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ABSTRACT Plug-in hybrid electric vehicles (PHEVs) have emerged as an important tool in reducing
greenhouse gas emissions, due to their lower dependency on fossil fuel. Since, for cost efficiency, PHEVs
have a limited battery capacity, they must be recharged often and especially after trips. Thus, efficient battery
charging plays an important role on the success of PHEVs commercial adoption. This paper surveys the state-
of-the-art of existing PHEV battery charging schemes. We classify these schemes into four classes, namely,
uncontrolled, indirectly controlled, smart, and bidirectional charging, and review various existing techniques
within each class. For uncontrolled charging, existing studies focus on evaluating the impact of adding
variable charging load on the smart grid. Various indirectly controlled charging schemes have been proposed
to control energy prices, in order to indirectly influence the charging operations. Smart charging schemes
can directly control a rich set of charging parameters to achieve various performance objectives, such as
minimizing power loss, maximizing operator’s profit, ensuring fairness, and so on. Finally, bidirectional
charging allows a PHEV to discharge energy into smart grid, such that the vehicle can act as a mobile energy
source to further stabilize the grid, which is partially supplied by intermittent renewable energy sources. This
survey provides a comprehensive one-stop introductory reference to quickly learn about the key features and
technical challenges, addressed by existing PHEV battery charging schemes in smart grid.

INDEX TERMS Plug-in hybrid electric vehicles, uncontrolled charging, indirectly-controlled charging,
smart charging, bidirectional charging, smart grid.

I. INTRODUCTION
At the Paris Climate Conference in December 2015, a total of
195 countries have adopted the first ever universal and legally
binding climate change agreement [1]. This agreement sets
out a worldwide action plan to put the mankind on track,
to limit global warming to well below 2◦C above the pre-
industrial levels. This ambitious plan requires a significant
reduction in greenhouse gas emissions, starting from 2020.
According to the International Energy Agency, the long-term
concentration of greenhouse gases in the atmosphere must
be limited to about 450 parts per million of carbon-dioxide
equivalent [2].

Currently, a large portion of emitted greenhouse gas comes
from the internal combustion engines of motor vehicles.
According to [3], motor vehicles contribute about 16% of
the global man-made carbon dioxide emissions. In addi-
tion to the greenhouse gas, by burning fossil fuel, internal
combustion engines release harmful pollutants that can sig-
nificantly degrade the air quality and threaten our health.

These harmful pollutants and greenhouse gas emissions can
be drastically reduced if the use of internal combustion engine
can be avoided. In this context, plug-in hybrid electric vehi-
cles (PHEV) can offer a solution. Each PHEV is equipped
both a battery driven electric motor and an internal combus-
tion engine, and thus, it can significantly reduce its depen-
dency on the environment-polluting combustion engine [4].

Technically, a PHEV is an advanced combination of a
conventional hybrid electric vehicle (HEV) and an all-electric
vehicle (EV).1 Both PHEV and HEV have an electric motor
in addition to the internal combustion engine. In a HEV, the
battery that drives the electric motor can only be charged2

from capturing energy, using regenerative braking that

1In the literature, all-electric vehicle (EV) is also called plug-in electric
vehicle (PEV). For consistency, we use only the term EV in this paper to
represent both EV and PEV.

2Strictly speaking, a depleted battery is recharged to restore its energy. For
simplicity but without loss of generality, we use the terms ‘‘recharge’’ and
‘‘charge’’ interchangeably without differentiating them.
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converts kinetic energy into electricity. The battery in a HEV
cannot be charged from an external energy source. As a more
advanced alternative to HEV, PHEV has a built-in adaptor to
connect to the electrical grid for battery charging. This plug-
in charging capability in PHEV is also a defining feature of
EV. Compared to an EV, that depends solely on its battery
driven electric motor, PHEV can eliminate the problem of
range anxiety, because its combustion engine can work as a
backup when the battery is depleted, giving PHEVs a driving-
range comparable to that of a conventional vehicle.

A detailed comparison between HEV, EV and PHEV has
been presented in [5]. In summary, compared to HEV, PHEV
has a better performance in terms of fuel economy (fuel con-
sumed per travel distance), emission reduction, cost saving
(monetary cost per travel distance) and charging flexibility.
In addition to alleviating the range anxiety, PHEV has an
advantage over EV in terms of fueling flexibility, since PHEV
can be fueled at any traditional gas station as well as being
charged at home or a public charging station. Despite PHEV’s
overall superior characteristics, the difference in popularity
between PHEV and EV is not obvious in some geographical
regions, such as the United Kingdom and Japan [6]. Further-
more, in some countries, such as Norway andDenmark, EV is
much more popular than PHEV, probably due to government
policies and incentives, in terms of tax reduction, tax exemp-
tion, legal limits on pollutant emission by transportation vehi-
cles, etc. We expect that, over a long time, i.e., beyond 2050,
EVs will globally and decisively overtake PHEVs as the vehi-
cles of choice, if battery technology can mature to support
a drive range of 315 miles (500 km) and a battery lifetime
of 125,000 miles [7]. This is a result of EV’s zero pollution
and greenhouse gas emission at the location of use. Although
the various technical aspects of battery charging discussed
in this paper are applicable to both EV and PHEV, we use
only the term PHEV hereafter, to represent both, depending
on context, due to PHEV’s fueling flexibility, which is much
needed at the current stage of electric vehicles proliferation.

PHEVs have been formally defined by the United States of
America (USA) government as a vehicle that [8]:
• has an electric motor in addition to a conventional com-
bustion engine;

• draws motive power from a battery with a capacity of at
least 4 kWh;

• can be recharged from an external source of electricity
for motive power; and

• is a light-, medium-, or heavy-dutymotor vehicle or non-
road vehicle.

The Institute of Electrical and Electronics Engineers (IEEE)
has a similar PHEV definition, but with an addition require-
ment [9]. According to IEEE, PHEV is a vehicle that has an
all-electric range (AER) of at least 10 miles, where AER is
the distance to be driven solely by an electric motor, without
using the vehicle’s internal combustion engine.

