
Received August 18, 2016, accepted September 22, 2016, date of publication October 7, 2016, date of current version November 8, 2016.

Digital Object Identifier 10.1109/ACCESS.2016.2615181

Web Performance Evaluation for
Internet of Things Applications
ZORAN B. BABOVIC1, (Student Member, IEEE), JELICA PROTIC2,
AND VELJKO MILUTINOVIC2, (Fellow, IEEE)
1Innovation Center, School of Electrical Engineering, University of Belgrade, 11000 Belgrade, Serbia
2School of Electrical Engineering, University of Belgrade, 11000 Belgrade, Serbia

Corresponding author: Z. Babovic (zbabovic@etf.bg.ac.rs)

This work was supported in part by EU FP7 ProSense Project under Project 205494 and in part by
the Serbian Ministry of Education and Science under Project III44006.

ABSTRACT An area of intensive research under the umbrella of the Internet of Things (IoT) has resulted
in intensive proliferation of globally deployed sensor devices that provide a basis for the development of
different use-case applications working with real-time data and demanding a rich user interface. Overcoming
the lack of the standard HTML platform, HTML5 specifications WebSocket and Canvas graphics strongly
supported the development of rich real-time applications. Such support has been offered by browser
plug-ins such as Adobe Flash and Microsoft Silverlight for years. In order to provide a deep insight into
IoT Web application performance, we implemented two test applications. In the first application, we mea-
sured latencies induced by different communication protocols and message encodings, as well as graphics
rendering performance, while comparing the performance of different Web platform implementations.
In the second application, we compared Web performance of IoT messaging protocols such as MQTT,
AMQP, XMPP, and DDS by measuring the latency of sensor data message delivery and the message
throughput rate. Our tests have shown that although Adobe Flash has the best performance at the moment,
HTML5 platform is also very capable of running real-time IoT Web applications, whereas Microsoft
Silverlight is noticeably behind both platforms. On the other hand, MQTT is the most appropriate messaging
protocol for a wide set of IoT Web applications. However, IoT application developers should be aware of
certain MQTT message broker implementation shortcomings that could prevent the usage of this protocol.

INDEX TERMS Real-time systems, web and internet services, performance evaluation, sensor systems and
applications.

I. INTRODUCTION
Recent research efforts conducted within the Internet of
Things (IoT) vision [1]–[3] create different sets of technolo-
gies for collecting real-world observations by connecting
sensors, actuators, Radio-Frequency Identification (RFID)
tags, and mobile phones on the Web [4]. These enabling
technologies offer development of wide-class applications
from domains such as the smart environment, which includes
smart homes, cities, offices, and industrial environments;
transportation and logistics; healthcare; environmental mon-
itoring and others. All of these applications combine real-
time sensor data with either historical sensor measurements
or even personal and social network data and sometimes have
strict requirements regarding network performance, such as
latency and throughput. For instance, in industrial automa-
tion, latency requirements could be very rigorous because the

update frequency in closed-loop control could vary between
10ms and 100ms [5]. Many analyses show that we can
expect a tremendous growth of deployed interconnected sen-
sor devices in our environment by 2020-2021, reaching the
number of around 21 billion or up to 28 billion deployed
devices as forecast by Gartner [6] and Ericsson analysts [7]
respectively. Accordingly, the number of IoT applications
and developers is rapidly growing, and VisionMobile predicts
that the number of IoT developers will reach 4.5 million
by 2020 [8].

Conventionally, real-time messaging applications have
been implemented as desktop-based applications, relying
on the socket connection of the underlying operating sys-
tem and standard graphic library. Standard HTML Web
applications have proved to have a number of advantages
over desktop-based applications such as better portability,

6974
2169-3536 
 2016 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 4, 2016



Z. B. Babovic et al.: Web Performance Evaluation for IoT Applications

easier deployment, automatic update and maintenance for
all clients. However, HTML lacks in providing support for
real-time applications. In contrast, Web frameworks based
on browser plug-in platforms have been overcoming these
limitations of HTML for years. This support was first offered
by the Java Applet plug-in, which is a technology that enabled
execution of Java desktop applications within aWeb browser.
Much higher popularity was achieved by browser plug-
ins, such as Adobe Flash and Microsoft Silverlight, which
provided Web-based frameworks enriched with components
for graphics rendering and support for real-time messaging
communication and multimedia content delivery. The result
was a proliferation of multimedia content on the Web and
highly demanded real-timemessaging applications. Recently,
the support and interest for browser plug-ins are fading out
because application providers do not want to be dependent
on any plug-in providers, and browsers on some mobile plat-
forms including iOS do not support these plug-ins.

Over time, someHTTP based techniques such as Comet [9]
improved support for asynchronous data delivery on the stan-
dard HTML platform, but the full development of rich real-
time applications was enabled by the introduction of HTML5
technologies like WebSocket [10] and Canvas graphics ele-
ment [11]. As WebSocket implementations became mature,
a number of Web clients for messaging protocols have been
available, both open-source and proprietary. These proto-
cols, established as IoT application layer protocols, enable
publish/subscribe interaction model between sensors data
providers and consumers thus offering a scalable architecture
based around message brokers.

Having recognized advances in both IoT domain and the
Web, our motivation in this paper is to provide a deep insight
for software developers into the Web performance of IoT
applications, by analyzing all components that have an impact
on overall performance. Therefore, we developed two test
applications in order to measure related latencies and the
throughput rate of the sensor data message delivery.

The outcomes of this work are the following:
- We provide a comprehensive overview of technologies
that could be utilized during the development of IoT
Web applications. We describe communication proto-
cols that included pull-based and push-based techniques,
IoT application layer messaging protocols, message
encodings containing text and binary message formats,
and graphics rendering on the Web.

- We conducted a detailed survey of the related work that
covers real-time messaging, both for IoT domain and on
the Web in general.

- We performed the measurement of real-time perfor-
mance of IoT Web application executed on HTML5,
Adobe Flash and Microsoft Silverlight platforms.
We analyzed latencies induced by employing different
communication protocols such as HTTP long polling,
HTTP streaming, and both TCP socket and WebSocket,
as well as different message encodings like XML, JSON,
and platform-supported binary formats. In addition, we

measured the performance of dynamic graphics ren-
dering that represents data visualization elements.
In another test application, we measured the latencies
of sensor data propagation, and the message throughput
rate achieved by IoT application layer protocols MQTT,
AMQP, XMPP, and DDS.

II. TECHNOLOGY OVERVIEW
In this section, we will give an overview of typical design
alternatives from the application developers’ perspective,
important for developing Internet of Things real-time appli-
cations on the Web. These design alternatives belong to com-
munication protocols, message encoding formats and at the
end, the entire Web platform.

A. COMMUNICATION PROTOCOLS
We could identify three interaction models of communi-
cation between data producers and data consumers in the
context of Web applications. The first model is request-
reply interaction, which is also referred to as pull-based data
access, or synchronous data delivery, and is typical for a
service-oriented architecture. This model assumes that clients
issue requests or queries to a service provider for specific
data, and the service provider replies with appropriate data.
IoT application developers are able to choose one of the
following approaches:
Representational State Transfer (REST) – is an architec-

tural style in which a client issues the standard HTTP request,
choosing one of the methods such as GET, POST, PUT, and
DELETE, and a server responds with appropriate data. The
REST architectural style denotes interaction between a client
and a server based on resources that are accessed using the
HTTP protocol, addressed by URI, and represented by XML,
HTML, or JSON formats.
Standard Web Service—a Web service aims to pro-

vide communication interoperability among different soft-
ware platforms where the interface is described by Web
Services Description Language (WSDL),1 and messages
are exchanged through the Simple Object Access Proto-
col (SOAP),2 which is based on the HTTP protocol and XML
data format. However, the standard Web service can be used
only from the browser’s plug-ins, and not from the standard
HTML-JavaScript based platform.
Remote Object Method Call—this method is available in

various Web frameworks Application Programming Inter-
faces (API), and is based on the standard HTTP request.
The idea is to provide a proxy object with certain meth-
ods on the client side, which represents the remote object.
Invocation of a method of a proxy object is propagated to
the remote object. The common approach is that the client
provides a callback object/function that is called when the
operation is completed. This approach is suitable if the client
and the server have compatible programming platforms—if

1http://www.w3.org/TR/wsdl
2http://www.w3.org/TR/soap/

VOLUME 4, 2016 6975



Z. B. Babovic et al.: Web Performance Evaluation for IoT Applications

client objects can actually be mapped to server objects and
vice versa.
Constrained Application Protocol (CoAP) [12] targets

Machine to Machine (M2M) communication with the aim
of providing request-reply interaction model like REST to
constrained devices and environment. CoAP can be easily
translated to more resource demanding HTTP thus enabling
integration of wireless sensor networks (WSN), for exam-
ple, with the Web through proxies. CoAP is based on UDP
transport, and supports reliable unicast, as well as best-
effort multicast connections. CoAP has a low-overhead and
its messages must fit into a single IP datagram, which in
the case of IEEE 802.15.4 based protocols (e.g. 6LoWPAN
WSNs) produces 127 bytes long messages. As an extension
of standard REST style, CoAP allows clients to issue request
for observing specific server’s resource, which results in
receiving asynchronous notifications about the resource from
the server.
Push-based data propagation, or asynchronous data deliv-

ery, is a client–server interaction model which allows the
server to send data to clients immediately upon their avail-
ability, e.g. upon arrival at server. Several techniques exist:
Long-Polling—A client sends a HTTP request and waits

for the data from a Web server. The server holds the connec-
tion until new data are available, a timeout event arises, or the
client disconnects. Upon data arrival, the server sends data to
the client, and the client initiates a new HTTP request again.
Therefore, the server is able to send data to the users at any
time because there is always a pending request. The benefit
of the long-polling technique is the use of a standard port that
is not blocked by firewalls; it is robust and works together
with the proxy server. The disadvantage is the allocation of a
connection per client even if the data are not transferred.
HTTP Streaming—A Web server does not terminate the

response message or connection as usual, but rather keeps it
open and only appends new data to the response message.
This can be implemented through XHR multipart steaming
and XHR iFrame streaming [13]. XHR multipart streaming
utilizes the HTTP content type ‘multipart,’ which enables the
server to send data in multiple pieces. XHR iFrame streaming
allows data to be sent in multiple <script> tags. To prevent
a large size of the response message at the client side, the
connection must be terminated, and a new HTTP request
should be issued periodically.
Socket connections—Sockets are a TCP-based technol-

ogy for providing bidirectional network communication over
a single connection. HTML5 specifications introduced the
WebSocket protocol [10], which enables communication over
sockets from Web browsers. An establishment of a Web-
Socket connection is initiated by upgrading an HTTP request.
After the connection is established, there is no need for header
exchange between the parties, so the control data overhead is
minimal.

