
and a RF model. Results are presented in the form of overall test accuracy.

A. SUSCEPTIBILITY MODEL: RESULTS AND ANALYSIS
A reliable and widely applicable user susceptibility model
can have several applications as part of a defence mechanism
against semantic attacks. It can help predict a specific user’s
a) degree of ‘‘susceptibility’’ to semantic attacks (likelihood
of being deceived by one), or equivalently b) expected per-
formance if they were to act as a human classifier (likelihood
of spotting attacks). The former can help a security system
identify whether a user is particularly susceptible to semantic
attacks and consequently whether the system environment

needs to adapt accordingly (e.g., by privilege adjustment,
targeted warnings, security enforcing functionality, etc.). The
latter can help evaluate to what extent a user can be relied
upon as a ‘‘Human as a Security Sensor’’ (HaaSS) of semantic
attacks, where user reports are taken into account so as to
strengthen an organisation’s cyber situational awareness.

For both applications, it is important to measure the
model’s performance based on its general accuracy in predict-
ing which participants will detect the attacks and which will
not, and secondly its ability to reduce false positives or false
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TABLE 7. Total number of times each predictor feature is selected for an attack exhibit’s best performing model.

TABLE 8. Prediction performance comparing the accuracy, precision,
false positive and false negative detection of the final LR and RF models
against the Naive classifier.

negatives by using a probability cut-off threshold. Table 8
compares the LR and RF classifiers’ overall performance
against the naive classifier, which always selects the answer
with the highest probability in the population sample (so,
always 0 if population’s success rate is below 50% and always
1 otherwise, for a given exhibit). The test split used for
classification consisted of 215 correct (1) and 147 incorrect
(0) responses. In Table 10, the predictors selected by the
RFE process for the LR and RF models are presented. For
the RF model, to evaluate feature variable importance, as
metric, we use the reduction in out-of-bag error during the
model training process. For the LRmodel, we use the increase
in AUROC.

B. KEY OBSERVATIONS
Both the LR and RFmodels satisfy the statistical significance
threshold of 0.05 and both appear to outperform comfortably
the naive classifier, which is a good sign in terms of their
practical applicability. There is a slight advantage of RF
over LR across all metrics (higher accuracy and precision,
and lower false positives), but this comes at the expense of
practicality, because it requires a large number of features
to be monitored (16 against LR’s only 7). Moreover, as
RF employs a black box modelling approach, this makes it
less interpretable than the LR model as to why each feature
within the model informs prediction. In LR, interpretation
is more straightforward, because it produces each feature’s
odds ratio (OR), which is the increase in the probability of a
user correctly identifying an attack for every one unit increase
in that feature’s scale, when all other features remain fixed.
For example, from table 9, we see that a unit increase in the
scale of frequency of use (e.g., from once a month to weekly),
increases the probability of correct detection by 22%. So,
ORs can also be used to cross-reference with variable

TABLE 9. Feature odds ratios for logistic regression model.

importance in interpreting each feature’s influence to the
prediction outcome.

As one would have expected, security training does make
a difference, with all three forms (formal education, work-
based training and self-study) appearing in some form in both
models. In general, we observe that the length of time since
last training (whether self-study, formal education or work-
based training) is particularly important, with time since last
self-study (S3T) appearing to be overall the most important
in the training category. This is reasonable, because semantic
attacks evolve continuously and any guidelines or technical
information learned in training needs to be updated often.
Five years ago, semantic attacks were almost entirely based
on generic phishing and ransomware. Today, watering holes,
WiFi evil twins and socia media friend injection attacks have
become the norm, and phishing has expanded to all forms of
user interaction, from Quick Response (QR) codes, to near-
field communication (NFC) and Bluetooth [1]. Interestingly,
formal security education through lectures was not chosen as
a useful predictor of susceptibility to semantic attacks by any
of the models and for any of the exhibits.

Frequency of access to the specific provider’s plat-
form (FR1) rather than generally to the type of platform (e.g.,
specifically Facebook rather than generally social networks)
was shown to reduce susceptibility noticeably, being the
fourth most important variable in RF and the first in LR.
Frequency of access to the general type of platform (FR2)was
utilised by RF as one of the features with the lowest variable
importance (0.06), and was not utilised at all by LR.

Duration of access to the same platform type was important
in both models, with 13% increase in the probability for each
unit increase in the LR odds ratio. In RF, frequency and
duration was also important for the platform type. Also, in
the RF model familiarity with the platform provider was the
fifth highest important variable.

Computer literacy (CL) was shown to be the most impor-
tant feature for RF and the second most important for LR.
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FIGURE 9. RF (left) and LR (right) model performance for false positive (not susceptible), false negative (susceptible) prediction and overall prediction
accuracy at each probability cutoff.