The PHEV definitions given above imply that the vehicles
may use a mix of electric motor and combustion engine for
motive power during a trip. Depending on which motive

TABLE 1. PHEV battery requirements by vehicle classes.

power is mainly used, PHEV operation can be classified into
two modes, namely charge depleting (CD) and charge sus-
taining (CS). In CD mode, PHEV disables its internal com-
bustion engine and draws propulsion energy entirely from the
battery, until it reaches a threshold state-of-charge (SOC),
where SOC is a quantity that measures the percentage of
remaining charge in the battery. The threshold SOC indicates
the minimum amount of energy that must be stored in the
battery at all times. Upon reaching the minimum SOC, PHEV
switches to operate in CS mode and the combustion engine
provides energy to propel the vehicle as well as to maintain
battery charge above but near to the minimum SOC. PHEVs
can drastically reduce fossil fuel consumptions and green-
house gas emissions by avoiding the CS mode. For better fuel
efficiency, a thirdmode, called charge blended (CB), has been
advocated [10]–[12]. In CBmode, electric motor and internal
combustion engine are optimally and dynamically employed
during a drive cycle, so that they are able to operate longer
using the most efficient setting, while achieves an overall
reduction in greenhouse gas emissions.

By avoiding CS and CB modes, the greenhouse gas emis-
sions can be eliminated and therefore, we may speculate that
a larger battery capacity is better. However, the authors in [13]
have shown that the cost and energy efficiency brought by a
larger battery capacity reaches an asymptotic value, and thus,
an infinitely large capacity is not necessary. Depending on the
types of the vehicles, [14] has shown that the battery capacity
should be about 11.6 kWh for a passenger car to cover a dis-
tance of 40miles at a speed of about 25-30mph, without using
internal combustion engine. This is a reasonable battery size
because a typical USA passenger vehicle travels an average
of less than 30 miles each day [15]. A similar PHEV battery
size requirement has been reported in [16] and presented
in Table 1. This table covers several types of vehicles and
PHEV-x is a PHEV with AER equals x miles.

Regardless of the actual battery capacity, as trips are per-
formed and batteries are discharged, the SOC drops. Due to
the limited capacity, the depleted battery must be recharged
regularly to maintain its SOC within a desired range, which
is defined by the minimum SOC and full capacity. Typically,
it is desirable to keep a high SOC at the beginning of a trip
to minimize the total energy cost as well as to achieve a
longer AER, although a high SOC results in a faster battery
degradation [17].

From the perspective of product marketing, a vehicle’s
SOC can be restored in two ways: (a) battery swapping, and
(b) battery recharging. In battery swapping method, PHEV
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TABLE 2. Types of PHEV charging options.

driver exchanges the depleted battery for a fully charged one
at a service station [18]–[20]. This approach has zero waiting
time for battery charging and allows the service provider to
reap the benefits from lower energy price for charging during
off-peak hours. This negligible time needed in restoring SOC
is the biggest advantage in comparison to the second method,
i.e., battery recharging that requires the drivers to plug their
PHEVs into electric outlets for a charging period. Despite
the benefit of zero waiting time, battery swapping has yet to
become popular due to three major challenges, namely huge
upfront cost for system deployment, limited AER for each
battery, and difficulties in ensuring identical performance
among all exchangeable batteries. The huge cost is due to
the need to keep sufficient stocks of charged batteries at each
charging station. Hereafter, in view of the lack of current
popularity, we focus on the battery recharging methods in
this paper.

The battery in a PHEV can be recharged by simply plug-
ging into an electric outlet, that can be found at homes,
workplaces, parking facilities or dedicated charging stations.
The time needed to fully restore a battery’s charge depends
on the battery’s SOC, the battery’s capacity, and the outlet’s
output power. Specifically, the charging time equals the dif-
ference between battery capacity and SOC, divided by the
charging power. With reference to Table 1, the charging time
for a fully depleted battery can range from 5 minutes to
20 hours, depending on the types of charging options used.
These options vary from country to country, depending on the
power source and plug capacity standards, which have been
standardized by several organizations such as the IEEE, the
Society of Automotive Engineers (SAE), etc. As shown in
Table 2 for the SAE-compliant charging equipment, charging
options can be classified into slow charging and fast charging,
with different power ratings [5], [21], [22].
• Level 1 AC charging: Almost all PHEVs come with a
level 1 charging cord. One end of the cord is a stan-
dard connector that can be plugged directed to a wall
outlet at home. The other end is a SAE J1772 standard
connector that plugs into the vehicle’s J1772 charge
port [23]. Therefore, there is no need for additional
charging equipment. Level 1 charging can be provided,
by using an on-board charger, up to 1.9 kW through
120 V single-phase AC.

• Level 2 AC charging: This charging option uses the
same SAE J1772-compliant charging cord as in level 1,

but offers up to 19.2 kW output power by using an on-
board charger. Level 2 charging is available to premises
that are supplied with 3-phase AC at 208 or 240 V, and
requires dedicated electric circuit to support a higher
current up to 80 amp. This option is suitable for charging
at home, as well as at public charging facilities, although
residential level 2 charging operates at a lower current
(about 30 amp) and a lower power of 7.2 kW, as com-
pared to the public ones. Level 2 is preferred over level 1
for its shorter charging time.

• Level 3 AC charging: This is a new charging option
which is being developed by SAE to supply up to
130 kW for very rapid restoration of SOC, using
3-phase AC at 480 V and high current. This 3-phase
power distribution is common at commercial and indus-
trial locations. To support the high output power, level 3
chargers are much larger in size and heavier in weight,
compared to level 1 and level 2 chargers. Also, level 3
chargers require dedicated cooling equipment for high-
power electronics. As a result, level 3 chargers are
not installed on-board, but they are located externally
(off-board). It is likely that SAE J1772 connector will
not be suitable for this option.

Slow charging can be conveniently supported by the typical
wall outlets at home but it takes an overnight to complete
charging. Therefore, slow charging is also called residen-
tial charging or overnight charging. Fast charging is useful
to rapidly restore SOC partially or in-full, during the day
time to complete a trip that is longer than the vehicle’s
AER. While Table 2 is comprehensive, it covers only AC
but not DC charging. As an emerging option, high power
DC offers faster and more efficient charging compared to
AC, but requires significant investment in new infrastructure.
We focus on AC charging in this paper hereafter, although
many of the surveyed literature does not clearly specify the
use of AC or DC.

