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ABSTRACT Energy consumption has become a crucial issue due to the large-scale deployment of small
base stations (SBSs) in dense small cell networks (DSCNs). In this paper, a joint optimization problem
involving sleep mode in subframes and power allocation to minimize the DSCN energy consumption while
guaranteeing users’ rate requirements is formulated as a mixed integer nonlinear programming. To address
this problem, we propose a cooperative sleep and power allocation approach by decomposing it into
two subproblems. First, we derive the optimum number of active subframes for each SBS and present a
centralized heuristic coalition formation algorithm to manage SBSs to form coalitions. In such a case, SBSs
can transmit data in active subframes and sleep in others. We then obtain the SBSs’ optimum transmit
power in the active subframes relying on a distributed price-based power allocation algorithm. System-
level simulation results show that our proposed cooperative scheme can yield significant performance
gains in terms of energy saving compared with the maximum power allocation and the non-cooperative
power allocation (NCPA) approaches. In addition, the effects of target rates on coalition size and energy
consumption are also analyzed.

INDEX TERMS Dense small cell network, energy saving, cooperative sleep, power allocation, coalition
formation.

I. INTRODUCTION
It is forecasted that the global mobile data traffic will
grow to 30.6 EB per month by 2020, a nearly eightfold
increase over 2015 [1]. In order to meet these intense
demands, the investigation of 5G for the next generation of
terrestrial mobile telecommunications has been triggered [2].
Furthermore, as one of the promising solutions, deploying
small cell base stations (SBSs) densely to improve spectral
efficiency (SE) in an area of high data traffic density is of
common concern for the 5G network [3].

However, the deployment of massive small cells also
brings challenges, such as interference management, low
energy consumption, mobile management, high-speed back-
haul, low cost and so on. Information and communications
technology (ICT) takes up a considerable proportion of total
energy consumption. For instance, currently, ICT accounts
for 5% of the world’s CO2 emissions [4] and this is trending
upward. Moreover, telecom infrastructures and devices are
responsible for large percentage of the annual average power
consumption of ICT and this value is 25% in 2012 [5].
Meanwhile, energy efficiency (EE) is becoming a critical

metric in the 5G network due to the economic and environ-
mental concerns [6]. Hence, reducing energy consumption
in dense small cell networks (DSCNs) is indispensable and
urgent.

Recently, energy-efficient communication in wireless net-
works has earned tremendous attention. The goals of energy-
efficient communication can be mostly divided into two
categories: 1) maximizing the EE which is defined as
the amount of delivered data per energy consumption and
2) minimizing the total network energy consumption while
satisfying the users’ rate requirements or other quality of
service (QoS) requirements. The state-of-the-art techniques
for energy-efficient communication in 5G networks are given
in [7].

To achieve the network EE optimization, most of exist-
ing works focus on resource allocation. In [8], both
network-centric EE and user-centric EE are optimized via
power allocation. The two optimization problems are solved
with centralized and decentralized algorithms, respectively.
In addition, the impact of rate constraints is analyzed. In [9],
considering that the downlink transmit power is discrete in
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actual LTE system, the authors formulate EEmaximum prob-
lem as a fractional discrete optimization issue and address it
by proposing a suboptimal polynomial time algorithm. In this
algorithm, base stations (BSs) cooperate with some of their
interfering BSs and coordinate their power and user selection
to maximize the EE. Multi-objective optimization problems
are formulated to jointly maximize the network rate and
minimize the power consumption in [10] and [11]. In [10],
the multi-objective problem is solved based on sequential
quadratic programming (SQP) method. In [11], interference
pricing mechanism is introduced and the problem is solved
with the method of the Pascoletti and Serafini scalarisation.
However, users’ rate demands are not considered in the multi-
objective problems. Power allocation problem for maximiz-
ing heterogeneous network (HetNet) EE is formulated as a
two-stage Stackelberg Game where the macrocell base sta-
tion (MBS) is the follower and SBSs are leaders in [12].
At the same time, interference power threshold of SBSs is set
to guarantee their performance. Taking fairness into account,
a modified network EE metric is optimized by introducing
the weights of users’ rates in [13]. Power allocation problem
of SBSs is formulated as a non-cooperative game to reduce
co-tier interference in [14] and to maximize the network
EE in [15]. In [14], subchannels are assigned to macrocell
users (MUEs) and small cell users (SUEs) orthogonally to
eliminate cross-tier interference and a minimal number of
subchannels are allocated toMBS to guarantee QoS ofMUEs
while increasing the MBS’s EE. In [15], remaining subchan-
nels are greedily assigned to users with good channel state if
all users’ rates demands are satisfied. In [16], power control
and user scheduling are jointly considered to maximize the
network EE by a mean field approach. The mean field game
is also used for solving the downlink power control problem
of a DSCN to minimize the cost over a certain period of time
in [17]. In [18], taking both the BS circuit and user equipment
energy consumption into consideration, the authors jointly
optimize the time-slot, frequency and power allocation to
maximize the EE.

FIGURE 1. Power consumption of a cellular network (source:
Vodafone [19]).