In addition to these basic approaches, we describe
a publish-subscribe interaction model which essentially
employs communication primitives from previously described

approaches. This model enables the client (subscriber) to
subscribe on data that are associated with a certain topic and
to receive the data on that topic published by other clients
(publishers). The broker is a server component responsi-
ble for delivering messages between the publisher and the
subscriber, ensuring quality of services, persisting messages
and similar functionalities. Several messaging protocols have
been used as IoT application protocols.
Message Queue Telemetry Transport (MQTT)

Reference [14] was designed by IBM in 1999 for lightweight
M2M communication with the goal of providing a publish-
subscribe messaging protocol with as minimal as possible
bandwidth requirements, code footprint size, power con-
sumption and message data overhead. Topics in MQTT have
hierarchical names separated with a slash (/), for instance
wsn1/sensors/temperature/temp1. Clients are allowed to use
wildcards while subscribing to topics in order to easily match
multiple topics. There are three levels of Quality of Service
in MQTT. There is a variation of this protocol named MQTT
for Sensor Networks (MQTT-SN) that is intended for use on
embedded devices working on non-TCP/IP networks such as
ZigBee.
Advanced Message Queuing Protocol (AMQP)

Reference [15] is a binary, open standard protocol for high-
performance messaging middleware, primarily designed for
enterprise environment, but it is used in various application
areas. AMQP 1.0 [16] is the current version and it is a wire-
level protocol that defines message format with common data
types, whereby additional meta-data could be provided for
data interpretation, thus achieving interoperability between
different vendors. The protocol ensures reliable commu-
nication with three-modes of message-delivery: at-most-
once, at-least-once, and exactly-once. Unlike the AMQP 1.0,
AMQP 0.9.1 version assumes the model in which messages
are published to exchanges, and according to binding rules
messages are forwarded to queues and further delivered to
clients who are subscribed to those queues. Depending on
the exchange type, there are four possible ways of routing
messages between publishers and consumers.
Extensible Messaging and Presence Protocol (XMPP)

Reference [17] is a set of technologies for real-time messag-
ing having in its core XML streaming technology. The proto-
col was developed in 1999 by Jabber open-source community
for instant messaging (IM) applications. The protocol specifi-
cations contain the core specification standardized by Internet
Engineering Task Force (IETF) [18] and over 300 extensions
published through XMPP Extension Protocols (XEPs) which
cover various purposes such as publish/subscribe messag-
ing (XEP-0060: Publish-Subscribe,3) sensor data exchange
(XEP-0323: Internet of Things - Sensor Data,4) multi-user
chatting etc. In XMPP, clients exchange XML messages
called stanzas. There are three basic stanza types: mes-
sage, presence, and iq (info/query). The message stanza is

3http://xmpp.org/extensions/xep-0060.html
4http://xmpp.org/extensions/xep-0323.html

6976 VOLUME 4, 2016



Z. B. Babovic et al.: Web Performance Evaluation for IoT Applications

TABLE 1. Comparison of IoT application layer messaging protocols.

a root element and contains message payload (in the child
element body) as well as information about sender (from),
receiver (to), message type and id. In a publish/subscribe
messaging model, a node represents a topic. The protocol
has come into the focus of IoT domain [19], [20] after
appearances of lightweight implementations for constrained
devices, i.e. µXMPP [21] and XMPP client for mbed [22].
Data Distribution Service (DDS) Reference [23] is

an open standard middleware communication protocol.
DDS proposes serverless architecture for high-performance
interoperable data sharing using Data-Centric Publish-
Subscribe (DCPS) model. This model assumes typed
interfaces by allowing DDS participants to define topics of
certain data types that correspond to data types of data objects
which applications want either to publish or receive. Appli-
cations use DataWriter of the given data type to publish data
objects to certain topic over Publishers component, whereas
DataReader of the given data type is used for receiving
data objects over Subscriber component. Dynamic discov-
ery of DDS participants is the matching of their publica-
tions and subscriptions based on topics of the same name
and data type. Interface Definition Language (IDL) is used
for defining data types. QoS can be defined at the level
of Publishers/Subscribers as well as the level of DataWrit-
ers/DataReaders. DDS protocol specifies use of multicast
UDP within LAN, and TCP transport for communication
over WAN. However, DDS specification defines APIs in
C++ and Java, and proprietary implementations are mostly
available,5 whereas open-source implementation of DDS is
only provided in OpenDDS6 project.

In Table 1 comparison data of IoT application layer mes-
saging protocols are presented.

B. MESSAGE ENCODINGS
In client–server communication, transferred data are encoded
in certain message formats producing different message sizes
and requiring certain encoding/decoding times, whereas com-
plex schemes allow the full object graph serialization or
the provision of meta-data and thus enable interoperability.

5http://portals.omg.org/dds/dds-resources/
6http://opendds.org/

Generally, we can classify message formats into text-based
and binarymessage formats. In both approaches, upon receiv-
ing the data, the client parses and converts it into the appro-
priate internal object structure. After that, the data are ready
for further processing or visualization.
Text-based message encodings keep data in a human-

readable format. The most popular examples are Extensible
Markup Language (XML)7 and JavaScript Object
Notation (JSON).8 XML is a common format for interchang-
ing data over the Internet. It has separated data and metadata
and may refer to grammar definitions (schema), which are
used for checking the validity of an XML document. JSON
contains data expressed as name–value pairs in typical pro-
gramming notation, but it is language independent. IoT appli-
cations that provide semantic data together with raw sensor
data in order to implement intelligent services [4] use text-
based serialization formats as a representation of Resource
Description Framework (RDF)9 datamodel. RDF is a Seman-
tic Web technology aimed at expressing concepts and their
relationships defined in ontologies of certain domains. Such
interlinked concepts can be represented as a graph, and a basic
RDF data item is a triple in the form <subject, predicate,
object>, which is actually the edge between two nodes in
the graph. Text-based serialization syntaxes of RDF rely on
XML and JSON—i.e., RDF/XML10 and RDF/JSON11 spec-
ifications. Other examples include N-Triples12 (and its more
generalized format N3), which attempt to keep messages
more compact by extracting a predicate that is common for
more RDF triples, whereas the Terse RDF Triple Language
(Turtle)13is efficient for expressing queries in SPARQL,14

which isW3C’s recommendation language for querying RDF
data.
Binary message formats are designed with specific goals

to reduce message size and/or efficiently encode some

7http://www.w3.org/XML/
8http://json.org/
9http://www.w3.org/RDF/
10http://www.w3.org/TR/REC-rdf-syntax/
11https://dvcs.w3.org/hg/rdf/raw-file/default/rdf-json/index.html
12http://www.w3.org/TR/n-triples/
13http://www.w3.org/TeamSubmission/turtle/
14http://www.w3.org/TR/rdf-sparql-query/

VOLUME 4, 2016 6977



Z. B. Babovic et al.: Web Performance Evaluation for IoT Applications

object graph structures, but they lack interoperability. Many
programming languages typically have their default object
serialization using binary encodings—e.g., Java object seri-
alization,15 but there are also more advanced approaches
such as Kryo framework,16 used in many high-performance
applications. Some text-basedmessage formats, such asXML
and JSON, have their improved binary versions. For instance,
Efficient XML Interchange (EXI) [24] format was designed to
convert XML messages to binary ones and thus reduce mes-
sage size and bandwidth in the resource-constrained environ-
mentwhich is important for IoT domain. In 2011,WorldWide
Web Consortium adopted EXI format as a recommenda-
tion [25]. Binary JSON formats such as BSON,17 BJSON,18

and UBJSON,19, aim to be used for high-performance appli-
cation and enable easy parsing and manipulation of binary
messages while relying on simplicity of schema-less data
organization of JSON. By avoiding text-processing, these for-
mats reduce message size and improve message processing
compared with the standard JSON.

Binary message formats are also used when application-
specific communication is employed and the data are mar-
shaled according to internal specifications that should enable
easier conversion and better performance. In such situations,
vendors provide their own implementation of binary encod-
ings. Protocol Buffers (PBF) [26] is a compact binary format
developed by Google and is based, among other techniques,
on variably sized encoding of integers. Open-source binary
message formats Colfer20 and Protostuff,21 which are based
on ideas of PBF, further improve its speed and message size
performance [27]. Adobe’s Action Message Format (AMF)
[28] is designed to represent object-graph containing proper-
ties as key-value pairs. Research efforts related to semantic
data streams investigate involvement of compression tech-
niques on RDF stream data to achieve both space savings and
better processing time. For instance, RDSZ [29] and work
by Joshi et al. [30] are examples of such approaches. The
technique HDT [31] produces a binary message from RDF
data by utilizing RDF graph structure properties by separately
encoding terms and triples from a RDF graph.