TABLE 10. RF and LR model predictor features selected through recursive feature selection (in order of variable importance measure: decrease in out of
bag error rate for RF, and increase in AUROC for LR). The higher the variable importance (in brackets), the more important the feature is to its model.

This reinforces the need for a mechanism to monitor and
record computer literacy as a gauge of an organisation’s cyber
risk.

Unlike the high level predictors Security Awareness (SA)
and Duration of Access (DR), which were not included in the
association rules in experiment 1, the RFmodel included both
Security Awareness and the expanded DR features: duration
of using a specific platform provider (DR1) and specific
platform type (DR2), whereas the LR model included DR1
only. Surprisingly, in RF, SA was the third most important
feature, whereas in LR it was not included at all; as per the
association rules. On the other hand, more in line with the
association rules omitting DR in experiment 1, both DR1
and DR2 were were given relatively low variable importance
in RF, placing 11th and 15th out of the total 17 features,
respectively, with DR2 placing 5th out of a total 7 features
for LR andDR1 omitted from themodels feature-set. For both
models, SA, DR1 and DR2 were given a lower degree of vari-
able importance than all other features that were expanded
from their higher level counterparts (FR, FA, CL, S3, S2, S1)
reported in experiment 1’s association rules frequent item
sets; with the exception of time since last security training
through formal education (S1T), which slightly less impor-
tant than DR2 (0.21 compared to 0.23) in the LR model. The
indication is that the original high level predictors show a
consistent association with reduced susceptibility across both
experiments, even after adding further granularity to their
measurement scale and context, and as a result also gained

sufficient predictive power for determining the probability
of a participants susceptibility to semantic attacks with a
reasonable degree of accuracy.

There is no doubt that a user’s susceptibility to seman-
tic social engineering attacks depends also on personality
traits, social context, psychological state and other human
and contextual factors, which are, however, impractical, as
they cannot be measured in real-time, automatically or ethi-
cally. Without knowledge regarding these factors, one cannot
expect a highly accurate prediction of susceptibility. So, the
accuracy improvement of around 10% against the naive clas-
sifier achieved here is significant. In practice, we have devel-
oped this method to act as a baseline for an organisation’s
technical security system, which can then adapt over time, as
it learns the characteristics of the organisation’s own users.

Equally significant is that one can utilise these models to
identify an appropriate probability threshold depending on
preference in minimising false positives, minimising false
negatives or maximising accuracy (Figure 9). By probabil-
ity threshold, we refer to the value over which a technical
security system should consider a user to be susceptible to
a semantic attack. For instance, if the aim were to maximise
accuracy, the probability threshold for determining whether
a user is susceptible or not, should be 0.5 for both models.
However, it would be 0.55 if the aim were to keep both false
positives and false negatives below 0.2. Overall, RF appears
to perform slightly better than LR in terms of false positives
at low probability thresholds, but is slightly worse at higher
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probability thresholds. For false negatives, the reverse is
observed. In an organisation that is tolerant of false positives,
but not tolerant of false negatives, to keep the false negatives
below 0.02, both LR and RF models would yield a false
positive rate just under 0.4. For RF, this would correspond
to a probability cut-off of 0.15, and for LR to a cut-off of 0.3.
For an organisation that is tolerant of false negatives, false
positives can be effectively avoided using the RF model at a
0.85 cutoff, but this results in an approximate 20% decrease
in overall classification accuracy, with the number of false
negatives increasing to 0.48.

VI. DISCUSSION
A. LIMITATIONS
In our exhibit-based experiment there are a few limitations
that must be considered. Participants were primed to the
purpose of the survey and subsequent test and thus may
have been more vigilant and sensitive to a semantic attack’s
deception (therefore weakening its effect) than they would
have normally been.

For the first experiment, the simple approach of using
screenshots to represent the exhibits was very useful in con-
ducting a large-scale study online and on any computer plat-
form. However, the use of screenshots is more appropriate
for DV1 attacks that rely on cosmetic deception than for
DV2 (and partially DV3) that rely on behavioural decep-
tion, which is less straightforward to convey via screenshots.
To address this, in the second experiment we included video
exhibits where behavioural deception can be more accurately
emulated (in terms of context and system behaviour), rather
than depicted visually.

Potential limitations may also exist in the selection of
features for our susceptibility model. We have focused on
a number of high-level concepts with the aim to create a
model for predicting susceptibility that is applicable across
a wide range of semantic attacks. One example is computer
security training where we focus on the type and mode of
delivery of security training rather than its content. Prediction
taking into account the content too would have probably been
more accurate, but would presume that an organisation can
collect such detailed information for its users, which may be
impractical.