Fig.1 shows the power consumption of different elements
of a cellular network. It can be seen that BSs consume
the highest proportion of power. In particular, when BSs

are densely deployed, the network energy consumption will
tremendously escalate. Therefore, as an efficient approach to
minimize energy consumption, sleep mode has been exten-
sively studied. According to the sleep-state duration time of
BSs, sleep mode can be classified into coarse time granularity
in hours and finer time granularity in milliseconds. In a
coarse time granularity, slightly-loaded BSs can be put into
sleep mode. However, the coverage hole would arise and
the users in the sleeping BSs should attach to other active
BSs. In [20] and [21], sleep mode and user association are
jointly considered to minimize the power consumption while
satisfying users’ QoS requirements. In [22], a multi-objective
framework is developed to optimize the active sector set
and the radio access network (RAN) parameters which aim
to minimize the area power consumption and the overlap
while maximizing the area SE and the coverage for a given
traffic demand density without degrading the QoS. In [23],
based on the stochastic geometry model, the influence of
the femto BS-sleeping ratio on EE is analyzed and results
show that the optimal sleeping ratio is related to both the
network traffic load and the location of femtocell deployment
area. In a finer granularity of sleep mode, cell discontinuous
transmission (DTX) is studied by allowing the transceiver
to sleep during the idle time slots for energy saving [24].
References [25] and [26] derive the optimum number of
active subframes for transmitting data and BSs can sleep in
other subframes to save energy. However, they only con-
sider a single cell network without interference. In addition,
resource allocation has also been studied to reduce energy.
In [27], the network power minimization is achieved by
proposing a pricing-based distributed approach and the rate
demands are also considered. Taking both statistical delay
constraint and cross-tier interference limit into account, the
authors of [28] propose a subchannel and power allocation
scheme to reduce power consumption. In addition, several
potential energy-saving solutions are defined in 3GPP TR
36.887 (release 12).

Green cellular networks powered by renewable energy
can mitigate energy crisis in the future. Therefore, energy
harvesting technique has also been investigated to reduce the
energy expenditure. In [29], considering BSs with energy
harvesting equipment, on-off states of BSs, number of active
subchannels and opportunistic sleep time ratio of BSs are
jointly optimized to minimize the the average grid power
consumption while guaranteeing users’ QoS. In the scenario
where a macrocell and energy-harvesting small cells are
co-channel deployed, the authors derive a power control
policy to achieve the target signal-to-interference plus-noise
ratio (SINR) of all users taking into account random energy
arrivals in [30]. Besides, energy harvesting has also been
applied to sustainable wireless sensor networks to prolong
the lifetime of nodes [31]. A summary of the approaches
for energy-efficient communication discussed in this paper
is given in Table 1.

In the previous studies, resource allocation and sleep
mode are widely employed to realize green communications.
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TABLE 1. Approaches for energy-efficient communication.

However, they are usually investigated separately and a
large number of works ignore the cooperation between BSs.
Although BS sleep mode can significantly reduce energy
consumption, it would result in coverage hole problem. In this
paper, we consider a network architecture where a MBS is
always active to provide seamless coverage of control signal
and densely deployed SBSs can sleep in some subframes
called sleep subframes to save energy. Since SBSs sleep in
subframes for only several milliseconds, users in the sleeping
SBSs do not need to re-associate to a new SBS for data
transmission. Taking advantage of the opportunities of coop-
eration between SBSs in DSCN, we investigate the energy
minimization problem with QoS constraint.

The main contributions of this paper are as follows:
(1) SBSs’ sleep mode in subframes and power allocation
are jointly considered to save energy while satisfying the
users’ average rate during a frame. This energy-saving prob-
lem is formulated as a mixed integer nonlinear program-
ming (MINLP). (2) In order to solve the MINLP problem,
we propose a cooperative sleep and power allocation (CSPA)
scheme to decompose it into two subproblems where the
number of active subframes of SBSs and power allocation
are optimized separately. (3) First, we derive the optimum
number of active subframes for each SBS in DSCN where
co-tier interference exists. Then we develop a centralized
heuristic coalition formation algorithm where SBSs cooper-
ate to form coalitions based on the defined coalition forma-
tion conditions. (4) SBSs’ transmit power in active subframes
is optimized to further reduce energy in a distributed way
according to a price-based power allocation algorithm.

The rest of the paper is organized as follows. Section II
provides the system model and problem formulation.
In Section III, the proposed CSPA approach is stated in detail
aiming to solve the optimization problem. Performance of
the proposed algorithm is evaluated in section IV by system
simulation. Finally, Section V concludes the paper.

II. SYSTEM MODEL AND PROBLEM FORMULATION
A. SYSTEM MODEL
We consider a downlink OFDMA network which consists of
a macrocell, a local gateway (L-GW) and a large number of
small cells deployed within the macrocell area. As shown

FIGURE 2. Considered network architecture.

in Fig.2, the macrocell is deployed at frequency F1 to guaran-
tee coverage and transmit control signal while massive small
cells are deployed at frequency F2 with universal frequency
reuse to improve the hotspots’ capacity. So SUEs will not
suffer cross-tier interference from the MBS. The macrocell
manages the radio resource control (RRC) connection pro-
cedures between the user and a small cell such as channel
establishment and release. The L-GW provides a medium
between small cells and the internet backhaul [32]. All users
first get access into macrocells and then receive data service
from small cells by the assistance of macrocells.

For each SBS, the total bandwidth B is partitioned into K
subchannels, each one with a bandwidth of B0 = B

/
K [Hz].