Each plugged-in PHEV is a variable load added to the
electrical grid. Several industrial standards, such as the
IEC1000-3-2, require each PHEV charger to drawn current
from the grid with a low distortion in order to minimize the
impact on the power quality [24]. However, these standards
do not cover the aggregated effect from a fleet of PHEVs.
When a large number of PHEVs are charged simultaneously,
the additional electric load may cause a number of problems
to the grid, in terms of excessive voltage deviations, thermal
overloads, elevated power losses, increased aging of trans-
formers and lines, degraded power quality, power outages,
etc [25]–[27]. These problems and challenges can be broadly
classified into three groups as follows:
• Deterioration of power quality: This type of problems
affect power quality, which is measured in terms of
harmonics, power factor, voltage deviation, frequency
shift, etc [28]. A larger amplitude at a higher harmonics,
a lower power factor, a voltage deviation beyond limit,
and an excessive frequency drift from a target value, are
indications of a lower power quality. In general, a lower
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FIGURE 1. Intelligent PHEV charging schemes require support from communication networks. The integration of analog electrical network and digital
communication network is the foundation of smart grid.

quality will not immediately disrupt the electrical grid,
but it is an indicator for an upcoming serious issue, if no
corrective action is taken. Although there is no disrup-
tion, a lower power quality may still affect operation of
electrical loads. For example, lower voltage may cause
malfunctions to home appliances.

• Instability of electrical network: This type of prob-
lems destabilize and disrupt the electrical networks,
leading to power outages, blackouts, etc. When it
happens, part of the electrical network will loss the
power supply. Practically, preventing network disrup-
tion is one of the most important tasks for the grid
operators.

• Degradation of operation efficiency: This type of
problems do not affect the grid’s functionality but its
efficiency. Higher transmission losses lead to a lower
revenue and profit. Consistent thermal overloads speed
up equipment aging and thus, require a higher monetary
investment for equipment replacement.

From the above, it is desirable to ensure power quality,
network stability and operation efficiency of electrical grid.
All the three classes of technical problems must be overcome
in order to support an increasing PHEV popularity and pene-
tration. In May 2016, there are more than 1.5 million electric
passenger cars worldwide [29], but this figure probably repre-
sents less than 1% of total passenger cars globally. According
to [7], the light-duty PHEV penetration level is expected to
reach over 50% by 2050.

In a simplistic way, most of the electrical grid problems
which are caused by PHEV charging, is a result of a mismatch
between power supply and demand (load). To ensure stability

in the grid, the power demand needs to be closely matched
with the supply all the times. This matching is difficult to
achieve in a dynamic scenario like PHEV charging, where the
load is unpredictable and can vary greatly between different
hours within a day. This problem is further complicated by
the introduction of renewable energy sources, such as solar
and wind power into the grid [30]. The output powers of
wind turbines are highly variable and intermittent. In the
presence of random supply and time-varying demand, intel-
ligent schemes must be designed to coordinate charging at
individual PHEVs, such that the instantaneous aggregated
load is closely matched to the instantaneous grid capacity.
As illustrated in Fig. 1, these intelligent charging schemes
require extensive support from communication networks in
order to:
• Perform in situ and continuous monitoring of the electri-
cal grid and collect data to determine the grid’s physical
capacity.

• Collect and analyze sensor data as well as plug-in
requests to determine the real-time power demand.

• Collect and process information to determine the accu-
rate power supply, available at different parts of an
electrical grid.

• Transmit the collected data and information to the execu-
tor of intelligent charging schemes.

• Disseminate the control actions as determined by the
intelligent charging schemes, to respective actuators.

The dependency on communication networks is well
addressed by the concept of smart grid, which adopts
and integrates advanced information and communication
technologies into the traditional electrical grid [31]–[33].
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Smart grid uses digital communication network to supervise
and control analog electrical network. Despite the importance
of communication networks, there is no agreement in the
research community on which particular technology to use
in smart grid. There exists a wide range of potential candi-
dates, such as optical fibers, wireless sensor networks, Wi-Fi,
WiMAX, satellite communications, etc. Generally, it is
believed that different segments of an electrical network as
well as different smart grid applications, require different
types of communication networks, leading to a highly hetero-
geneous communication system. For example, transmission
network that covers a large geographical area needs a commu-
nication technology with large coverage. Also, an application
that provides protection to electrical networks needs a com-
munication technology that can offer small delay with high
reliability. These communication requirements for the smart
grid have been specified in [34] by the Department of Energy,
USA. Furthermore, the authors in [35] have provided a brief
overview on different communication technologies that are
applicable to PHEV charging stations. These technologies
include power line communications (PLC), IEEE 802.15.4
(Zigbee), ZWave, and cellular networks. Among these com-
munication technologies, [36] has further proposed a Zigbee
based platform to test the various parameters for a PHEV
charging station.

Technically, we may treat the intelligent charging schemes
as algorithms that run within, and become an integrated part
of a smart grid. With accurate and timely information, these
charging schemes can rapidly adapt to time-varying condi-
tions for better power quality, optimal operation efficiency,
andminimal disruption. As such, the combination of charging
schemes and smart grid plays an important role in supporting
a further proliferation of PHEVs.

There exists in the literature, a plethora of PHEV charging
schemes. In general, these charging schemes determinewhich
vehicle that is plugged-in at which location, has to be charged
at which time using which charging profile, so that a certain
performance objective can be achieved. For clarity, charging
profile is defined as the charging set-point, energy or power
as a function of time. We classify these existing charging
schemes into four classes, namely uncontrolled, indirectly-
controlled, smart and bidirectional charging. The last three
classes are collectively called controlled charging. This paper
reviews the state-of-the-art of these charging schemes. It aims
to serve as an one-stop reference point for new researchers to
quickly learn about the key features and technical challenges
addressed by existing charging schemes. Our approach is
to relate and compare various schemes in terms of their
performance objectives and detailed mechanisms. As far as
we know, there is no existing survey that covers all types of
PHEV charging schemes. The surveys in [37] and [38] have
focused only on controlled charging, but the detailed sim-
ulation framework uncovered from surveying uncontrolled
charging schemes is a valuable reference, even in guid-
ing evaluation requirements for future controlled charging
schemes.

FIGURE 2. PHEV charging schemes are implemented at control center or
aggregator.