B. CHALLENGES IN PRODUCING DATASETS FOR
SEMANTIC SOCIAL ENGINEERING
SUSCEPTIBILITY PREDICTION
Real-world, authoritative datasets for user susceptibility to
semantic attacks are not available. An organisation may not
publicly reveal that their business has been exploited because
of the perceived reputational damage it could cause or sim-
ply because employees fail to report breaches for fear of
disciplinary actions. Security authorities and organisations,
such as Semantec [62], who actively publish data from those
businesses, and users who do report attacks tend to anonymise
and censor the data to a point that profiling information that

could show context leading to an attack is removed before
being made publicly accessible. Therefore, development of
user datasets through research experiments is necessary to
understand which behaviours and identifying factors help
determine susceptibility and thus inform the design and
development of new security mechanisms against semantic
attacks. In this section, we identify a number of persisting
problems for the development of robust semantic attacks
datasets:
• Ethics. A prevalent limitation for access to user suscep-
tibility data is ethics. Ethical consideration and approval
can be a barrier to the collection of rich user data for
aiding researchers and developers in the development of
user-centric defences against semantic attacks. Exper-
iments with human participant require ethics approval
from an institutional of governmental review board, and
therefore there are often a number of requisite require-
ments which limit researchers ability to produce truly
representative results. For example, in [63], participant
deception and debriefing, privacy and institute review
board approval were determined to be the main chal-
lenges that affect the design and execution of phishing
experiments. Mouton et al. [64] proposes a normative
perspective for ethics in social engineering which can
help ethics committees in the process of experiment
approval. Here, reporting susceptibility would be con-
sidered from a utilitarian and deontogical standpoint;
that is, whether or not the collected and reported data
would be ethical given the consequences of the speci-
fied action (utilitarianism) or the duty and obligations
related to that action (deontology). In [65], researchers
developed what has become widely accepted approach
for designing ethical social engineering experiments,
but the method proposed focuses solely on phishing
emails and it is unclear how it can be extended to a
wider range of semantic attacks and platforms other than
email.
As well as ethics approval, semantic attack research
poses legal implications [66], where researchers are
increasingly conducting phishing experiments without
the knowing consent of participants. In this case, the data
collected may prove more representative of natural user
behaviour, but cannot be validated as legitimate research
without formal approval.
One approach towards tackling this fundamental prob-
lem in the research of semantic social engineering
attacks is to provide a platform that enables users and
organisations to anonymously report semantic attacks,
without omitting crucial contextual information such as
whether the attack was successful or not, the scenario
in which the attack occurred, whether or not the target
had been trained, etc. This database of user suscepti-
bility information would provide an invaluable resource
for researchers seeking to analyse trends or predict
behaviour to semantic attacks. Most importantly, col-
lection of data in this format removes the complexity
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and damaging effect on user experiment data that ethics
approval may require.

• The experiment population against data collection
detail tradeoff. Participants in semantic attack research
tend to be recruited from the institution in which the
study is conducted (e.g., university students, organi-
sation’s own staff, etc.) and often this is noted as a
limitation of the research as the results may not be
representative the wider target population. This poses
a major problem for empirically proving the validity
of research outcomes. In the first study, we recruited
a large number of participants from multiple different
geographical locations on the Internet, but this approach
limits the ability to collect more detailed data from the
participants. There is a tradeoff to be considered when
recruiting participants that are more representative of
the user base against the qualitative data that can be
extracted from a user population that is easily accessible.
In the case of the former, collecting user responses from
a large number of disparate demographic backgrounds
is fairly simple when the Internet is the recruitment plat-
form, but these participants cannot be easily observed
or interviewed at any stage of the research. For the
latter, researchers have localised access to participants
and therefore a higher degree of detail regarding user
behaviour can be recorded and analysed.
Ultimately, semantic attack research is affected by both
circumstances and as such context should dictate the
most suitable approach. In our study, it was more impor-
tant to recruit sufficient numbers of participants to
allow the evaluation of statistical machine learning mod-
els. For research focusing on psychological impact of
exploitation from semantic attacks, detailed qualitative
data may be a more relevant goal, in which case research
would most likely benefit from a smaller population.

• Attack coverage. In table 1, the majority of research
related to predicting susceptibility to social engineering
attacks has focused on phishing, which is only one type
of semantic attack. Conclusions made from research
solely reliant phishing experiments may not be applica-
ble to the wider problem space. Like traditional network
and operating attacks, there are many types of semantic
attack, crossing multiple platforms, and therefore like
an anti-virus for OS or firewall for the network, it is
crucial that experiments consider and evaluate a wide
range of semantic attacks in order to build defence
systems that can mitigate multiple threats. Furthermore,
specific attacks may become less popular over time as
new platforms emerge or more successful techniques
are developed, and therefore it is also important that
an experiments results remain relevant for addressing
future attacks.
In [1], the taxonomy for semantic attacks can provide
a useful baseline to build such experiments that mea-
sure user susceptibility across a series of generic attack

attributes. In this study, we have includedDeception Vec-
tor only for clustering attacks on the same and different
platforms, simplifying the modelling process and ability
to classify susceptibility with a single, general model.
For research aiming to understand user vulnerabilities
to removable media or targeted cyber-supply chains,
other items of the taxonomy such as Method of Distri-
bution and Target Description may provide useful cate-
gories for clustering a wide range of attacks in a single
experiment.