Due to the reuse of subchannels, the co-tier interference will
be much severe. In the time domain, each LTE frame consists
of N subframes, each one with duration Tsf . For simplicity,
we assume that each SBS serves only one SUE [33], thus each
SUE can be identified by the same label as its serving SBS.
Let M = {1, 2, . . . ,M} denote the SBS and SUE set, and
K = {1, 2, . . . ,K } denote the subchannel set. Assume that
the instantaneous channel state information (CSI) is perfectly
known [28] and the channel state remains unchanged during
each frame [26]. Thus the upper-bound of the performance
can be obtained. Besides, the transmit power of each SBS is
assumed to be equally divided among its subchannels. The
received SINR of SUE m on subchannel k can be written as

γmkm =
pmkhmkm

M∑
j=1,j 6=m

pjkhjkm + σ 2

(1)
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where pmk and pjk denote the transmit power of serving SBS
m and interfering SBS j on subchannel k , respectively. hmkm
and hjkm are the channel gains from serving SBS m and
interfering SBS j to SUE m on subchannel k , respectively.

M∑
j=1,j 6=m

pjkhjkm denotes the aggregate interference caused by

other interfering SBSs to SUE m on subchannel k . σ 2 is the
power of additive white Gaussian noise. Therefore, according
to Shannon theorem, the amount of delivered data of SUE m
on subchannel k in the current frame is expressed as

Cmkm = αNm,actTsf B0log2(1+ γmkm) (2)

where Nm,act and α represent the number of active subframes
of SBSm for data transmission in a frame and implementation
loss, respectively. Thus the average achievable rate of SUEm
in SBS m during the current frame is

Rmm =
1

NTsf

K∑
k=1

Cmkm (3)

In order to evaluate the power consumption of the DSCN,
we use the power model in [34], where the power consump-
tion of SBS m is given by

Pm,total =

P0 +1P

K∑
k=1

pmk active

Ps sleeping

(4)

where 1P is a parameter related to the efficiency of the
power amplifier and P0 is the circuit power. Ps is the power
consumption of a SBS in sleep mode.

B. PROBLEM FORMULATION
In this paper, SBSs cooperate to form coalitions and SBSs
within the same coalition transmit data in time division mul-
tiple access (TDMA) way. We desire to minimize the DSCN
energy consumption while guaranteeing users’ QoS require-
ments by finding the optimum number of active subframes
and power allocation. Therefore, the optimization problem in
a frame can be formulated as follows:

min
N,P

M∑
m=1

Tsf

[
Nm,act

(
1P

K∑
k=1

pmk + P0

)
+
(
N − Nm,act

)
Ps
]

(5)

subject to : C1 : Rm ≥ Rm,min, ∀m ∈M (6)

C2 :
∑

m∈T
Nm,act ≤ N (7)

C3 : 0 ≤ pmk ≤ Pmax
mk ,∀m ∈M, ∀k ∈ K

(8)

C4 :
K∑
k=1

pmk ≤ Pmax
m , ∀m ∈M (9)

C5 : Nm,act ∈ {0, 1, 2, . . . ,N }, ∀m ∈M
(10)

where N = [N1,act · · ·NM ,act ] and P = [P1 · · ·PM] are the
optimization variables. Pm denotes the transmit power vector

of SBS m over all subchannes, i.e., Pm = [pm1 · · · pmK ]
and Rm,min is the target rate of SUE m during a frame.
C1 guarantees users’ rate requirements. C2 indicates the con-
straint of total number of active subframes of all SBSs within
a coalition and T denotes a coalition. C3 gives the power
constraint on each subchannel and Pmax

mk is the maximum
power that SBS m can radiate on subchannel k . C4 is power
allocation constraint of each SBS and Pmax

m is the transmit
power threshold. C5 represents that the number of active sub-
frames per frame transmission should be an integer between
0 and N . It is noted that the number of active subframes and
power allocation are coupled with each other. Therefore, the
problem (5)-(10) is aMINLP, which is NP-hard and obtaining
its global optimal solution is arduous.

III. COOPERATIVE SLEEP AND POWER
ALLOCATION SCHEME
In this section, we propose a CSPA scheme to solve problem
(5)-(10) by decomposing it into two subproblems of cooper-
ative sleep (CS) and power allocation. First, the number of
active subframes of SBSs is derived. Then, in order to sleep
in more subframes, SBSs cooperate to form coalitions via
the proposed coalition formation algorithm. Afterwards, to
solve the power allocation issue per subframe, a distributed
algorithm is developed by introducing interference price.

A. COOPERATIVE SLEEP
Due to dense deployment of SBSs, the co-tier interference
is much severe. If SBSs cooperate to form coalitions and
SBSs within the same coalitions transmit data in TDMA
way and sleep when they do not transmit data, the network
power consumption will be reduced. The basic idea of CS
is that SBSs serve their users with a minimum number of
subframes and sleep in the remaining subframes to save
energy via forming coalitions. A coalition Tl is defined as
a non-empty subset of M, and M SBSs in the network
are assumed to be partitioned into L disjoint coalitions.
A partition of M is defined as the coalitional structure πM ,
i.e., πM = {T1, . . . , TL}, ∀i 6= j, Ti ∩ Tj = ∅, and ∪Ll=1Tl =
M. Moreover, considering the network architecture previ-
ously mentioned, it is reasonable to let L-GW manage the
SBSs to cooperative to form coalitions. This CS scheme
includes three parts: interfering SBS matrix construction;
active subframe configuration; coalition formation.

1) INTERFERING SBS MATRIX CONSTRUCTION
Although co-tier interference within the same coalition is
avoided, the interference from other coalitions still exists. It is
assumed that a SUE as a sniffer is located close to the SBS so
that each SBS can estimate interference from other SBSs by
resorting to the SUE.Note that this SUE is not actual, thus this
will not limit the physical location of the SUE in the SBS. For
a SBS m ∈ Ti, since no more than one SBS within a coalition
Tj, ∀j 6= i, uses the same subchannel with it per subframe for
transmission, there is at most one interfering SBS in coalition
Tj for SBS m. Without loss of generality, we consider the
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worst condition where the SBS in coalition Tj causing the
most serious interference to SBS m is regarded as the aggres-
sor of SBS m. In order to record the interfering SBSs, we
introduce an interfering matrix AM×M =

[
amj
]
M×M , where

amj = 1 if SBS j is the aggressor of SBS m and amj = 0
otherwise. Note that the elements in the main diagonal are
set to be 0, i.e., amm = 0.