The rest of this paper is organized as follows. Section II
presents a taxonomy for existing PHEV charging schemes.
The four classes of charging schemes are surveyed in detailed
in Section III, IV, V, and VI, respectively. Section VII dis-
cusses some open issues that still require significant atten-
tions from our research community. This paper ends with a
summary and some concluding remarks in Section VIII.

II. TAXONOMY
PHEV charging schemes are implemented by the smart grid
operators at an aggregator, or a control center, which is
located at a transformer or substation. As illustrated in Fig. 2,
an aggregator is an entity that combines a fleet of PHEVs
and works as the interface between the vehicles and different
smart grid entities. The aggregator acts as a proxy between the
PHEVs and the smart grid as well as the electricity market, so
that the operator needs not directly deal with a large number
of vehicles. Such a two-tier hierarchical architecture ensures
scalability of the charging infrastructure in supporting a
growing PHEV population. Despite the importance of aggre-
gator, most of the existing charging schemes are applicable
with and without it. This is especially true when the proposed
scheme is evaluated only for a small number of PHEVs.
We use the terms aggregator and operator interchangeably
hereafter, except in Section VI, where aggregator becomes
a necessity for a class of charging schemes.

As mentioned above and illustrated in Fig. 3, PHEV
charging schemes can be classified into uncontrolled and
controlled charging. In the literature, uncontrolled and con-
trolled charging are also called uncoordinated and coordi-
nated charging, respectively. Here, coordination refers to
the alignment of charging instances and parameters among
PHEVs. Therefore, uncontrolled charging makes no attempt
to organize and schedule the requests from the PHEVs, but
serves them as they arrive. As such, in uncontrolled charg-
ing, the batteries start to charge immediately when they
are plugged-in, or after a user-specified delay. Uncontrolled
charging is reasonable in a scenario where the grid operator
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FIGURE 3. PHEV charging schemes classification.

does not have the essential information to control the charging
profiles, for the purpose of optimizing smart grid stability,
operation efficiency and power quality.

Although uncontrolled charging is very simple, it directly
exposes the smart grid to volatility and randomness in charg-
ing load, which are highly dependent on the driver’s behav-
iors. Consider a scenario during the morning rush hours,
where everybody arrives at the company car park at about
the same time. In this case, the charging load depends on
randomness in the arrival times and promptness in plug-
ging into an electric outlet. Apart from the randomness, the
charging load coincides with the daily on-peak hours of the
smart grid. The excessive variable load can bring to the grid
some severe problems, such as frequency drift, voltage drop,
power outage, thermal overload, etc. This justifies the idea of
controlled charging, such that not all the plugged-in vehicle
are rigidly served immediately upon plug-in.

In controlled charging, the operator organizes the charging
moments and parameters to prevent the grid from experi-
encing unacceptable power quality and suffering disruptive
destabilization, at the same time of fulfilling driver’s charg-
ing demands, and satisfying monetary or operational perfor-
mance objectives. These objectives can be summarized as
follows:
• Financial performance objectives: This type of objec-
tives aim to gain direct financial returns. For example,
minimizing operator cost, minimizing power losses,
maximizing operator profit, maximizing electrical
network utilization, etc.

• Operational performance objectives: This type of
objectives result in an improved power system effi-
ciency. For example, flattening the load curves on
main substation transformers, avoiding thermal over-
load, achieving fairness in charging opportunities among
PHEVs, etc.

While operational objectives are not directly related to
revenue and profit, they help in saving capital expenditure
and investment by reducing aging of transformers and trans-
mission lines, and deferring infrastructure upgrade. This is
achieved as the dedicated management and coordination can
optimize the charging set-point to reduce aging and will
allow the existing electrical network to support a larger

PHEV population. While the upgrade of transformers and
transmission lines can be delayed, the financial benefit may
be partially offset by the need to invest in advanced commu-
nication technologies to monitor time-varying conditions in
the electrical network and to coordinate charging operations
among different PHEVs.

Depending on the types of control parameters, controlled
charging can be further classified into indirectly-controlled
charging, smart charging and bidirectional charging.
In indirectly-controlled charging, the schemes do not control
directly the charging parameters, such as charger’s power,
charging time, charging duration, etc. Instead, these schemes
control some out-of-system parameters, that will affect indi-
rectly the charging operation. For example, a scheme may
control the energy price that will influence the charging deci-
sion of individual drivers in achieving the goal of avoiding
grid overload.

Different from indirectly-controlled charging, smart charg-
ing schemes control directly the charging parameters. For
example, some schemes control the output of electric outlets
or the set-point of chargers so that the power can be varied
from location to location, as well as from time to time.
In this case, a PHEV is not necessarily to be charged all
the time when it is plugged-in, because it does not draw any
energy from the smart grid when the outlet power is set to
zero. Hence, smart charging can effectively turn each PHEV
battery into a flexible load, that will impose a demand only if
doing so does not risk disrupting the smart grid or violating
the power quality requirements.

The benefits of flexible load have been further exploited in
bidirectional charging, which is the same as smart charging
except one point. Specifically, bidirectional charging sup-
ports the vehicle-to-grid (V2G) concept, which allows PHEV
batteries to discharge their energy into the smart grid [39].
In bidirectional charging, each PHEV is both a flexible load
and a mobile energy source, although there is no obvious dif-
ference in other aspects, as compared to smart charging. The
benefits of using PHEV batteries as energy sources have been
studied in [40]–[42]. Simply, with the bidirectional power
flow, PHEV battery can help in further stabilizing the smart
grid by returning energy to fill the demand gap, when there
is an excessive electricity load. The capability of returning
energy to the grid can also help in supporting a greater scale
integration of renewable energy into the smart grid. Since
renewable sources are intermittent in nature, bidirectional
charging allows PHEV to discharge to make up the short-
fall in power supply, when the renewable energy is suddenly
unavailable.

A. SUMMARY
PHEVs are treated as different types of loads, depending on
the charging schemes, as follows:

• Rigid load: Each PHEV is an inflexible load in uncon-
trolled charging.

• Flexible load: Each PHEV is a controllable flexible load
in indirectly controlled charging and smart charging.
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FIGURE 4. Evaluation framework for impact assessment of uncontrolled charging.

• Mobile storage: In bidirectional charging, each PHEV is
a flexible load when it is charged but an energy source
when it is discharged.