C. GRAPHICS RENDERING
In the Internet of Things application domain, visualization of
gathered sensor data may include drawing curves, charts, ani-
mation of some polygons that represents changes of certain
parameters, or tracking the location of some objects using
maps of regions or cities in the background. The HTML5
specification introduced the canvas element used for dynamic
rendering of 2D graphics. This feature was present in partic-

15http://docs.oracle.com/javase/7/docs/platform/serialization/spec/serial
TOC.html

16https://github.com/EsotericSoftware/kryo
17http://bsonspec.org/
18http://bjson.org/
19http://ubjson.org/
20https://github.com/pascaldekloe/colfer
21http://www.protostuff.io/

ular browser implementations for a while but was not stan-
dardized. This incompatibility limitedWeb application devel-
opers in creating portable applications. For more advanced
3D and 2D graphics application development, there is the
Web Graphics Library (WebGL), which is a JavaScript API
running on the HTML5 canvas element, allowing the Graph-
ics ProcessingUnit (GPU) to accelerate image processing and
effects.Moreover, browser plug-ins offered strong support for
vector and bitmap graphics.

The goal of this work is to provide IoT developers with
the insight into the impact which each of the described
technologies has on the performance of real-time IoT Web
applications. However, before describing testing environment
and architecture, we would review the previous related work
that covers some of the issues we are dealing with.

III. RELATED WORK
This section contains related work addressing Internet of
Things application layer protocols, performances of real-time
sensor data delivery, as well as more general Web-based real-
time applications with the focus on the impact of communi-
cation protocols, message encoding efficiency, and graphic
rendering performance on the Web.

Several surveys have provided description and comparative
analysis of IoT application layer protocols without provid-
ing real data measurements [3], [32]–[34]. All these surveys
identified CoAP, MQTT, XMPP, AMQP and REST services
as the most representative protocols, whereas the authors
in [3] and [34] include DDS to this group. In addition, the
authors in [32] described Web service related specifications
and also a set of Open-Geospatial Consortium’s (OGC) Sen-
sor Web Enablement (SWE) [35] sensor data services and
standards. The authors in [33] considered protocols’ reli-
ability and security issues, as well as their suitability for
constrained devices. As a part of testing the feasibility of
Session Initiation Protocol (SIP) as an alternative protocol
for M2M, the authors in [34] performed the deep analysis
of the message header structure in each surveyed proto-
col. Also, they dedicated special attention to suitability of
JSON and Google’s Protocol Buffers data formats for M2M.
In [3] the authors proposed three IoT application scenarios
and discussed which of the described protocols could be used
efficiently to fulfill functional requirements of such applica-
tions.

Several works experimentally tested the most popular
IoT application layer protocols, typically comparing two
selected protocols. In [36] the authors compared MQTT and
CoAP by creating a middleware component in order to per-
form testing. They found that MQTT has a smaller latency for
smaller packet loss than CoAP, and in contrast, higher latency
than CoAP for higher packet loss.

In [37] the authors tested performance of XMPP with
three different communication techniques. They found out
that WebSocket version outperforms HTTP polling with the
100ms polling interval and long-polling versions. In the
client-server round-trip test case in a LAN environment,

6978 VOLUME 4, 2016



Z. B. Babovic et al.: Web Performance Evaluation for IoT Applications

WebSocket based version reached the rate of 721 round-trips
per second, whereas a long-polling version performed only
18 round-trips per second andHTTP polling performed below
10 round-trips per second. By increasing themessage payload
size, the round-trip rate was constant for both HTTP based
techniques, but for WebSocket version the rate was decreas-
ing, to 437 round-trips for 1000 bytes long messages. The
authors explained that HTTP based techniques have to create
a new TCP connection per every message sent to the server,
whereas WebSocket based version uses the same connection
during the entire test.

The authors in [38] compared AMQP protocol with the
RESTful Web service. In three experimental scenarios, they
measured the average number of sent messages by user
application in 1s over AQMP protocol and RESTful, while
the messages are stored in the database. AMQP achieved
the average rate of 211.5 msg/s, while REST reached
125.9 msg/s. When messages are not stored in the database,
AMQP reached 226.6 msg/s.

Several authors tested real-time message delivery
using WebSocket and HTTP based techniques.
Pimental and Nickerson [39] analyzed the behavior of Web-
Socket, HTTP polling and long-polling protocols in an
application for receiving low-volume sensor data produced
by a wind sensor at a 4Hz rate. They were interested in
latencies induced by each protocol measured by clients on
four locations in the world—one local in Canada, and three
others on different continents. Test results show that HTTP
polling average latency is between 2.3 and 4.5 times higher
than either WebSocket or long-polling. However, WebSocket
and long-polling have similar latencies, except for longer
distances (Canada-Japan), whereas WebSocket latency is
significantly lower by a factor of 3.8 to 4. Similar work
was presented in [40] by Ma and Sun. They compared
long polling, ActiveX socket, Flash socket, and WebSocket
communication by measuring a round-trip response time in
real-time monitoring system for remote intelligent build-
ings. Their experimental setup included high-speed network
conditions when both a server and clients were residing in
China, and low-speed network conditions, when the server
was outside China. Measurements showed that WebSocket
has the shortest response time, with very small difference to
the FlashSocket, whereas long polling and ActiveX socket
have at least twice higher latency.

In [13] Gutwin et al. conducted a comparison of
HTML5 real-time communication technologies including
long-polling, HTTP streaming, and WebSocket with Java
applet plug-in socket implementation, in the context of group-
ware applications. They measured the maximum number of
sent/received 500-byte messages without any payload in 1 s.
All tests were performed in three network environments:
LAN, MAN and WAN. The results show that TCP socket
protocol outperforms long-polling and HTTP streaming in
all network settings. In addition, the browser’s WebSocket
implementation achieves a higher message rate than the Java
applet socket in aWAN environment by a factor of four—i.e.,

5113 to 1245 messages.
Comprehensive comparison of message encodings for Java

Virtual Machine (JVM) with the focus on the message
creation, serialization, and deserialization times, as well as
message size is provided in [27]. According to different
benchmarks, Google Protocol Buffers enhanced message
encodings such as Colfer and Protostuff, as well as Kryo,
achieved the best results in most aspects.

Finally, the last research we would like to highlight was
done by Hoetzlein [41], who developed a test suite in order
to answer which rich Internet application framework gives the
best performance for rendering online 2D graphics, used for
dynamic online data visualizations, applications, and games.
In addition to other frameworks, HTML5 and Flex rendering
implementations in themost popular browsers—i.e., Chrome,
Internet Explorer and Firefox—were compared. The conclu-
sion that is drawn from the test results is that graphics perfor-
mance depends on which browser is used. HTML5 renders
faster than Flex in Firefox, but in the other two browsers, the
opposite is true: Flex renders faster than HTML5. In addition,
Flex rendering in Firefox is significantly slower than in the
other two browsers.

FIGURE 1. A generic architecture of internet of things web applications.

IV. GENERIC ARCHITECTURE OF IoT WEB APPLICATIONS
We created generic architecture of IoT Web applications
(shown in Figure 1) with the aim of covering wide spectra of
application scenarios from different domains including healh-
care, smart home, environmental monitoring, smart cities,
transportations and logistics, etc. In such diversity of appli-
cations, we can identify the common data collection patterns
as follows [4]:
•Acquisitional data collection assumes data collection at

defined time intervals. Clients can poll a server on equal time

VOLUME 4, 2016 6979



Z. B. Babovic et al.: Web Performance Evaluation for IoT Applications

intervals for new data, or data can be pushed from the server
to the interested clients when new data are available.
•Event-driven data collection is a consequence of the

detection of the defined event—e.g., when measured data
values satisfy some conditions. Because these events are
asynchronous, users can be notified by the push-based data
propagation.
•Real-time data streaming contains data sampled at a spe-

cific time rate. Users can be interested in obtaining raw,
unprocessed data that demand significant communication
bandwidth or either aggregated or processed data. Users
should be informed about the data rate to avoid overload and
to determine if they are able to interpret them reliably.

There are basically three types of organizations based
either on aWeb server, IoT platform, or amessage-broker. For
the scope of this work, the generic architecture is separated in
three layers, the data or perception layer, the processing layer
and the application layer.

The data layer contains heterogeneous devices as the
sources of real-world observations. Sensor nodes are devices
equipped with certain sensors and/or actuators. They have
constrained resources including energy sources, computing
and communication capacities. They are typically intercon-
nected by wireless connection in either a star or a peer-to-
peer topology, by employing either IEEE 812.15.4 related
protocols like ZigBee and 6LoWPAN, or BlueTooth, consti-
tuting wireless sensor and actuator network (WSAN). These
nodes can run lightweight software for serving data requests
such as CoAP, and XMPP [21], [22] for enabling end-to-
end communication and pull-based interaction with data con-
sumers residing in WAN. However, such communication has
to be routed through a sink or a gateway component. Also,
some sensors could be directly attached to a single board
computer (SBC) through USB interface or mobile phone [42]
which could publish sensor observations to clients over WiFi,
GPRS or any other wireless or wire connections. RFID read-
ers are also source of sensor observations based on RFID tags.