2) ACTIVE SUBFRAME CONFIGURATION
According to (1) - (3), it is noted that a user’s rate is decided
by the number of active subframes of its serving SBS and the
transmit power of all SBSs in the network. Therefore, suppose
that SBS m has Nm,act active subframes during a frame and
that the target rate of user m is Rm,min, the data rate per active
subframe should be achieved to NRm,min

/
Nm,act such that

user’s average target rate during a frame can be guaranteed.
The needed transmit power of SBSm on subchannel k can be
calculated as

pmk =

(
Imk + σ 2

)
hmkm

(
2

NRm,min
αKB0Tsf Nm,act − 1

)
, ∀k ∈ K (11)

where Imk =
M∑

j=1,j 6=m
amj [k]Pmax

jk hjkm. Since it is assumed

that the power is equal on all subchannels for a SBS, the total
transmit power of SBSm isKpmk in each active subframe. For
brevity, we define ϕ

(
Nm,act

) 1
=

NRm,min
αKB0Tsf Nm,act

. Substituting
(11) into (5) and relaxing Nm,act to be a real number with the
interval [0,N ], the original problem can be converted into:

min
N
U (N)=

M∑
m=1

Tsf Nm,act1PK
(
Imk+σ 2

)
hmkm

(
2ϕ(Nm,act)−1

)
+

M∑
m=1

Tsf
[
Nm,act (P0 − Ps)+ Ps

]
(12)

subject to : Nm,act ∈ [0,N ],∀m ∈M (13)

The first- and second-order derivative of (12) with respect to
Nm,act can be calculated as follows:

∂U (N)
∂Nm,act

=
Tsf1PK

(
Imk + σ 2

)
hmkm

×
[
1− (ln 2) ϕ

(
Nm,act

)]
2ϕ(Nm,act)

+Tsf

[
P0 − Ps −

1PK
(
Imk + σ 2

)
hmkm

]
(14)

∂2U (N)
∂N 2

m,act
=

Tsf1PK
(
Imk + σ 2

)
hmkmNm,act

×
[
(ln 2) ϕ

(
Nm,act

)]22ϕ(Nm,act) ≥ 0 (15)

Therefore, problem (12) is convex in term of Nm,act . Due
to its constraint (13) is also a convex set, the optimal solution
Nm,act is existent and can be obtained as

N opt
m,act
=

(ln 2)NRm,min

αKB0Tsf
[
1+ lambertw

(
hmkm(P0−Ps)
e(Imk+σ 2)K1P

−
1
e

)]
(16)

where lambertw(·) is the lambertW-function which is defined
as the inverse function of f (W ) = WeW . The derivation
of (16) is in the Appendix. Note that although k is in the right
hand of (16), N opt

m,act
will be the same for any subchannel in

SBS m. We use round(·) to obtain the best choice of N opt
m,act

due to the fact that it should be an integer. From (16), it is
noted that larger target rates call for more active subframes.
After obtaining the number of active subframes, the location
of active subframes should be decided andwe call this process
active subframe configuration.

FIGURE 3. Active subframe configuration.

Fig.3 shows two cases of active subframe configuration.
Each LTE frame is equally divided into 10 subframes, each
of which has 1ms in duration. Suppose that SBS 1 and 2 coop-
erate to form coalition 1 to sleep and that the optimal number
of active subframes for SBS 1 and 2 calculated according
to (16) are 2 and 3, respectively. So the total active number
of subframes in coalition 1 is 5, which is less than 10. L-GW
coordinates their active subframe configuration orthogonally,
and assigns subframe 3 and 4 to SBS 1 and subframe 7, 8
and 9 to SBS 2, thus they won’t introduce interference to
the users of each other. In coalition 2, the total number of
active subframes is equal to 10. Note that if a SBS m does
not cooperate with others, it can configure any round

(
N opt
m,act

)
subframes as active subfarmes.

3) COALITION FORMATION
When SBSs form coalitions, they do not transmit data simul-
taneously, thus the interference introduced to other SBSs
outside this coalition can be mitigated. As a result, the needed
number of active subframe of SBSs outside this coalition will
be reduced and their energy will be saved. Since the purpose
of coalition formation is to save the network energy while
guaranteeing users’ rate requirements, we define the utility
of the network as the energy consumption in a frame.

In practice, there are some users whose target rates can-
not be achieved, even if their serving SBSs transmit maxi-
mum power during the whole frame. This is because their
target rates are large and the interference caused by other
SBSs is much severe in the DSCNs. We define these users
as outage SUEs and others as normal SUEs in this paper.
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Accordingly, the outage SUE set is denoted by Moutage.
We give the coalition formation conditions in definition 1,
based on which SBSs can cooperate to form coalitions.
Definition 1: For two given coalitions Ti and Tj, a new

coalition {Ti ∪ Tj} can be formed if the following conditions
are satisfied:

{Ti ∪ Tj} F {Ti, Tj} ⇔


∑

m∈{Ti∪Tj}
Nm,act ≤ N

U ({Ti ∪ Tj}) < U (Ti, Tj}
Ri ≥ Ri,min,∀i ∈ M\Moutage

(17)

where {Ti ∪ Tj} F {Ti, Tj} means coalition Ti and coalition Tj
merge into a new coalition {Ti ∪ Tj}. U (Ti, Tj} and U ({Ti ∪
Tj}) denote the utility of the DSCN before and after the new
coalition {Ti ∪ Tj} is formed, respectively.