Regardless of the sub-classification, all types of controlled
charging schemes are practically intelligent demand-supply
management schemes for the smart grid. They are designed
to match as close as possible time-varying demand and
random supply. The objectives are to achieve financial or
operational gain, avoiding unacceptable power quality and
preventing electrical network disruption, at the same time of
fulfilling all driver’s charging demands. Different classes
of controlled charging schemes are unique in their choice
of control actions. These schemes depend heavily on the
advanced communication capabilities of the smart grid, to
acquire knowledge about the current load and demand states,
and to disseminate control decisions.

III. UNCONTROLLED CHARGING
In uncontrolled charging, a vehicle is charged immediately
upon plug-in or after a user-specified delay, without any
control from the operator. The delay is introduced to give
the vehicle owner the possibility of charging their vehicles by
using off-peak electricity tariffs. Also, it is normally assumed
that once a charging starts, it continues until the battery is full,
or the vehicle is used, whichever occurs first.

Due to the lack of control, the research on uncontrolled
charging has focused on studying and analyzing the impact of
attaching a PHEVs population to the electrical grid [43]–[46].
In general, all the studies have tried to investigate if a certain
PHEV penetration level can be supported, or to identify
the maximum supportable PHEV penetration level. Despite
the similarity in objectives, the existing studies are diverse
in assumptions and evaluation settings. These settings can
be organized within a common framework as illustrated in
Fig. 4. Following the evaluation framework, each impact

analysis requires a number of inputs, such as existing (non-
charging) load profile, charging load profile, grid configura-
tion, and assessment criteria.

A. NON-CHARGING LOAD PROFILE
In the common framework, non-charging load profile mea-
sures the total electricity demand in the absence of PHEVs.
The difference between non-charging load and smart grid
capacity quantifies the amount of PHEV charging load that
can be supported. The non-charging load is provided in terms
of load curves of various time scales. For a simple case, the
curve shows how the load varies over the time within a day,
and 365 copies of the same curve are concatenated to form the
load profile for a year, where one year is the typical duration
for an impact evaluation. This simple way of modeling non-
charging load may not be ideal because in reality, load curves
may be different from one day to another day. For a better
accuracy, [47]–[50] have formed a set of daily load curves
based on recorded measurements, and uniform randomly
select a load curve from the set to represent each day in a
year. However, this method is not perfectly accurate, because
it does not take into consideration the different probabilities
between weekdays and weekends.

To capture the fact that weekday occurs more frequently
than weekend, the authors in [51] have proposed a non-
uniform selection from a set of daily load curves. First of all,
8,760 data points of hourly load are collected for a year. These
measurements are normalized in multiple stages such that the
weekly peak load is first represented as a percentage of the
annual peak load and then, the daily peak load is represented
as a percentage of the weekly peak load. Finally, the hourly
peak load is represented as a percentage of the daily peak
load. This process will produce 365 daily load curves, each
has 24 normalized hourly data points. These daily load curves
are then grouped into six clusters using principle component
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analysis, such that all members in a group are more similar
to each other, compared to a member from another group.
Specifically, several clustering algorithms such as k-mean,
fuzzy c-mean and hierarchical clustering have been tested,
and fuzzy c-mean has been found to yield the best clustering
results. Given the clustering, an average daily load curve is
constructed for each cluster, and a probability mass func-
tion (PMF) is subsequently formed indicating the chances of
occurrence for each cluster. The PMF is used to pick one of
the 6 average daily curves to represent each day in a year.

In addition to the effect of different days of a week, non-
charging load may also be affected by the different months of
a year, especially in countries with distinctive four seasons.
As presented in [47], the daily load curves have a seasonal
pattern where the energy consumption is the highest in winter
due to heating requirements. This seasonal effect has also
been accounted for in the non-charging load model in [52].

There exists some works that differentiate residential load
from commercial and industrial load [51], [54]. Commercial
and industrial loads are classified based on the associated
economic activities. For example, energy consumed by shop-
ping malls and restaurants is considered as commercial load,
and consumption data is collected only for weekdays. On the
other side, energy consumed by factories and mills is consid-
ered as industrial load. The authors in [55] have discovered
that, compared to residential load, commercial load has a
lower variability from day to day, but industrial load exhibits
an opposite characteristic. The larger variation in industrial
load is due to the fact that most industrial activities use small
size motors, with an intermittent mode of operation during
the day. To the best of our knowledge, we have not discovered
any published work that uses a separate industrial load curve.
Both [51] and [54] have used a single daily load curve for
commercial load.

B. CHARGING LOAD PROFILE
Providing an accurate charging load profile is a challenge
because the load depends on PHEV penetration levels and
driver’s behaviors, where the behaviors are human nature
which are difficult to model precisely. The driver behaviors
can be further classified into mobility behavior and charging
behavior.
• Mobility behaviors describe the PHEV’s traveled loca-
tions, times, routes, distances, type of vehicles, etc.
These behaviors affect the charging load through their
influence on daily traveled distance, visited location,
home arrival time, battery SOC, parking availability, etc.

• Charging behaviors describe the user’s seeking of charg-
ing opportunity. These behaviors affect the frequency of
charging (once a day at night, or whenever there is a
chance), charging location (at home, work or car park),
charging duration, etc.

Some drivers may charge their vehicles whenever they are
parked and there are available electric outlets. In this case,
a vehicle may be charged several times in a day and the
charging duration is the interval between two consecutive

trips [48], [56]. On the other hand, some drivers may charge
their vehicles only once a day at night after arriving home
following the final trip, and the charging duration covers the
time until the first trip in the next day [57], [58]. According
to [59], most of the drivers are expected to adopt the slow
overnight charging options, and only 10% of PHEV drivers
charge their vehicles multiple times in a day. These charging
behaviors affect the load through the driver’s selections of
when and where to charge, as well as the charging duration
and the battery’s initial SOC. Here, initial SOC is defined as
the SOC value right before charging starts.

Although there is no argument that driver’s mobility and
charging behaviors have an impact on the charging load, there
is no common agreement in the literature on how to account
for these behaviors in calculating the load. In a simple way,
these behaviors imply that charging load profiles can be dif-
ferent at different locations, instead of uniformly distributed
over the electrical grid. Specifically, the load size should be
different at home, workplace and shopping mall, at a given
time. The authors in [53] have produced three different daily
load profiles, for residential, office and commercial areas,
respectively through simulations. For commercial load pro-
file, the simulation parameters are configured based on shop-
per traffic volume. However, not all the simulation parameters
have been clearly justified.