The gateway component is a hardware devicemore capable
than sensor nodes in terms of energy, processing power, and
communication capabilities. It can vary from small board
hardware devices running embedded Linux such as Rasp-
berry Pie,22 to full-size desktop computers. Depending on
the chosen organization, the gateway could perform different
functions such as protocol translation between IPv4/v6 net-
works and 6LoWPAN based WSN, device management, col-
lection of sensor data from nodes and subsequent publishing
of gathered data to either IoT platform or message-brokers,
or running middleware software that hides WSN specifics.
The gateway could also serve requests for sensor data from
interested parties by exposing functionalities through appro-
priate service interfaces, as described in Section II. The pull-
based model, offered through REST style, or as a standard
HTTP or Web service interface, is typically used for getting
the most recent sensor data, or for accepting clients’ queries.

22https://www.raspberrypi.org/

On the other hand, push-based data propagation is enabled
over TCP, WebSocket or HTTP based connections and could
be useful for event-driven data provision, or for stream-
ing sensor data to clients. These services can be hosted
by employing a standard application server, or by running
standalone communication libraries and platforms such as
Netty23 or Node.js.24 This approach is suitable when in-
house or custom IoT solution is deployed and when specific
message encoding is used. In another organization, the gate-
way runs a message-broker server and delivers sensor data
messages to subscribed clients residing in LAN/WAN using
some of IoT messaging protocols.

The central component in the processing layer is an IoT
platform which includes a wide class of solutions which
perform several middleware functionalities, the sensor data
processing being the major one. An IoT platform could be
integrated with a cloud solution [3], [43]–[45], and expose its
features usually through Platform as a Service (PaaS) model.
Cloud solutions offer almost unlimited storage and computa-
tional resources and are thus able to support solutions dealing
with IoT big data. Typically, an IoT platform stores received
sensor data in order to combine them later with more recent
data, performs data fusion with data originated from different
sources, applies data mining algorithms in order to classify
data or predict new data, or detects anomalies of new coming
data. The authors in [44] surveyed a number of big data
platforms, for instance Apache Spark25 which is currently
the leading one, as well as high-performance messaging and
real-time processing tools and platforms (Apache Kafka,26

Apache Storm,27 and Spark Streaming,28) which can be
deployed within a cloud in order to support such functions
and build an efficient and scalable IoT platform.

Some solutions transform raw sensor data into higher
abstract formats, by respecting some syntactic rules or by
supplying raw data with meta-data, thus creating semantic
sensor data representations in RDF. Such semantic based
architectures offer intelligent services by exposing SPARQL
endpoint. They also aim to enable horizontal IoT solutions
by integrating WSAN using concepts defined in the ontol-
ogy network. The base ontology covers the sensor data
domain and it is typically Semantic Sensor Network (SSN)
ontology proposed by World Wide Web Consortium (W3C).
XGSN [46] is an example of such a solution, which is
incorporated in the OpenIoT platform.29 An IoT platform
could also integrate a continuous query processing engine,
which performs real-time processing over received data thus
producing complex, aggregated or derived data to which
user should be alerted if certain conditions are fulfilled.
An IoT platform exposes its services through several

23http://netty.io/
24https://nodejs.org
25http://spark.apache.org/
26http://kafka.apache.org/
27http://storm.apache.org/
28http://spark.apache.org/streaming/
29https://github.com/mlot/openiot-platform

6980 VOLUME 4, 2016



Z. B. Babovic et al.: Web Performance Evaluation for IoT Applications

protocols and standards. According to [3], [43], and [45],
popular IoT cloud based platforms include some of IoT
application protocol message brokers. For instance, Xively30

has support for REST and MQTT protocols, while Nimbits31

supports REST and XMPP protocols. OGC SWE provides
a set of specifications [35] which define several interfaces
based on standard Web services and REST, as well as data
syntax specifications in XML (Observation &Measurements
– O&M). OGC SWE specifies services such as retrieving
observed data (Sensor Observation Service - SOS), alerting
of available sensor data (Sensor Event Service - SES), task-
ing for new sensor data (Sensor Planning Service - SPS),
which are suitable for hosting within an IoT platform. The
latency analysis of IoT (cloud) platform heavily depends on
employed components and it is beyond the scope of this
paper.

If sensor data processing is not necessary, a scalable
architecture can leverage one or multiple message brokers
which distribute sensor data messages to subscribed clients.
They run either MQTT, XMPP, or AMQP protocol, while
DDS based architecture does not require the message broker,
although specific discover and routing components exist in
order to match appropriate publisher and subscriber clients.
In addition, for Web clients, particular DDS implementations
require gateway component in order to convert communica-
tion to WebSocket. As described in the Section 2, different
QoS could be specified regarding the message delivery relia-
bility. Moreover, the message broker could persist messages
if the messages are not delivered to all subscribed clients.

The application layer resides among Web clients, which
run either on standard HTML5 platform, Adobe Flash, or
Microsoft Silverlight. All platforms support HTTP clients
and either WebSocket or TCP based socket connections, used
for asynchronous data delivery. However, IoTmessagingWeb
clients are in most cases implemented as JavaScript clients
who directly interact with the IoT platform, the message
brokers, or the gateway’s Web server.

In the next section we will describe two test applications
that we developed in order to evaluate Web performance of
IoT applications.

V. TEST APPLICATIONS DESIGN AND DATA MODEL
In accordance with the generic architecture described in the
previous section, we selected two approaches in order to test
IoT application Web performance. The first test application
represents an architecture in which a Web server resides
on the gateway and provides sensor data to Web clients
over asynchronous push-based communication, such asWeb-
Socket, long polling, HTTP streaming etc. Web clients run
on three different Web platforms: HTML5, Adobe Flash,
and Microsoft Silverlight. The aim of this test is to mea-
sure the data propagation latency by analyzing the impact
of communication protocol, message encoding, and graphics

30https://xively.com/
31http://bsautner.github.io/com.nimbits/

rendering as well as general performance of the selected Web
platforms.

In the second test application, a publish/subscribe interac-
tion model is used by employing IoT messaging protocols
such as MQTT, XMPP, AMQP and DDS. We simulated an
architecture in which a sensor data provider is located on the
gateway component and it publishes messages to a message
broker which further delivers messages to a JavaScript client
running on the standard HTML platform. The goal of the sec-
ond test is to compare latencies and the message throughput
rate of IoT messaging protocols.

The use-case scenario was taken from a public district
heating system, in which deployed sensors across the distri-
bution network provide information about water temperature,
pressure, water flow in pipes, energy consumption, and oth-
ers. Similar data and usage patterns can be found in many
Internet of Things applications—e.g., in health and sports
applications [47]. All sensor data messages are collected at
the gateway component which is a standard desktop com-
puter. Sensor data are distributed to interested clients based
on the selected approach.

Our sensor data model is influenced to some extent by
the model proposed by OGC SWE specification [35] (see
Figure 2-a). A sensor data message contains sensor obser-
vations from one or several sensor nodes. A sensor obser-
vation contains the following data: sensor URI, sensor type,
measured value, value unit, observation time, and optionally
latitude and longitude values of sensor location. Following
the adopted sensor data model, we created XML and JSON
messages, and we configured data structures for generation of
Protocol Buffers binarymessage formats (see Figure 2-b,c,d).

Sensor observations are generated at a rate of 1Hz.
We typically performed tests for 100 messages, which means
that one test iteration lasts 3.33 minutes. There are three test
parameters that can be chosen in applications: the communi-
cation protocol, encoding format, and number of monitored
sensor nodes, which proportionally increases the sensor data
message size.

The client application has several important blocks, which
are depicted in the sequence diagram shown in Figure 3:
Interaction Manager is responsible for receiving data mes-

sage over the selected protocol. Typically, its functionality is
delegated to the appropriate framework that implements the
communication protocol on the top of either WebSocket or
HTTP based techniques, e.g. long-polling.
Message Decoding – Depending on the used message for-

mat, the appropriate function is called to decode the received
message. Some of the used functions are built-in into the
Web browser or browser’s plug-in, or we used some of the
available open-source frameworks.
Data Processing – If it is necessary, received sensor data

would be processed by applying algorithms or by combin-
ing more recent data with the historical sensor data. If this
function requires significant computation time, it should be
executed in the separate thread in order to enable better
responsivity of the Web client.

VOLUME 4, 2016 6981



Z. B. Babovic et al.: Web Performance Evaluation for IoT Applications

FIGURE 2. a) Sensor data model, b) XML, c) JSON message encodings, and d) Google protocol buffers data definition.

FIGURE 3. Sequence diagram with relevant times for measuring latencies.

Data Visualization – In our test, sensor data are visualized
by simple vertical bars, where bar height represents the ratio
of the current value to the maximum possible value.

For performance evaluation, the total time elapsed from
the moment when data are available on the server/gateway
to the moment when a user is able to see the relevant
visual interpretation of data is used. This is expressed

by Equation (1).

Ttotal = Ttransfer + Tprocess+ Trender (1)

Ttransfer = Ttransmit + Tdecod (2)

The interpretation of Equation (1) is the following: Ttransfer
denotes the time needed for transferring data message from
the server to the client including encoding and decoding,
Tprocess represents the time necessary for data processing at
the client side, and Trender is the time required for rendering
graphical elements on the client used for data interpretation.
Equation (2) describes components of Ttransfer: Ttransmit
include the time required for message encoding at the server
side as well as the time spent by data in the transmission
from the server to the client. We have not separately analyzed
these times, because the encoding time is sometimes hard to
measure on some platforms, since the encoding is performed
within the used library and it is a part of the protocol stack.
Tdecod represents the time needed for parsing the received
data and its conversion to an internal data object.

The selection of a certain protocol or message format has
an impact on a particular part of the total latency time Ttotal.

6982 VOLUME 4, 2016



Z. B. Babovic et al.: Web Performance Evaluation for IoT Applications

For instance, the choice of the protocol affects Ttransmit,
whereas the choice of the message format affects all com-
ponents of Ttransfer. In addition, different combinations of
protocols and message formats may give unexpected values
of Ttransfer. The specific Web platform implementation has
a dominant impact on each particular time and hence on
Ttotal. In our testing, we ignored Tprocess time after message
decoding, because it heavily depends on applied algorithms,
but in the real applications that time cannot be neglected in
the latency analysis.