These conditions are as follows: (i) the total number of
active subframes per frame in the new coalition should not
be more than the number of subframes per frame. (ii) the
DSCN energy consumption should be reduced after forming
a new coalition; (iii) the target rates of normal users should
be achieved when a coalition is formed.

In order to constrain the number of possible partitions,
we assume that SBSs maintain their status quo when other
SBSs are forming coalitions [35]. According to (17), L-GW
can manage SBSs to form coalitions taking into account
the system utility and the normal SUEs’ rate requirements.
Note that if a SBS does not cooperate with others, it will
form a coalition alone. The corresponding coalition formation
algorithm is described in Algorithm 1 and it includes three
stages: initial stage, aggressor discovery stage and coalition
merging stage.

Algorithm 1 Coalition Formation Algorithm
1: Initialization
2: Initialize coalition structure in the network as CS =
{{T1}, . . . , {TM }}. Initialize pmk = Pmax

mk ,∀m ∈M,∀k ∈
K and the interfering SBS matrix AM×M . Comparing the
users’ achieved data rate with the rate demands,Moutage
is identified.

3: Aggressor discovery
4: for SBS m = 1 to M do
5: Execute Aggressor discovery algorithm (Alg. 2).
6: end for
7: L-GW sorts the SBSs in descending order based on their

received strongest interference level and maintains them
in a victim list Lvim = {v1, v2 . . . , vM}.

8: Coalition merging
9: for vi = v1 to vM do
10: Identify the coalition Tvi that SBS vi joins.
11: repeat
12: Execute Coalition merging algorithm (Alg. 3).
13: until Tvi no longer forms a new coalition with its

aggressors.
14: end for

Initially, each SBS forms a coalition alone and serves
its user with maximum transmit power. In addition, the

interfering SBS matrix AM×M is initialized. Each SUE com-
pares its actual data rate with its target rate and reports to
its serving SBS. Then SBSs inform the L-GW whether its
user’s rate demand is satisfied such that the outage SUE
set can be obtained. Then, each SBS executes the Aggres-
sor discovery algorithm (Alg. 2). Once each SBS knows
the complete list of aggressors, it informs the L-GW their
dominate interference level. After that, L-GW sorts all SBSs
in a victim list Lvim = {v1, v2 . . . , vM} in descending order
based on the received dominating interference information.
The first element v1 in the victim list refers to the SBS that
suffers the strongest interference level. Finally, SBSs in the
network merge into coalitions by executing the Coalition
merging Algorithm algorithm (Alg. 3). The coalition merging
progress continues until the last member vM in Lvim ends its
negotiation.

In the aggressor discovery stage, SBS m maintains an
aggressor list Lm,inf = {m1,m2 . . . ,mM−1} by resorting to
its SUE. SBS m1 in Lm,inf refer to the SBS causing the
most severe interference to SBS m. The aggressor discovery
algorithm is shown in Algorithm 2.

Algorithm 2 Aggressor Discovery Algorithm
1: SUE in SBS m measures the received signal strength

indicator (RSSI) from other SBSs and reports to SBS m.
2: SBS m sorts its interfering SBSs in descending

order and save them in an aggressor list Lm,inf =
{m1,m2 . . . ,mM−1}. The interference level of the
strongest aggressor is reported to the L-GW.

In the coalition merging stage, the victims in Lvim begin
to merge with their aggressors in its aggressor list from the
leading one up to the last one based on the coalition formation
conditions. This is due to the fact that SBSs suffering more
severe interference are more likely to form coalitions with
their aggressors. For the victim vi, it tries to form coalition
with its aggressor vij in the aggressor list Lvi,inf. Firstly, the
coalition ID Tvi which victim vi joins is identified. Secondly,
the coalition ID Tvij which aggressor vij joins is identified.
Whether Tvi and Tvij can form a new coalition {Tvi ∪ Tvij} is
determined according to the coalition formation conditions
in (17). If (17) is satisfied, the number of active subframes
of all SBSs is updated and the subframe configuration is
conducted. In addition, the network utility is recorded. The
second step is ended if all aggressors inLvi,inf are determined.
SBSs choose the coalition that can save the most energy
to join and remove the member in this coalition from their
aggressor lists. The coalition merging algorithm is presented
in Algorithm 3.

In order to attain the optimal solution, the possible ways
to partition the M elements set are given by the famous Bell
Number. However, in our proposed heuristic method, the
computational complexity is O(M2) by using the proposed
coalition formation conditions, where M is the total number
of SBSs in the network.
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Algorithm 3 Coalition Merging Algorithm
1: for vij = vi1 to viM−1 do
2: Identify the coalition Tvij that SBS vij joins.
3: Tvi tries to form a new coalition {Tvi ∪ Tvij} with

Tvij . Each SBS in the DSCN calculates its number of
active subframes according to (16). L-GW determines
whether the new coalition can be formed based on (17).

4: if (17) is satisfied then
5: N opt

m,act
is updated and subframe configuration is

conducted. Besides, the current network utility is
recorded.

6: end if
7: end for
8: Tvi merges with the coalition Tvij that they can save the

most energy if cooperate. Update the interfering SBS
matrix AM×M . The members in Tvi remove the elements
in Tvij from their aggressor lists.