• Lack of an authoritative archive. Repositories of
historic and current phishing emails and websites do
exist [67]–[69], but do not cover the wider range of
semantic attacks and do not include data on the profiles
of the users who have or have not been deceived by
them. An open archive of semantic attacks and corre-
sponding user profile data would be immensely helpful
to researchers in this field.

C. HUMAN AS A SECURITY SENSOR (HaaSS)
The concept of the human as a sensor has been used
extensively and successfully for the detection of threats
and adverse conditions in physical space, for instance
to detect noise pollution [70], monitor water avail-
ability [71], detect unfolding emergencies [72] etc.
In relation to semantic attack threats, the concept is
very new. There is one example specifically for phishing
attacks [36]. We argue that the concept can be explored
much further and for most semantic attacks, where the
human user’s situational knowledge can help detect
attacks that are otherwise largely undetectable by tech-
nical security systems. For example, there are no known
technical countermeasures to attack E11 in experiment 1
(‘‘Qrishing’’) and attack E1 in experiment 2 (Video mas-
querading ‘‘clickbait’’), but in our experiments, users
were able to detect them with a probability of 86%
and 78% respectively (see Table 2). This is certainly
not a rigorous way for evaluating HaaSS, but we feel
is an indication of its potential. Introducing a HaaSS
element in an organisation’s security can empower users
to become its strongest link. In this context, predicting
the performance of an individual user as human sensor of
semantic social engineering attacks is the equivalent of
measuring the reliability of a physical sensor. For exam-
ple, within a HaaSS reporting platform, a prediction
model that measures the probability of a user’s report
being correct can provide security engineers with the
ability to triage the review of reports; prioritising the
ones from users that are more accurate human sensors.

VII. CONCLUSION
We have conducted two experiments, each consisting a sur-
vey and an exhibit-based test, asking participants to identify
whether specific exhibits were likely to show attacks or not.
Based on the data collected, we identified a set of features

VOLUME 4, 2016 6925



R. Heartfield et al.: You Are Probably Not the Weakest Link: Toward Practical Prediction of Susceptibility

from which we produced logistic regression and random for-
est models for predicting susceptibility to semantic attacks,
with accuracy rates of .68 and .71 respectively. The slight
performance advantage of RF over LR is countered by the
larger number of features that it requires to be monitored
(16 against LR’s 7). In terms of the features themselves,
we observe that security training makes a noticeable differ-
ence in a user’s ability to detect deception attempts, with
frequent self-study appearing to be a key differentiator. Yet,
formal security education through lectures was not chosen
as a useful predictor by any of the models and for any of
the exhibits. More important features were computer literacy,
familiarity and frequency of access to a specific platform. The
models developed can be configured in terms of preference
in minimising false positives, minimising false negatives or
maximising accuracy, based on the probability threshold over
which a user would be deemed to be susceptible to an attack.
For both models, a threshold choice of 0.55 would keep both
false positives and false negatives below 0.2.

We have also identified a number of challenges associ-
ated with developing datasets for predicting susceptibility to
semantic attacks, where addressing these challenges can help
produce rich and representative user susceptibility data that
can aid developers and researchers of user security defence
systems. In future work, our model can be experimentally
validated with a technical implementation and using a wider
range of semantic attacks for each deception vector in order
to provide empirical results for the model’s performance
in practice. As deception-based attacks utilised in the wild
evolve continuously, the baseline model and classification
rules can be continuously improved with new training data
from different user populations and attack types.

Furthermore, the advent of the Internet of Things [73]
promises to compound the problem and extend to physi-
cal impact, exposing user interfaces of systems previously
inaccessible to the standard user, let alone via a distributed
application in the Internet [74]. The more effective such
cyber-physical attacks prove, the more the deception attack
surface will grow. Semantic social engineering threats in the
Internet of Everything are likely to expand attack surfaces
via ubiquitous connectivity which practically facilitate new
and convincing semantic attacks; the impact of a phishing
email may no longer be limited to stolen user credentials or
malware infection, but can also bring down a national power-
grid [75]. Providing users with the ability to report suspected
semantic attacks can help provide system developers and
security practitioners with key insights in how to design or
update systems to mitigate such threats, while at the same
time instilling users with a sense of empowerment in pro-
tecting their technological environment. To this end, report
credibility provides a crucial role in identifying the likelihood
that an attack has indeed occurred, so as to prioritise reports
and utilise their information to augment defencemechanisms.
Predicting user susceptibility as a performance measure of
semantic social engineering attack reporting provides a first
step towards this vision.
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