VI. IMPLEMENTATION AND EXPERIMENT SETUP
A. WEB SERVER BASED TEST APPLICATION
We have developed the same client test application for
each selected Web platform, i.e. HTML5, Adobe Flash, and
Microsoft Silverlight.

HTML5-JavaScript Web application was developed using
the Google Web Toolkit (GWT)32 framework. The GWT
is an open source, client-side development toolkit, which
enables developers to write code in the Java programming
language that is cross-compiled into the JavaScript language
and executed in a Web browser. The push-based communi-
cation, including WebSocket and long-polling protocol, is
implemented by employing the Atmosphere 2.3.0 frame-
work33 because it hides incompatibilities of both browsers
and Web servers. The server side code is implemented
in Java and runs within Apache Tomcat Web server34

(version 8.0.21). We included five message formats, both text
based and binary, to test this platform. Two text-based formats
are the standard ones, XML and JSON. Three binary for-
mats are the following. First, the GWT serializer is a default
binary format for serializing data over the GWT Remote
Procedure Calls (RPC) mechanism. Second, Google Protocol
Buffers (PBF) [26] was already mentioned as an efficient
compact binary format developed byGoogle. Because there is
no official PBF implementation for either JavaScript or GWT,
we have used dcodeIO’s PBF JavaScript implementation.35

Third, we have included the PBF string format with the aim to
reduce the overhead while streaming binary message formats
using UTF-8 strings by the GWT. Hence we repacked the
binary data of raw PBF into a UTF-8 string by combining
two adjacent bytes into the one UTF-8 code while avoiding
invalid UTF-8 code points, containing surrogate codes from
D800 to DFFF.

Adobe’s Flash platform36 interprets Flash code, which pro-
vides raster graphics, multimedia streaming, animation, and
interface functionality. The main programming language for
developing Flash applications is ActionScript,37 an object-
oriented script language. Adobe provided an extended pro-
grammingmodel through the Flex development environment,

32http://www.gwtproject.org
33https://github.com/Atmosphere/atmosphere
34http://tomcat.apache.org/
35https://github.com/dcodeIO/ProtoBuf.js
36http://www.adobe.com/software/flash/about/
37http://www.adobe.com/devnet/actionscript.html

and this framework was donated to the Apache Software
Foundation in 2011.38 We used Apache Flex version 4.14
for our application. The server side of the Adobe Flash
application is implemented in Java, runs within the Apache
Tomcat Web server (version 7.0.19), and uses the Adobe
Digital Enterprise Platform 4.6 framework39 for imple-
mentation of real-time messaging with the Flex client.
Our Flex application supports long-polling, HTTP stream-
ing, and two socket protocols. The first socket protocol
is the New I/O (NIO) socket protocol, which is based
on a scalable socket server, and the second is the Real-
Time Messaging Protocol (RTMP), which is designed for
high-performance streaming of video, audio, and data over
the Internet. Action Message Format (AMF) [28], Adobe’s
binary message format designed for high-performance real-
time messaging applications, is used as a binary mes-
sage format. XML is a representative of text message
formats.

Microsoft Silverlight40 is a free, cross-browser, cross-
platform, and cross-device browser plug-in engine released
in 2007 for the delivery of rich Internet applications. Our
Silverlight application is powered by the Windows Com-
munication Foundation (WCF)41 service implementation of
long-polling and socket protocols. These WCF services are
deployed on Microsoft Internet Information Server (IIS)
7 Web server42 and executed via the .NET 4.5.2 framework.
Both the client and the server side code are implemented
in C#. WCF is based on the Simple Object Access Proto-
col (SOAP) messaging protocol, which uses the XML encod-
ing format. JSON message encoding was implemented via
WCF’s official JSON serializer. The client side was devel-
oped using Microsoft Silverlight 5 SDK.

The server machine is powered by an Intel i5-3320M CPU
running at 2.60GHz, with 4GB of RAM, equipped with a
Gigabit Ethernet network card. To ensure the same environ-
ment for all three platforms, we installed Web servers on
the Windows 7 operating system (OS) because Windows is
the only OS supported by IIS for use as a Web server for
Silverlight applications. We performed testing with clients
also running Windows 7 and residing in the server’s LAN
environment. We evaluated two clock synchronization proto-
cols for use in our environment: Precise Time Protocol (PTP)
[48] and Network Time Protocol (NTP) [49]. We eliminated
PTP because we did not find an appropriate implementation
for Windows. In addition, we have also eliminated NTP
because the clock offset on our server fluctuated from a
few milliseconds to approximately 80ms compared with the
nearest NTP time servers. Finally, for server–client clock syn-
chronization, we chose the Domain Time II tool developed by
Greyware Automation Products.43 Using this application, the

38http://flex.apache.org/
39http://help.adobe.com/en_US/dataservicesjee/4.6/Developing/index.html
40https://www.microsoft.com/silverlight/
41https://msdn.microsoft.com/en-us/library/dd456779(v=vs.110).aspx
42https://www.iis.net/
43https://www.greyware.com/software/domaintime/

VOLUME 4, 2016 6983



Z. B. Babovic et al.: Web Performance Evaluation for IoT Applications

TABLE 2. HTML5 application test results (failed tests are not inserted in the table).

client–server clock offset was less than 0.5ms during all our
testing. All applications were executed within the Google
Chrome Web browser.44

B. IoT MESSAGING TEST APPLICATION
Since our intent was to test Web performance of IoT applica-
tion layer messaging protocols, we selected pure JavaScript
implementation for application clients, choosing the
WebSocket for the underlying protocol for communication
with a message broker, thus limiting our test case only to
the HTML5 platform. On the other hand, we selected pure
Java implementation for sensor data publisher clients in order
to ensure the best possible portability. We here provide the
list of used client implementations and message brokers per
protocol.

For theMQTT protocol, we used components provided by
Eclipse foundation, i.e. the message broker is Mosquitto,45

while JavaScript and Java clients are developed within Paho
project.46 Mosquitto is implemented in C++ and it is dis-
tributed as a binary executable, but in order to get Web-
Socket support, the user should build Mosquitto with third
party library libwebsocket.47 In one test case, we also used
a HiveMQ48 message broker. We set MQTT QoS to work
without acknowledge messages (QoS level 0).
XPPP test environment is based around OpenFire server,49

and Smack50 Java library, both provided by Ignite Realtime
community site. We used Strophe.js51 JavaScript library,
which has a plenty of available plug-ins,52 and for this test
we used pubsub.js.
AMQP tests were performed with Apache Qpid 6.0.353

Java message broker. On the publisher side, we employed
Rabbit Java client,54 and as a JavaScript application client,

44https://www.google.com/intl/en/chrome/browser/
45https://mosquitto.org/
46http://www.eclipse.org/paho/downloads.php
47https://libwebsockets.org/
48http://www.hivemq.com/
49https://www.igniterealtime.org/projects/openfire/
50https://www.igniterealtime.org/projects/smack/index.jsp
51http://strophe.im/strophejs/
52https://github.com/strophe/strophejs-plugins
53https://qpid.apache.org/
54https://www.rabbitmq.com/java-client.html

we used patched Kaazing JavaScript AMQP client.55 The
patch was necessary because the original library was
designed to communicate through a separate gateway com-
ponent with an AMQP broker. The used clients implement
AMQP 0.9.1 protocol version, which is not identical to the
latest 1.0.

OMG’s DDS specification allows for participants to com-
municate with TCP and UDP transports, and WebSocket
is not supported by the standard. However, the Prismtech’s
Vortex platform provides a JavaScript client56 for a DDS
protocol, although with the use of additional dedicated stan-
dalone Java server which converts communication to the
client viaWebSocket. Thus we based the DDSmessaging test
on Prismtech’s Vortex components.57

The client application is identical as in the previous test
application, except for the fact that the communication part
relies on messaging protocols’ JavaScript implementations.
In this test setup, we did not need to use any clock syn-
chronization mechanism between computers running clients
and message brokers, because we put both clients to run on
the same computer, while message brokers ran on the server
computer. In that way, we actually measured the latency of
message round-trip time. The sensor data were also generated
at the interval of 1s. Messages contain sensor data from one
up to five sensor nodes and they are encoded using JSON
format.

VII. RESULTS AND DISCUSSION
A. HTML5 APPLICATION
The test results for the HTML5 application are presented in
Table 2 and Figure 4. The string representation of Protocol
Buffers (PBF) produces significantly shorter messages than
any other message encodings used for all three platforms.
In contrast, the transfer time of such messages is higher than
for JSON and GWT serializer formats. The explanation for
this is that although the repacking of PBF to and from a string
is a simple operation, it consumes time on both the server and
client sides. Note that the Atmosphere-GWT internal conver-
sion of the PBF message produces a larger message size than

55https://github.com/afranchuk/javascript.client
56http://www.prismtech.com/vortex/vortex-web
57http://www.prismtech.com/vortex/overview

6984 VOLUME 4, 2016



Z. B. Babovic et al.: Web Performance Evaluation for IoT Applications

FIGURE 4. HTML5 application test results for one and five-sensor-nodes data message.