In the coalition formation process, SBSs located close tend
to form a coalition. Although the interference between SBSs
within a coalition is avoided, the number of active subframes
of them is also reduced. Therefore, their users’ achieved rates
may decrease after forming a coalition. If the normal users’
rate demands cannot be met, SBSs will not form coalitions,
even if they located close to each other. In such case, the
co-tier interference will exist. However, it can be mitigated
through power allocation.

B. POWER ALLOCATION
When the number of active subframes of all SBSs and the
subframe configuration are known, SBSs can serve users in
their active subframes and sleep in the sleeping subframes.
In the process of coalition formation, it is assumed that the
aggressors transmit with the maximum power, which leads
to much energy consumption due to the severe co-tier inter-
ference. Consequently, in this subsection, power allocation is
optimized to further reduce energy consumption.

A matrix SM×N = [smn]M×N is introduced to indicate the
state of a subframe, where smn = 1 if the subframe n of SSB
m is active subframe and smn = 0 otherwise. When SM×N is
obtained, the objective function in (5) will become into:

N∑
n=1

Tsf
M∑
m=1

[
smn

(
1P

K∑
k=1

pmkn + P0

)
+ (1− smn)Ps

]

=

N∑
n=1

M∑
m=1

[
Tsf1P

K∑
k=1

smnpmkn+Tsf smn (P0 − Ps)+Tsf Ps

]
(18)

where pmkn denotes the transmit power of SBS m over sub-
channel k in subframe n. Since Tsf ,1P,P0 andPs are constant
and smn is determinate, the original problem in (5)-(10) can
be solved per subframe and it is equivalent to the following

problem in subframe n:

min
P

M∑
m=1

K∑
k=1

smnpmkn

subject to : C1,C3,C4 (19)

Algorithm 4 Iterative Price-Based Power Allocation Algo-
rithm
1: Initialize Lmax and Lagrangian variables vectors µ and
λ. Initialize pmkN with a uniform power distribution
∀m, k, n.

2: for n = 1 to N do
3: Set l = 0.
4: repeat
5: All SBSs calculate the interference price according

to (20) and report to their interfering SBSs.
6: for m = 1 to M do
7: for k = 1 to K do
8: SBS m updates pmk according to (24)
9: µm and λm are updated according to (25) and

(26).
10: end for
11: end for
12: l = l + 1
13: until Convergence or l = Lmax
14: end for

This is a non-convex problem, as the SINRs of SUEs
are coupled. Thus finding the global optimal solution is
prohibitively complex. In this section, we propose a dis-
tributed algorithm (namely, Algorithm 4) to find the local
optimal solution of (19) by introducing an interference
pricing algorithm. Therefore, (19) can be decomposed
into M independent subproblems, one per SBS, by using
the pricing interpretation of Karush-Kuhn-Tucker (KKT)
conditions [36].

The price of interference that SBS j reports to SBS m over
subchannel k in subframe n can be expressed as

πjmn = −
∂Rj
∂pmkn

=
sjnB0pjknhjkjhmkj

ln 2
(
djkn + sjnpjkhjkj

)
djkn

(20)

where djkn = σ 2
+

M∑
m=1,m 6=j

smnpmknhmkj. Hence, the total

interference price received by SBS m in subframe n is

umkn =
M∑

j=1,j 6=m

πjmn (21)

In this case, the KKT conditions of (19) are equivalent to the
KKT conditions of the following optimization problem, for
each SBS m in subframe n:

min
Pmn

Umn (Pmn,P−mn) =

K∑
k=1

(1+ umkn)pmkn

subject to : C1,C3,C4 (22)
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where Pmn= [pm1n, pm1n, . . . , pmKn] and P−mn= [p11n, . . . ,
p1Kn, . . . , pm−11n, . . . , pm−1Kn, pm+11n, . . . , pm+1Kn] are the
power vector of SBS m and other SBSs across all subchanels
in subframe n, respectively. To find the solution of (19) in a
distributed manner, each SBS needs to solve (22) assuming
that the interference price is fixed. The problem (22) and its
constraints are all convex. Therefore, it is possible to obtain
an optimal solution in closed form. The Lagrangian function
of (22) is given by

L (Pmn,P−mn)

=

K∑
k=1

(1+ umkn)pmkn − λmn

(
Pmax
m −

K∑
k=1

pmkn

)

−µmn

[
K∑
k=1

B0log2 (1+ pmknγmk)− Rm,min

]
(23)

where µmn and λmn are the Lagrange multipliers for SBS m
in subframe n. By setting ∂L (Pmn,P−mn)

/
∂pmkn = 0, the

optimal power allocation is derived

pmkn=

 B0µmn
ln 2 (1+umkn+λmn)

−

σ 2
+

M∑
j=1,j 6=m

pjknhjkm

hmkm


pmax
mk

0
(24)

Based on the subgradient method, the Lagrangemultipliers
are updated according to the following expressions

µ(l+1)
mn =

{
µmn + ξ

(l)
µn

×

[
Rm,min −

K∑
k=1

B0log2 (1+ pmknγmkn)

]}+
(25)

λ(l+1)mn =

[
λ(l)mn + ξ

(l)
λn ×

(
K∑
k=1

pmkn − Pmax
m

)]+
(26)

where (x)+ = max {x, 0}. ξ (l)µn and ξ (l)λn are the step sizes
of iteration l ∈ {1, 2, . . . ,Lmax} in subframe n, Lmax is the
maximum number of iterations. The proposed price-based
power allocation algorithm is shown in Algorithm 4.