The authors in [54] have used demographical data from
a Swedish travel survey to determine the charging load size
at work, home and shopping areas. The demographical data
includes number of workplaces, vehicle density and number
of employees, etc., for an area. As an example, the load size
at home at night is determined by multiplying the expected
number of employees living in an area with the expected
fraction of vehicles travel to home. The number of employees
in the area is calculated as the total number of employees
surveyed multiplied by a proration factor, where the factor
is given by the number of household in the area divided by
the total number of households surveyed.

Considering each PHEV as a mobile load that can be added
to a static grid topology, the authors in [48] have proposed a
Markov chain model to determine the location where the load
is added to the grid. The model consists of four states, namely
in movement, parked in a residential area, parked in a com-
mercial area, and parked in an industrial area; representing
the condition that a vehicle is in. The probability of being in
a particular state depends on the transition probability matrix
of the Markov chain, where the matrix has been empirically
constructed using the mobility data collected from drivers in
Portugal. Themodel assumes that the driver plugs-in the vehi-
cle whenever it is parked, and therefore, a load is added to the
corresponding location in the smart grid as indicated by the
type of parked location. Specifically, when the Markov chain
model decides that the vehicle is in the state of parked in a
residential area, a corresponding charging load is attached to
one of the buses which have been configured as ‘‘residential’’.

In [48], each PHEV is represented by a Markov chain,
which is discrete-time in nature and the state transition occurs
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once every 30 minutes. As the simulation progresses, the
location of each PHEV changes from time to time and thus,
the charging load varies from location to location. At any
location, the load size introduced by each PHEV is defined
as the difference between battery capacity and its initial SOC.
Identical to [60]–[62], [48] has assumed that the initial SOC is
a random variable following a truncated normal distribution.
In different works, the initial SOC has been assumed to follow
a log-normal distribution [60], [63]. In a few cases, the initial
SOC has taken some deterministic values, such as 0% in [47]
and 30% in [64]. The use of deterministic values for initial
SOC without justification is not realistic, because it does not
consider the randomness in driver’s behaviors.

As a more accurate way to model the initial SOC, the
authors in [51] have determined the value as a function
of trip distance, vehicle type, and the SOC before the trip
begins. As indicated in Table 1, vehicle type is an impor-
tant parameter in the function because it affects the energy
consumption to complete a trip. In [51], the initial SOC
is a random variable because the trip distance is a random
variable, with its probability density function (PDF) deter-
mined using some recorded measurements of driver’s mobil-
ity behaviors. Unfortunately, the function in [51] does not
capture the dependency between trip duration and the energy
consumption during the trip. Specifically, the model does not
enforce a logical fact that a longer travel duration will lead
to a lower SOC after the trip. This dependency between trip
duration and energy consumption that has been overlooked
in [51], has been included in the Markov chain model in [65]
based on vehicle mobility data collected in Sweden.

Recall that, in [48], all parked PHEVs are assumed
plugged-in for charging. This may not be the reality, because
some drivers may decide not to charge the vehicle if its
SOC remains high and the parking duration is short. This
decision may involve subjective judgment, which vary from
person to person. For example, 30 minutes parking duration
may be considered short by a driver, but the opposite by
another driver. This subjective decision making process has
been emulated in a fuzzy logic model proposed in [56].
With the fuzzy system to model each driver and all drives
make independent decision, the charging load at each location
can be calculated more accurately, because the number of
plugged-in vehicles does not necessarily equal to the number
of parked vehicles.

It is reasonable that the charging load at a location depends
on the number of plugged-in vehicles at that location. When
there are multiple vehicles plugged-in at a car park or a
charging station, the authors in [62] have proposed a model to
compute the aggregated charging load at that location. This
model assumes that PHEVs arrive to a location following a
Poisson arrival process, and their initial SOC is a randomvari-
able following the truncated normal distribution, as described
earlier. Hence, the aggregated charging load is a function of
two random processes. In [62], the PDF of aggregated load is
determined and refined dynamically throughout a simulation.
Specifically, a load PDF obtained in a current simulation

stage, is used to determine the parameters for the Poisson
arrival process and the truncated normal distribution, to be
used in the next simulation stage. Theses parameters are
determined using a genetic algorithm such that the difference
between the theoretical load PDF and the observed one is
minimized. These parameters, that appear in the forms of the
vehicle arrival rate and the bounds in initial SOC, are useful
to evaluate the impact of uncontrolled charging, with self-
improving accuracy. However, a large number of data points
are needed to construct a truthful PDF at each simulation
stage, and it is not clear if sufficient data points are available
at each stage.

The use of Poisson arrival process in [62] to model PHEV
arrivals has also been adopted by [66] and [67]. However, [47]
has used a different method, where the number of plugged-
in vehicles in a given period is determined by analyzing the
probability of making a trip in that period, such that a parked
vehicle is considered plugged-in. The authors in [47] have
not mentioned how the probability distribution can be deter-
mined. On the other hand, the authors in [57] have analyzed
the mobility behaviors of some German full-time employees
to determine a PDF for the time that vehicles complete their
final trip of a day. Based on this PDF, the number of plugged-
in vehicles in a given time period is assumed equals to the
number of vehicles that have completed their final trip of a
day in the same period.

C. GRID CONFIGURATION
As another input to the evaluation framework, different smart
grid configurations have been considered in the literature.
Here, grid configuration describes the grid topology, volt-
age level, power rating of charging outlets, etc. Due to its
simplicity, single line radiant network topologies are often
used in the literature [47], [49], [68], [69]. In [68] and [69],
the evaluations have simulated an IEEE 37-node residential
feeder network. The network size is reduced to only 34 nodes
in [47] and [49]. Also, the authors in [68] have considered
the location distribution of the houses and the number of
PHEVs per house, but the authors in [47] have allowed only
a maximum of one PHEV at each house.