TABLE 3. Adobe flash application Test Results.

the original PBF by a factor of approximately 3.6 to create
a UTF-8 string used for transfer over an HTTP connection.
This was our motivation to manually repack PBF in a shorter
string by a factor of more than 7. An additional problem with
the PBF message format is that all used frameworks—i.e.,
GWT, Atmosphere, and dcodeIO—use their own representa-
tion of long integers and byte arrays, which induce additional
overhead for preparing the data format for dcodeIO PBF
buffer. Test results show that JSONmessages have the lowest
latencies in our HTML5 testing regardless of the protocol that
is employed. The primary reason for this is the browsers’ opti-
mization for decoding JSONmessages because that operation
is not interpreted but directly executed. In the case of other
messages, the Web browser interprets JavaScript-specific
decoding code. We can conclude that in an environment
with high-speed communication, extremely short message
formats do not provide any benefit if their encoding/decoding
is not optimized. WebSocket has lower latency than long-
polling, particularly because of the header overhead of long-
polling. The difference in Ttransmit of these protocols for
the same message encoding is very small, typically less than
1ms. The graphic rendering time is less than 1ms in all

tests, so we can conclude that HTML5 canvas implementa-
tion provides more than satisfactory performance regarding
standard Internet of Things application requirements. The
tests for five-sensor-nodes over WebSocket with XML and
PBF encodings have failed, because the framework does
not accept messages larger than 10K bytes for sending over
WebSocket.

B. ADOBE FLASH APPLICATION
The Adobe Flash platform test results contain data for four
different protocols and two message encodings. The results
are shown in Table 3 and Figure 5. All measured times
are noticeably lower compared with other platforms. The
only exception is the latency when the RTMP protocol is
employed. One should recall that RTMP is designed for real-
time deliverance of video and audio files when bufferingmust
be employed, inducing the constant latency necessary for
buffer filling. The communication with AMF performs better
than with XML in all combinations, and there is noticeably
very low decoding time for AMF messages: in the case of
one-sensor-node message, the decoding time was 0ms, i.e.
it was below the timer resolution (1ms) in all test iterations.

VOLUME 4, 2016 6985



Z. B. Babovic et al.: Web Performance Evaluation for IoT Applications

FIGURE 5. Adobe flash application test results for one and five-sensor-nodes data message.

TABLE 4. Microsoft silverlight application test results.

The AMF highest average decoding time for one sensor node
message is 0.34ms and that for five sensor node message
is 1.16ms. NIO socket implementation performs better than
the long-polling protocol in all cases. Surprisingly, HTTP
streaming is the most efficient protocol considering latencies,
although the difference in its Ttransmit time compared with
the socket protocol is relatively small. Thus, the decision on
the most appropriate protocol for real-time messaging on this
platform depends mostly on other network settings such as
firewalls, for example. However, some of our tests with HTTP
streaming failed when additional header data were included
for measuring times and message sizes.

C. MICROSOFT SILVERLIGHT APPLICATION
In the case of the Silverlight test application, there are
four combinations of protocols and message encodings. The
Silverlight application showed the largest message sizes
among all tested applications. The reason for this is the
selection of SOAP as the core messaging protocol in the
WCF architecture. Although the WCF architecture offers
a very flexible model with the ability for developers to
define service contracts even on the client side, the cost
for that is evident. The socket protocol together with XML
message encoding achieves the lowest total latency time

(see Table 4 and Figure 6). Although JSON message encod-
ings produce 2.4 to 2.8 times shorter messages than XML
encodings, the decoding time for XML messages is approx-
imately 4 times smaller than for JSON messages in the case
of five sensor node messages (1.89ms to 8.31ms). We can
only conclude that Microsoft has a much better optimiza-
tion of data serialization/deserialization operation for XML
encodings than for JSON within the .NET library. The socket
protocol performs better than long-polling (Ttransmit values
for XML messages are 12.13ms to 13.10ms and 13.49ms to
14.46ms, respectively), but the impact on the total latency
time is smaller due to the message encoding. We can also
notice that message sizes for long-polling are approximately
300 bytes longer than with the socket protocol. The render-
ing time is always less than 1ms, which is similar to other
platforms.

D. MESSAGE ENCODING COMPARISON
Message size values produced by all message encodings on
the tested platforms are presented in Table 5 and Figure 7.
Protocol Buffer String creates the shortest message among all
message encodings. In the case of five sensor nodes, Adobe’s
AMF encoding produces a 50% longer message, 1343 char-
acters vs. 1997 characters, but this is smaller than any other

6986 VOLUME 4, 2016



Z. B. Babovic et al.: Web Performance Evaluation for IoT Applications

FIGURE 6. Microsoft silverlight application test results for one and five-sensor-nodes data message.

TABLE 5. Message sizes for all message encodings.

message encodings. For one sensor node, the difference
between PBF String and AMF message size is three times,
272 vs. 820. Furthermore, in the case of five-sensor-node
messages, the XML message size on Adobe Flash is much
smaller than XML on the HTML5 platform, 4838 characters
vs. 11,281 characters, whereas in the case of one-sensor-node
messages, XML messages on both platforms have similar
sizes. This implies that header overhead in Adobe’s message
stack is significant when message payload is small, but the
header remains compact for larger message payloads. How-
ever, the message header overhead is significantly higher for
the Silverlight platform than for other platforms because its
XML and JSON messages have much larger sizes than on
other platforms.

E. OVERALL COMPARISON OF WEB
PLATFORM PERFORMANCES
The best test results per platform are shown in Table 6 and
Figure 8. Based on our tests, the winning combination is an

FIGURE 7. Message payload sizes for all message encodings.

Adobe Flash application based on the HTTP streaming proto-
col and AMF message encoding. This combination achieved
the shortest latency and consequently offers communication
with the highest message rate: for the one-sensor-node mes-
sage use case, the average total latency is 2.41ms, whereas
for five-sensor-node messages, the latency is 4.56ms. The
HTML5 application is the second best, with latencies of
5.74ms and 7.22ms for one- and five-sensor-node messages,
respectively. A winning combination in the HTML5 case is
the WebSocket protocol together with the JSON message
format, primarily because of the browser’s optimization of
JSON message decoding. The test results for the Silverlight
application are significantly poorer than for the other two
platforms (13.16ms and 15.55ms);as we discussed, we blame
this on the WCF internal architecture based on SOAP mes-
sages, which induce huge message size overhead.

Generally, the communication protocol has less of an
impact than the message encoding for a given platform.
We can explain these results by the fact that owing to high-
speed communication in LAN, there is a small difference
in transmission time for a certain range of message sizes.

VOLUME 4, 2016 6987



Z. B. Babovic et al.: Web Performance Evaluation for IoT Applications

TABLE 6. The best test results per platform for one and five-sensor-node messages.

FIGURE 8. The best test results per platform for one and five-sensor-node messages.

However, we can notice that the implementation of mes-
sage encoding/decoding significantly varies among plat-
forms, despite the same processing requirement. The best
illustration for this is the message decoding time for XML
and JSON messages. Whereas Web browsers have the most
optimized JSON implementation, Silverlight decodes XML
messages most rapidly.

This leads us to the conclusion that each platform has
the lowest latencies with its favorite message encodings.
We have not achieved good results by employing extremely
short encoding in HTML5 applications, mainly because of
suboptimal implementation resulting from the frameworks
mixture. The socket protocol is mainly better than long-
polling for all platforms, but not significantly. Interestingly,
the lowest latency in the test has been shown by the HTTP
streaming protocol on the Adobe Flash platform. This is
because it is one-way communication with relatively small
header overhead. The tests have also shown that our Internet

of Things application requirement for graphics rendering is
not too demanding, and the differences among platforms are
negligible.

F. WEB PERFORMANCE TEST OF
IoT MESSAGING PROTOCOLS
In the first test case we measured the latency of message
transfer from a publisher to a subscriber, which is a Ttransfer
time as described in Section V and refers to the timestamp
after message decoding on the client side.

Measured times are shown in Table 7 and Figure 9. The
shortest latency is produced by the MQTT protocol, followed
by AMQP, while the difference between XMPP and DDS are
negligible. For the one-sensor-nodemessage test case,MQTT
achieved latency of only 2.53ms. The latencies proportionally
grow with the increase of the message sizes. The results
are quite predictable. MQTT as very lightweight protocol,
induce small overhead in message handshaking protocol,

6988 VOLUME 4, 2016



Z. B. Babovic et al.: Web Performance Evaluation for IoT Applications

TABLE 7. The latency measurements of IoT web application messaging protocols.

FIGURE 9. The latency measurement of IoT web application messaging protocols.

while AMQP based on binary message encodings efficiently
handles sensor data messages. XMPP obviously produces
higher overhead than the first two protocols by embedding
messages in XML stanza structure. Although DDS uses the
typed channel for communication, the impact of protocol con-
version done by intermediate Java server cannot be ignored.

All measured times are of fewmilliseconds, while the timer
resolution is 1ms, so even though the results are average
values of a relatively large number of transferred messages,
the results are approximated values. In order to minimize
error due to the timer resolution, as well as to measure the
maximum throughput capacity of each protocol, we con-
ducted another test in which we measured the number of
round-trip transferred messages, with the following scenario:
the publisher publishes a message and upon receiving it,
the subscriber immediately sends back that message to the
publisher. The process continues as the publisher also imme-
diately re-sends the same message to the subscriber etc. The
results show the number of passed round-trip messages in the
interval of 100s. In other words, we got that:

Ttransmission[s] = 100/2 ∗ number of passed messages

Ttransmission time is different than the Transmit time ana-
lyzed in the Section V, because the message encoding time is
not included. Our initial attempt was to perform the new test
in the same configuration as in the previous case, with Java
and JavaScript clients. However, the DDS test failed, because

its Java client did not receive messages from the JavaScript
client. Fortunately, the combination of both Java clients, as
well as both JavaScript clients worked fine, so we repeated
the test with the same configuration for three other protocols
in order to appropriately compare the results which are shown
in Table 8 and Figure 10.