In this paper, we assume that only one user exists per small
cell. However, the proposed CSPA scheme can be extended
to multi-user scenario. In such case, the subframe configu-
rations for users in the same SBS are the same. The main
difference is that subchannel allocation among users in the
same SBS should be taken into account in the multi-user sce-
nario. The interference between users in the same SBS does
not exist in the multi-user scenario since they are allocated to
orthogonal subchannels. In addition, it should be noted that
the cell size will affect the EE performance. This is due to the
fact that the interfering SBSmatrix is constructed by resorting
to a SUE located close to the SBS and we assume that all
users in a SBS have the same interfering SBSs. If the cell size

is large, users are randomly located within this area thus the
actual interfering SBSs of them may be different. Therefore,
the performance will be degraded if their interfering SBSs are
still assumed to be the same.

IV. SIMULATION RESULTS AND DISCUSSION
In this section, the system level numerical simulation is devel-
oped via Monte-Carlo methods to estimate the performance
of the CSPA scheme. For the simulation, we consider the
downlink of the OFDMA system and a 100× 100 m2 square
area with M randomly deployed SBSs within a macrocell.
Large scale channel fading is considered, which includes the
path-loss and shadow fading. The simulation parameters of
system configurations mostly refer to [37]. In particular, main
simulation parameters are listed in Table 2.

TABLE 2. Simulation parameters.

We compare CSPA scheme with the maximum power allo-
cation (MPA), the non-cooperative power allocation (NCPA)
and the CS schemes. Note that in MPA, all SBSs trans-
mit maximum power over all subchannels during the whole
frame. In NCPA, SBSs don’t form coalitions and only con-
duct power allocation using Algorithm 4. In CS, SBSs only
form coalitions using Algorithm 1 and transmit maximum
power in their active subframes. In the following simulations,
we shown the performance of the proposed CSPA scheme
with different network densities. Moreover, from (17), we
know that the rate requirements can affect coalition forma-
tion, thus the impact of target rate is also evaluated.

In Fig. 4, we present a snapshot of a coalitional struc-
ture resulting from the proposed coalition formation algo-
rithm with 10 SBSs when the users’ average target rates are
5Mbps. Initially, all SBSs schedule their transmissions in
non-cooperative way and the total number of coalitions in the
DSCNs is 10. After using the proposed algorithm, they form
6 coalitions. In non-cooperative way, SBS 4 suffers the most
severe interference. Therefore, in the proposed approach, it
formsCoalition 1with SBS 0firstly as the coalition formation
conditions are satisfied. Following the same reason, SBS 2, 5
and 9 form Coalition 3 and SBS 6 and 7 form Coalition 5,
respectively. SBS 1, 3, 8 do not cooperate with others and
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FIGURE 4. A snapshot of a coalitional structure resulting from the
proposed approach.

form coalitions alone. Results suggest that SBSs located close
to each other tend to form coalitions to coordinate their
transmission due to the severe interference.

FIGURE 5. Convergence of the proposed Algorithm 2.

In Fig.5, the convergence of Algorithm 4 is evaluated when
the users’ target rate is 5 Mbps and the number of SBSs is 15.
As can be seen from Fig. 5, the average transmit power per
frame converges after 10 iterations. This result indicates that
the convergence of Algorithm 4 is guaranteed.

Fig.6 shows the average sleep subframe ratio of CSPAwith
different user’s target rates as network density varies. The
average sleep subfame ratio is defined as the percentage of
the total number of sleep subframes of all SBSs in the DSCN.
In the simulation, we select Rm,min = 2, 5, 8Mbps to respec-
tively represent the low, middle and high rate requirement in
a cell. It can be seen that the sleep subframe ratio are more
than 80% and less than 50% when the target rates are 2Mbps
and 8Mbps, respectively. This is because SBSs need more
active subrames to meet their users’ larger rate demands.
In addition, the average sleep subframe ratio decreases as the
network density increases for all target rates due to the fact
that more severe interference calls for more active subframes.

FIGURE 6. Average sleep subframe ratio versus network density.

In particular, the fluctuation of the sleep subframe ratio is
shown to be more obvious at larger target rate when the
number of SBSs changes from 10 to 22.

FIGURE 7. Average energy consumption per frame versus network
density.

Fig.7 shows the DSCN energy consumption per frame of
different schemes versus the network density when the user’s
target rate is 5 Mbps. It is observed that energy consumption
increases with the network density for all schemes and our
proposed CSPA scheme can significantly reduce the energy
consumption, indicating that cooperation between SBSs is
beneficial to energy saving. On the other hand, when the
network density is low, CS can save more energy than NCPA
since some SBSs turn into sleep mode in the CS scheme.
However, when the number of SBSs is more than 20, coop-
erative sleep is less efficient than power allocation. This is
because the number of sleep subframes decreases and SBSs
transmit maximum power in their active subframes.

Since there are outage SUEs in the network and coalition
formation process in the proposed CSPA scheme can ensure

VOLUME 4, 2016 7001



S. Wu et al.: Cooperative Sleep and Power Allocation for Energy Saving in DSCNs

FIGURE 8. Average outage SUE ratio versus network density.

less outage SUEs, the average outage SUE ratio with respect
to network density is demonstrated in Fig.8. In the simulation,
the users’ rate demands are assumed to be 5Mbps. The aver-
age outage SUE ratio is defined as the percentage of outage
SUEs in the DSCN. We can see that the outage SUE ratio
increases with the network density. The reason is that given
the rate requirement, SBSs need more active subframes to
serve users due to the more severe co-tier interference result-
ing from more SBSs, and some SUEs’ target rates can not
be satisfied. Obviously, CSPA has a lower outage SUE ratio
than NCPA and MPA. This is because in CSPA, some SBSs
cooperate to sleep in several subframes thus the interference
is mitigated and the target rates aremore likely to be achieved.