A larger network with two-level hierarchy has been con-
sidered in [70], where an IEEE 31-bus network represents
a 23 kV distribution system. Out of 31 buses, 22 of them
are further modeled by an IEEE 53-node system each, where
every 53-node system represents a 415 V feeder network in a
densely populated residential area. Compared to the approx-
imately 1,000 users in [70], the authors in [71] have adopted
a large-scale distribution network within an urban area with
more than 6,000 low-voltage residential users. Instead of
focusing only on residential areas, [71] has also used a grid
topology that covers a medium-voltage industrial and a low-
voltage residential area with over 61,000 users. As shown in
Table 2, another aspect in grid configuration is the output
power of the charging outlets. In [47], [49], [68], and [70], all
the outlets have a same power of 4 kW considering only the
slow charging option. To evaluate the impact of fast charging
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FIGURE 5. Assessment flow chart for uncontrolled charging with power
flow analysis.

options, the cases of two outlet powers have been studied in
[56], [69], and [72], and the cases of three outlet powers have
been examined in [17] and [71].

D. ASSESSMENT
With the various inputs entered into the evaluation frame-
work, power flow analysis is performed, where the non-
charging load and charging load are used to configure the
active and reactive power at each node or bus on the grid.
As illustrated in Fig. 5, the power flow analysis determines
the voltage and phase at buses and nodes, as well as the cur-
rent in transmission lines. One power flow analysis is needed
for each set of inputs, and there are often 8,760 sets of hourly
inputs to evaluate the performance over a simulated one
year period. These hourly data sets can be produced through
Monte Carlo methods which assume statistical independence
between two successive hours [51], or through time-progress
stochastic process modeling that does not assume time inde-
pendence [48], [65].

Although there is a consensus that uncontrolled charging
imposes an upper limit in the PHEV penetration, the actual
value of the upper limit differs from one publication to
another. For example, [68] has shown that the supportable

penetration level is 30%, but the same limit reported by [47]
is only 20%. While the results in [47] and [68] have not
considered infrastructure upgrade, [71] has reported that 60%
penetration level can be supported with a corresponding
40% increase in power losses during off-peak hours, and a
marginally higher capital investment for new infrastructure.
But, it is not clear what is the quantity of this ‘‘marginally
higher’’ investment. On the other hand, where the electrical
grid is reconfigurable by opening and closing some circuit
breakers, 70% to 100% penetration levels have been reported
in [54] as suppotable. The differences in reported findings
are due to the variation in evaluation settings, which include
grid topology and grid capacity, as well as the selection
of assessment criteria. Specifically, [68] has assessed the
tolerable penetration level by observing the percentage of
transformer load such that it does not exceed 100%. Using a
different criterion, [47] and [71] have assessed the acceptable
penetration through maximum voltage deviation which is set
to 5% and 10%, respectively. The assessment criteria in [54]
is both 10%maximum voltage deviation combined with ther-
mal limits at transformers and transmission lines. Generally,
higher supportable penetration levels are found in studies that
assume PHEV charging at home in the night. This highlights
the fact that most of the spare grid capacity is available only
at off-peak hours.

E. SUMMARY
Based on the survey above, it seems that it is difficult to com-
pare and reuse most of the results from the rich set of existing
studies on uncontrolled charging. This is due to the lack of
common evaluation settings, and the fact that results have
been obtained through simulations. There is a large number
of simulation parameters, but not all the parameters have been
considered in each evaluation and study. Furthermore, a small
difference in simulation configuration can lead to a large
variation in results, or can even challenge the results repro-
ducibility. In some cases, important parameters have not even
been specified. Specifically, the transmission line impedances
have a significant effect on the power losses and voltage
deviation at each node and bus on a grid topology. But, these
impedances have not been stated or vaguely mentioned in
most cases. There is a need to establish some standardized
simulation platforms and use-case scenarios for the purpose
of synchronizing research efforts in the community. With
a consistent evaluation framework, platform and scenarios,
results from different parties can be cross-verified and redun-
dant works can be avoided, leading to more rapid progress in
the knowledge discovery process. This standardized evalua-
tion framework is not only useful for studying uncontrolled
charging, but will have significant benefits in understanding
and designing future controlled charging schemes.

Simulations can be excessively computational expensive in
some cases, and analytical results can be helpful in obtaining
quick results for system wide planning. The lack of analytical
result can be attributed to the complex nature of power bal-
ance equations that are needed in power flow analysis. It will
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FIGURE 6. Classification of price-based indirectly-controlled charging schemes.

be beneficial if some forms of linear approximations such as
the one in [73], can be applied in power flow analysis to derive
useful closed-form expressions to characterize system level
performance metrics.

IV. INDIRECTLY-CONTROLLED CHARGING
Indirectly-controlled charging schemes manipulate out-of-
system parameters, such as energy price and charging cost
that affect the charging operation. Through this indirect con-
trol of charging, the schemes aim to maintain grid stability,
power quality and operation efficiency while supporting an
increasing penetration of PHEVs. It is expected that increas-
ing energy price during on-peak hours can shift some charg-
ing load to off-peak hours, when spare grid capacity is
available, and thus preventing grid overload. As illustrated
in Fig. 6, the charging schemes that shift the load in time
domain by controlling prices are called temporal load shifting
schemes. There exists another class of indirectly-controlled
schemes, which are called spatial load shifting schemes.
These schemes control the prices in order to shift spatially
the charging load from an overloaded location to other non-
congested locations.

A. TEMPORAL LOAD SHIFTING
According to [74], if electricity is dynamically priced depend-
ing on the time-of-day, PHEV charging load can be shifted to
late night hours when other demands for electricity are low.
Assuming that all users are attracted to the lower price and
their energy consumption will be shifted to the off-peak hours
as long as the grid can support the load, the on-peak demand
will increase only by less than 10% of what is originally
expected without the dynamic pricing.

FIGURE 7. Different perspectives in price-based indirectly controlled
charging schemes.

The effectiveness of controlling PHEV charging through
the adjustment of energy price, depends on the price dif-
ference between the regular electricity price and the off-
peak tariff. This relation has been studied in [75] in the
context of motivating users to switch from uncontrolled to
controlled charging. It has been found that, in order to motive
a change, there is a minimum requirement in the price dif-
ference between schemes. The required price difference is
user dependent and is a function of the user’s price sensitivity.
A bigger price difference is needed to motivate a user who is
less price-sensitive. However, [75] has not provided any detail
for the price sensitivity functions.