These tests indeed show very different results. In the case
of AMQP and XMPP protocols, the throughput rate values
are aligned with the latency test: AMQP achieves slightly
higher throughput message rate than XMPP, 229.38 msg/s to
187.87 msg/s. However, we have to emphasize that results
for AMQP protocol significantly varied if tests were repeated
several times, and the best results weremeasured immediately
after the message broker started. For MQTT protocol, the
message throughput rate in the test case of Java-Java clients
is as expected and it is significantly higher than for both
AMQP and XMPP protocols with 302.48 msg/s, comparing
to 266.97 msg/s and 196.04 msg/s respectively. However,
in our default test case with Java<->JavaScript clients as
well as for JavaScript<->JavaScript clients, the results for
MQTT are very poor, below 10messages per second, i.e. 9.85
msg/s and 3.33 msg/s. The reason for this anomaly lies in
the internal event-loop architecture of Mosquitto (we tested
versions up to 1.4.8.) which affects the performance of send-
ing data over WebSocket (libwebsocket library version 2.0.2.
was used) and it requires the re-implementation of the main
event loop. We ran the same test using the HiveMQ broker in

VOLUME 4, 2016 6989



Z. B. Babovic et al.: Web Performance Evaluation for IoT Applications

TABLE 8. The message throughput rate measurements of IoT web application messaging protocols.

FIGURE 10. The message throughput rate measurements of IoT web application messaging protocols.

order to check correctness of Paho JavaScript MQTT library,
and themessage throughput rate of JavaScript<->JavaScript
clients is the highest of all tested protocols, reaching 354.60
msg/s! However, in the latency test, the HiveMQ based setup
showed noticeably higher latency than the Mosquitto broker
based test. The second unexpected result is more than 50%
higher message throughput rate for the DDS protocol than for
the second best protocol, which isMQTT, in the configuration
with Java-Java clients, 463.94 msg/s to 302.48 msg/s. In that
case, the direct end-to-end TCP connection is established
between clients, without any discovery or routing component
as a mediator. The result for setup with JavaScript-JavaScript
DDS clients is lower than for all other protocols, 181.88
msg/s. As in the latency test, this is the consequence of the
protocol conversion that is done by the Java standalone server
component, which takes time.

We can notice that the best transfer time for transferring a
message in one-sensor-node test case for HTML5 platform
shown in Table 6 is 5.33ms, which is significantly higher
than any transfer time for messaging protocols shown in
Table 7, ranging from 2.53ms to 4.3ms. Although the first
test has less precise time measurement because the clock

synchronization mechanism adds certain error, we can con-
clude that message delivery using publish/subscribe mes-
saging protocols over message brokers has more efficient
implementation and induces a slightly lower latency than con-
servative implementation of asynchronous message delivery
through an application server protocol stack.

As a general remark, the variety of JavaScript client and
message broker implementations make the decision of mes-
saging protocol for IoT Web applications far from straight-
forward. The bug of Mosquitto message broker, resulting in
the poor performance while employing JavaScript client and
WebSocket communication, prevents from recommending
the MQTT for any IoT Web applications scenario. On the
other hand, the performance of MQTT based on a HiveMQ
message broker is quite similar to other protocols. In gen-
eral, every protocol has certain disadvantages: MQTT per-
formances strongly depend on the used message broker; DDS
requires the use of the additional dedicated server component
for a Web client; AMQP has the highest fluctuation of mes-
sage throughput rate among all protocols; although XMPP
does not have any concrete drawbacks, its measured times
are never among the best for any test case.

6990 VOLUME 4, 2016



Z. B. Babovic et al.: Web Performance Evaluation for IoT Applications

On the other hand, when comparing the performance of
Java clients using TCP transport, DDS is the most effi-
cient IoT messaging protocol, offering from 50% to more
than 200% higher message rate than other protocols.

VIII. CONCLUSION
Having performed these tests, we conclude that HTML5
has become a mature platform for implementing Internet of
Things real-time messaging applications. It is true that the
Adobe Flash platform achieved the shortest latency among
all tested platforms, but this difference is small. We can
blame this on the poor support for binary message for-
mats in the HTML5+JavaScript platform, which is the key
to the efficient performance of Adobe Flash applications.
We attempted to overcome this limitation by repacking Pro-
tocol Buffer messages into a string, but, unless we obtained
the shortest message sizes, we did not improve the latency,
mainly because of the data representation incompatibili-
ties of the used frameworks. However, by embedding the
appropriate implementation of binary messages into Web
browsers, we can expect lower latencies in real-time mes-
saging applications running on the HTML5 platform and
hence obtain a more efficient platform. In other analyzed
aspects of interest such as communication protocols and
graphics rendering, HTML5 performs equally well as the
Adobe Flash andMicrosoft Silverlight platforms.WebSocket
has achieved slightly better results than long-polling, as
expected. HTML5 graphical performance is more than capa-
ble of satisfying the requirements of typical Internet of Things
applications.

If we also consider the much better support for HTML5
than other compared platforms, especially on mobile phones
and tablets, it is clear that this platform has a better future in
the domain of Internet of Things applications. This suggests
that application providers should start moving existing appli-
cations from Adobe Flash or Microsoft Silverlight platforms
to HTML5.

The Web performance test of IoT messaging protocols has
revealed that protocols have certain shortcomings as a result
of message broker and JavaScript client implementations.
It is up to the IoT application developers to carefully analyze
use-case scenario and applications’ critical requirements and
choose the appropriate messaging protocol. Our study could
be a source of valuable information, since we have identi-
fied several cases of which application developers should be
aware. Generally, we can recommend MQTT as a protocol
which can fulfill IoT Web application requirements in most
scenarios, except the case when the Mosquitto message bro-
ker is used and the JavaScript client should publish messages
over WebSocket.

REFERENCES
[1] L. Atzori, A. Iera, and G. Morabito, ‘‘The Internet of Things: A survey,’’

Comput. Netw., vol. 54, no. 15, pp. 2787–2805, Oct. 2010.
[2] D. Miorandi, S. Sicari, F. De Pellegrini, and I. Chlamtac, ‘‘Internet of

Things: Vision, applications and research challenges,’’ Ad Hoc Netw.,
vol. 10, no. 7, pp. 1497–1516, Sep. 2012.

[3] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and M. Ayyash,
‘‘Internet of Things: A survey on enabling technologies, protocols, and
applications,’’ IEEECommun. Surveys Tuts., vol. 17, no. 4, pp. 2347–2376,
4th Quart., 2015.

[4] Z. Babovic and V. Milutinovic, ‘‘Novel system architectures for semantic-
based integration of sensor networks,’’ Adv. Comput., vol. 90, pp. 91–183,
Dec. 2013.

[5] J. Åkerberg, M. M. Gidlund, and M. Björkman, ‘‘Future research chal-
lenges in wireless sensor and actuator networks targeting industrial
automation,’’ in Proc. 9th IEEE Int. Conf. Ind. Inform. (INDIN), Jul. 2011,
pp. 410–415.

[6] R. van der Meulen. (Nov. 2015). Gartner Says 6.4 Billion
Connected ‘Things’ Will Be in Use in 2016, Up 30 Percent
From 2015, accessed on Jul. 20, 2016. [Online]. Available:
http://www.gartner.com/newsroom/id/3165317

[7] (Nov. 2015). Ericsson Mobility Report, accessed on Jul. 20, 2016.
[Online]. Available: http://www.ericsson.com/res/docs/2015/mobility-
report/ericsson-mobility-report-nov-2015.pdf

[8] M. Asay. (Jun. 2014). The Internet of Things Will Need Millions
of Developers By 2020, accessed on Jul. 20, 2016. [Online]. Avail-
able: http://readwrite.com/2014/06/27/internet-of-things-developers-jobs-
opportunity

[9] COMET, accessed on Jul. 20, 2016. [Online]. Available:
http://infrequently.org/2006/03/comet-low-latency-data-for-the-browser

[10] I. Fette and A. Melnikov, ‘‘TheWebSocket protocol,’’ IETF Internet Draft,
Work in Progress, Dec. 2011.

[11] (Jul. 20, 2016). HTML Canvas 2D Context. [Online]. Available:
http://www.w3.org/TR/2dcontext/

[12] Z. Shelby, K. Hartke, and C. Bormann, The Constrained
Application Protocol (CoAP), document RFC 7252, Jun. 2014,
accessed on Jul. 20, 2016. [Online]. Available: https://tools.
ietf.org/html/rfc7252

[13] C. Gutwin, M. Lippold, and T. C. N. Graham, ‘‘Real-time groupware in
the browser: Testing the performance of Web-based networking,’’ in Proc.
ACM Conf. Comput. Supported Cooperat. Work, 2011, pp. 167–176.

[14] Message Queue Telemetry Transport, MQTT, accessed on Jul. 20, 2016.
[Online]. Available: http://mqtt.org/

[15] Advanced Messaging Quieing Protocol, accessed on Jul. 20, 2016.
[Online]. Available: https://www.amqp.org/

[16] OASIS, Burlington, MA, USA. OASIS Advanced Message Queuing Pro-
tocol (AMQP) Version 1.0, accessed on Jul. 20, 2016. [Online]. Available:
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=amqp

[17] Extensible Messaging and Presence Protocol (XMPP), accessed on
Jul. 20, 2016. [Online]. Available: http://xmpp.org/

[18] P. Saint-Andre. (2011). Extensible Messaging and Presence Proto-
col (XMPP): Core, accessed on Jul. 20, 2016. [Online]. Available:
http://www.rfc-editor.org/info/rfc6120

[19] S. Bendel, T. Springer, D. Schuster, and A. Schill, ‘‘A service infrastructure
for the Internet of Things based on XMPP,’’ in Proc. IEEE Int. Conf.
Pervas. Comput. Commun. Workshops (PERCOM Workshops), 2013,
pp. 385–388.