FIGURE 9. Coalition size versus rate demands.

The average and maximum sizes of the coalition with
respect to rate demand are shown in Fig.9. In this simulation,
the total number of SBSs is 15. Since the coalition size is aver-
aged over many independent network realizations, its value is
fractional. It can be seen that both the average coalition size
and the maximum size first increase then decrease with the

target rate. Such phenomena are due to the fact that when two
SBSs form coalitions, all SBSs calculate their needed number
of active subframes according to (16) and they only need
one active subframes to guarantee users’ rate requirements
when the rate demand is 1Mbps. In this case, cooperation
between other SBSs is not needed. With the rate demand
growing, SBSs in the network need more active subframes to
serve their users and they can formmore and larger coalitions
to cooperate to sleep in more sleep subframes. However,
when the rate demand is larger than 3Mbps and continues to
increase, the maximum coalition size and average coalition
size decrease. This is because all SBSs need large number
of subframes and the coalition formation conditions will not
be satisfied. It can be observed that both the maximum and
average sizes of coalition are equal to 1 at the rate of 15Mbps,
whichmeans that SBSs in the network do not cooperate in this
case.

FIGURE 10. Average energy consumption per frame versus rate demands.

Fig.10 manifests the DSCN energy consumption per frame
as target rate varies when the number of SBSs is 15. It is obvi-
ous that the energy consumption is constant in MPA since all
SBSs transmit the maximum power during the whole frame
regardless of the rate requirements. In NCPA, the energy
consumption changes slightly since the circuit dissipation is
the major part of energy consumption. When the rate demand
is above 6.0Mbps, the CS consumes more energy than NCPA,
which implies that conducting power allocation is beneficial
to energy saving under large rate requirement. The reason
is that SBSs transmit maximum power in more afig3ctive
subframes as the target rate grows in CS. However, our pro-
posed CSPA scheme consumes the least energy by jointly
considering sleep mode and power allocation. Additionally,
we can see that the gap between CSPA and NCPA becomes
smaller when rate requirement grows. This is because the
number of active subframes increases with the target rate.
Similar reason is for MPA and CS schemes. When the rate
demand reaches to 15Mbps, the gaps are zero due to the fact
that SBSs do not cooperate.
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V. CONCLUSION
In this paper, considering the actual frame structure and
the cooperation between SBSs in DSCN, we formulate the
energy-saving problem with QoS constraint as a MINLP by
integrating both sleep mode and power allocation. A CSPA
scheme is proposed to solve this problem by decomposing it
into two subproblems of cooperative sleep and power allo-
cation. Firstly, we figure out the explicit expression of the
optimum number of active subframes for SBSs and give the
coalition formation conditions, based on which a centralized
heuristic coalition formation algorithm is proposed for SBSs
to form coalitions. Subsequently, the power allocation prob-
lem is addressed in a distributed way by introducing inter-
ference price. Finally, we compare the CSPA scheme with
NCPA scheme and MPA scheme. Numerical results demon-
strate that given the rate demand, the cooperation between
SBSs can lead to more energy savings and meet users’ target
rates as much as possible when the network density grows.
Moreover, given the number of SBSs in the network, their is
a rate demand at which SBSs can form the largest coalition.
Besides, SBSs will not cooperate when the target rate reaches
to a certain value.

In order to solve the spectrum scarcity problem in the
5G network, cognitive radio (CR) communication has been
considered as a potential candidate. CR technology has many
applications [38] and a novel classification of white spaces
is proposed in [39] to promote the development of CR
communication. In [40], the authors investigate the resource
allocation problem for multiuser OFDMA-based CR net-
works (CRNs). Cognitive capability is essential for small
cells to improve the EE of the small cell tier and solve the
interference problem in the HetNets. In the future, we will
enhance our work by considering small cells with cognitive
radio capability. And the EE optimization problem will be
addressed in the scenario where a large number of cognitive
small cells and multiple marocells are co-channel deployed.

VI. APPENDIX
PROOF OF OPTIMAL NUMBER OF ACTIVE SUBFRAMES
By setting ∂U (N)

/
∂Nm,act = 0, we obtain

2ϕ(Nm,act)
[
(ln 2) ϕ

(
Nm,act

)
− 1

]
=

hmk (P0 − Ps)

1PK
(
Imk + σ 2

) − 1

(27)

Using 2x = ex ln 2, x > 0, (27) can be expressed as

e(ln 2)ϕ(Nm,act)
[
(ln 2) ϕ

(
Nm,act

)
−1
]
=

hmk (P0−Ps)

1PK
(
Imk+σ 2

) − 1

(28)

Changing the left side of (28) into the formation ofWeW , we
have

e
(ln 2)ϕ(Nm,act )−1 [

(ln 2) ϕ
(
Nm,act

)
− 1

]
=

1
e

[
hmk (P0 − Ps)

1PK
(
Imk + σ 2

) − 1

]
(29)

According to the definition of lambert W-function, (29)
becomes

(ln 2) ϕ
(
Nm,act

)
− 1 = lambertw

(
hmk (P0 − Ps)

e(Imk + σ 2)K1P
−

1
e

)
(30)

Substituting ϕ
(
Nm,act

)
=

NRm,min
αKB0Tsf Nm,act

into (30), (16) is
derived.
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