[20] M. Kirsche and R. Klauck, ‘‘Unify to bridge gaps: Bringing XMPP into the
Internet of Things,’’ in Proc. IEEE Int. Conf. Pervas. Comput. Commun.
Workshops (PERCOM Workshops), Mar. 2012, pp. 455–458.

[21] A. Hornsby and E. Bail, ‘‘µXMPP: Lightweight implementation for
low power operating system Contiki,’’ in Proc. Int. Conf. Ultra Modern
Telecommun. Workshops (ICUMT), Oct. 2009, pp. 1–5.

[22] XMPP Client for mbed, accessed on Jul. 20, 2016. [Online]. Available:
https://developer.mbed.org/cookbook/XMPPClient

[23] Data Distribution Service (DDS), accessed on Jul. 20, 2016. [Online].
Available: http://portals.omg.org/dds/

[24] P. Waher and Y. Doi, Efficient XML Interchange (EXI) Format, document
XEP-0322, 2013.

[25] T. Kamiya and J. Schneider, Efficient XML Interchange (EXI) Format
1.0, document Rec. REC-Exi-20110310, World Wide Web Consortium,
Cambridge, MA, USA, 2011.

[26] Google Protocol Buffer, accessed on Jul. 20, 2016. [Online]. Available:
https://developers.google.com/protocol-buffers/

[27] JVM-Serializers Benchmark, accessed on Jul. 20, 2016. [Online].
Available: https://github.com/eishay/jvm-serializers/wiki

[28] Action Message Format—AMF 3, accessed on Jul. 20, 2016.
[Online]. Available: http://www.adobe.com/content/dam/Adobe/en/
devnet/amf/pdf/amf-file-format-spec.pdf

VOLUME 4, 2016 6991



Z. B. Babovic et al.: Web Performance Evaluation for IoT Applications

[29] N. Fernández, J. Arias, L. Sánchez, D. Fuentes-Lorenzo, and Ó. Corcho,
‘‘RDSZ: An approach for lossless RDF stream compression,’’ in Proc.
Extended Semantic Web Conf. (ESWC), vol. 8465, 2014, pp. 52–67.

[30] A. K. Joshi, P. Hitzler, and G. Dong, ‘‘Logical linked data compression,’’ in
The Semantic Web: Semantics and Big Data, vol. 7882, 2013, pp. 170–184.

[31] J. D. Fernández, M. A. Martínez-Prieto, C. Gutiérrez, A. Polleres, and
M. Arias, ‘‘Binary RDF representation for publication and exchange,’’ J.
Web Semantics, vol. 19, pp. 22–41, Mar. 2013.

[32] V. Gazis et al., ‘‘A survey of technologies for the Internet of Things,’’
in Proc. Int. Wireless Commun. Mobile Comput. Conf. (IWCMC), 2015,
pp. 1090–1095.

[33] V. Karagiannis, P. Chatzimisios, F. Vazquez-Gallego, and J. Alonso-Zarate,
‘‘A survey on application layer protocols for the Internet of Things,’’ Trans.
IoT Cloud Comput., vol. 3, no. 1, pp. 11–17, 2015.

[34] P. Masek et al., ‘‘Implementation of true IoT vision: Survey on enabling
protocols and hands-on experience,’’ Int. J. Distrib. Sensor Netw., vol. 12,
no. 4, p. 8160282, 2016.

[35] A. Bröring et al., ‘‘New generation sensor Web enablement,’’ Sensors,
vol. 11, no. 3, pp. 2652–2699, 2011.

[36] D. Thangavel, X. Ma, A. Valera, H.-X. Tan, and C. K.-Y. Tan, ‘‘Perfor-
mance evaluation of MQTT and CoAP via a common middleware,’’ in
Proc. IEEE 9th Int. Conf. ISSNIP, Apr. 2014, pp. 1–6.

[37] M. Laine and K. Säilä, ‘‘Performance evaluation of XMPP on the Web,’’
Aalto Univ., Aalto, Finland, Tech. Rep., 2012.

[38] J. L. Fernandes, I. C. Lopes, J. J. P. C. Rodrigues, and S. Ullah, ‘‘Perfor-
mance evaluation of RESTfulWeb services and AMQP protocol,’’ in Proc.
5th ICUFN, 2013, pp. 810–815.

[39] V. Pimentel and B. G. Nickerson, ‘‘Communicating and displaying real-
time data with WebSocket,’’ IEEE Internet Comput., vol. 16, no. 4,
pp. 45–53, Jul. 2012.

[40] K. Ma and R. Sun, ‘‘Introducing WebSocket-based real-time monitoring
system for remote intelligent buildings,’’ Int. J. Distrib. Sensor Netw.,
vol. 9, no. 12, 2013, Art. no. 867693.

[41] R. C. Hoetzlein, ‘‘Graphics performance in rich Internet applications,’’
IEEE Comput. Graph. Appl., vol. 32, no. 5, pp. 98–104, Sep./Oct. 2012.

[42] A. Kos, S. Tomažič, and A. Umek, ‘‘Evaluation of smartphone inertial sen-
sor performance for cross-platform mobile applications,’’ Sensors, vol. 16,
no. 4, p. 477, 2016.

[43] A. Botta, W. Donato, V. Persico, and A. Pescapé, ‘‘Integration of cloud
computing and Internet of Things: A survey,’’ Future Generat. Comput.
Syst., vol. 56, pp. 684–700, Mar. 2016.

[44] M. Díaz, C. Martín, and B. Rubio, ‘‘State-of-the-art, challenges, and open
issues in the integration of Internet of Things and cloud computing,’’ J.
Netw. Comput. Appl., vol. 67, pp. 99–117, May 2016.

[45] J. Mineraud, O. Mazhelisb, X. Suc, and S. Tarkoma, ‘‘A gap analysis of
Internet-of-Things platforms,’’ Comput. Commun., vols. 89–90, pp. 5–16,
Sep. 2016.

[46] J. P. Calbimonte, S. Sarni, J. Eberle, and K. Aberer, ‘‘XGSN: An open-
source semantic sensing middleware for the Web of Things,’’ in Proc. 7th
Int. Workshop Semantic Sensor Netw., Riva del Garda, Italy, Oct. 2014,
pp. 51–66.

[47] A. Kos, S. Tomažič, and A. Umek, ‘‘Suitability of smartphone inertial
sensors for real-time biofeedback applications,’’ Sensors, vol. 16, no. 3,
p. 301, 2016.

[48] D. Mills. IEEE 1588 Precision Time Protocol (PTP), accessed on
Jul. 20, 2016. http://www.eecis.udel.edu/~mills/ptp.html

[49] D. Mills et al., Network Time Protocol Version 4: Protocol and Algo-
rithms Specification, document IETF RFC 5905, Jun. 2010, accessed on
Jul. 20, 2016. [Online]. Available: http://tools.ietf.org/html/rfc5905

ZORAN B. BABOVIC (S’13) received the M.Sc.
degree in electrical engineering University of Bel-
grade, The School of Electrical Engineering, Ser-
bia, in 2004, where he is currently pursuing
the Ph.D. degree. He has been working on sev-
eral research and software development projects,
in cooperation with leading EU Institutes and
USA/U.K. companies, such as IPSI Fraunhofer
Institute, Germany, Storage Tek, USA, Dow Jones,
USA,Maxeler, U.K., in the domain of multimedia,

data management, and real-time software systems. Since 2006, he has been a
Research Associate with the Innovation Center, University of Belgrade, The
School of Electrical Engineering, Serbia. He participated in four EU FP6 and
FP7 research projects in the domain of sensor networks, data mining, and
computer architecture, as well as in four innovation and research projects
funded by the Serbian Ministry of Education, Science and Technological
Development. He has authored several conference and journal papers, and
gave numerous talks at conferences in Europe.

JELICA PROTIC received the Ph.D. degree in elec-
trical engineering from the University of Belgrade.
She is currently an Associate Professor of Com-
puter Engineering and Informatics with University
of Belgrade, The School of Electrical Engineering.
She was a Principal Designer in pioneer projects
of networking proprietary industrial computers.
With Milo Tomasevic and Veljko Milutinovic, she
co-authored Distributed Shared Memory: Con-
cepts and Systems (IEEE CS Press, 1997) and pre-

sented numerous pre-conference tutorials on this subject. She also conducted
research in the domain of wireless sensor networks. She has long term experi-
ence in teaching a diversity of courses in programming languages, as well as
the development of various educational software tools. Her research interests
include distributed systems, consistency models, computer networks, and all
aspects of computer-based quantitative performance analysis and modeling.

VELJKO MILUTINOVIC (M’82–F’03) received
the Ph.D. degree in electrical engineering from
University of Belgrade in 1982. In 1980, for about
a decade, he was with the Purdue University, West
Lafayette, IN, USA, as a Faculty Member. He
has co-authored the architecture and design of
the world’s first DARPA GaAs microprocessor.
Since 1990, after returning to Serbia, he has been
a Faculty Member with University of Belgrade,
The School of Electrical Engineering, where he

is teaching courses related to computer engineering, sensor networks, and
data mining, and also took part in teaching with the University of Indiana in
Bloomington, Purdue, Harvard, and MIT. After year 2000, he participated in
several FP6 and FP7 projects through collaboration with leading universities
and industries in the EU/USA, including Microsoft, Intel, IBM, Ericsson,
especially Maxeler. He has lectured by invitation to over 100 European
universities. He has authored about 80 papers in SCI journals and about
20 books with major publishers in the USA. He is a member of Academia
Europaea.

6992 VOLUME 4, 2016