In a case where the user price sensitivity functions are
known, charging schemes can be designed to influence the
charging decision of individual PHEVs [32], [76], [77].
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This is possible assuming the drivers are rational in the sense
that they want to pay the lowest price to satisfy their individ-
ual charging demands. As illustrated in Fig. 7, the charging
scheme will determine an appropriate price while satisfy-
ing its performance objective, such as maximizing operator
profit, minimizing power losses, etc. The price will then be
announced to PHEVs, which will autonomously response
to the price. The scheme’s objective can be achieved if the
PHEV responses are indeed in accordance to the known price
sensitivity functions.

In [78], the price sensitivity function is defined as a generic
function with a negative derivative. As such, an increased
price will lead to a lower charging demand. Given such a
function definition, the authors have formulated an optimiza-
tion problem that can be solved using dynamic programming
to find the price that maximizes the operator’s revenue, sub-
ject to technical limitations of the electrical grid. This work
is unique in the sense that it proposes to set two prices, one
for local drivers, and another one for visiting drivers. The
price for visitors is higher than that for locals. The authors
have argued that this differential pricing is necessary to avoid
local users from being charged unfairly high when visitors
compete for charging opportunity during peak hours. This is
not a very strong argument becausewhen there is a congestion
at a particular spatial-temporal point, the visitors should be
given a higher priority so that they can return home instead
of abandoning their vehicles to walk home, while locals are
already close to home. Penalizing visitors may amplify range
anxiety and will not help the proliferation of PHEVs.

Following the same model as in Fig. 7, instead of deriving
a scheme to dynamically find the optimal price, some works
have assumed that the price will change according to a known
function. For example, it is common to assume that the oper-
ator will set a price which is an increasing convex function of
the aggregated charging load [79], [80]. In this case, focus of
the research is no longer in setting the price, but in setting
rules to govern the autonomous behavior among PHEVs.
We call this rule the response rule, and it is equivalent to
the user’s price sensitivity function mentioned above. The
common rule for all PHEVs rule is necessary to avoid a chaos,
because the action of a PHEV may alter the aggregated load
and thus, affect the price that will be effective on all PHEVs.
In the literature, this kind of charging schemes that define
response rule, are known as scheme with user’s perspective,
as compared to operator’s perspective [81].

From a user’s perspective, [82] has applied flow control
theory from communication networking for PHEV charging
control. In this scheme, the aggregated load is a combined
result of all autonomous responses. Due to the autonomy,
the price may take a few iterations to stabilize. For example,
after a price is announced, the aggregated load may result
in a new price which is considered low (high) to most of
the PHEVs. Thus, a higher (lower) price will be announced
in a new iteration. The process continue until the new price
attracts only a statistical stationary collective response from
the PHEV population. It has been shown that, given the

convex price function and rational driver behaviors, charg-
ing price and charging demand will both converge to some
desired values that can be controlled by assigning different
weights to different drivers. In this context, the weight can be
used to differentiate PHEVs such that a higher paying PHEV
is given a larger weight to receive more charging energy in
average.

The above idea in [82] has been extended in [83] to take
into account the case where the number of PHEVs is time-
varying. Assuming charging is performed only at home, the
number of PHEVs is a random variable because their arrival
times in a certain day are random variables. The authors
in [83] have derived a response rule that helps individual
PHEV to decide its charging start time so that the charging
process can be completed by a desired deadline, at the mini-
mum cost. The rule is player’s strategy within a game theory
framework, where the players are the individual PHEVs.
A very similar problem and a solution to [83] have been
presented in [84]. Apart from the fine mathematical details in
deriving probability distribution functions for various random
variables, the basic difference between [83] and [84] is in
the definition of the price function. In [83], the price is a
convex function of total load. But, in [84], the price is a
function of total-load-to-power-generator-output-ratio. This
normalized aggregated load in [83] is indeed a more accurate
representation of loading conditions.

In a different scheme which is on user’s perspective, the
price function is unknown a priori but it can be predicted [85].
Assuming that dynamic prices are regularly received at charg-
ing points (outlets), the authors have used the k-nearest-
neighbors (KNN) algorithm to predict an upcoming price
based on previous prices. KNN is a simple classification algo-
rithm that does not require complex model fitting operation,
which is otherwise commonly required in time-series based
methods. The authors have divided the price range into a
number of non-overlapping segments, where each segment
is considered a class. Then, the KNN algorithm is contin-
uously trained on the classification using some immediate
data points within a moving time window. After the training,
the next price is predicted using just two most recent prices.
The scheme has proposed a very simple response rule, where
the predicted price is compared against a threshold value.
If the predicted price is above the threshold, the PHEV will
not start its charging. However, there is no mention on how
to pick an optimal value for the threshold.

The authors in [86] have proposed a scheme that covers
both operator’s perspective and user’s perspective. Assuming
that the energy cost is a convex function of total charg-
ing demand, the operator will set price to minimize cost
while fulling all demands by their respective deadlines. The
determined price implies a desired charging load profile.
To enforce the load profile, the scheme further derives an
optimal response rule that must be followed by all PHEVs.

Similar to [86], the charging scheme proposed in [87]
covers both the operator’s and user’s perspectives. In [87],
the objective is to flatten the aggregated load profile.
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Also, compared to [86], this scheme has not derived an opti-
mal response rule for the PHEVs, but has imposed require-
ments on how the individual PHEVs should response to an
announced price. At each price setting moment, the scheme
takes into consideration technical limitations of the grid in
terms of the maximum charging output at each charger,
and PHEV’s charging deadline. After receiving the price,
each vehicle autonomously determines their own charging
profiles, and inform the operator about the decision. Upon
receiving the reported charging profiles, the operator updates
the price to guide the PHEV’s behaviors. The authors show
through analysis that this iterative scheme is guaranteed to
converge, regardless of the maximum charging powers and
charging deadlines of individual PHEVs. The analysis also
shows that the flatness of the load profile is optimal at
the convergence. The problem settings and iterative solution
framework of [87] are similar to [82], with [87] has taken into
consideration physical limitations in price setting.

A dual perspective problem similar to [87] has been solved
in [88] using game theory. In [88], the objective is to deter-
mine the appropriate price to flatten aggregated load profile
and minimize cost. Since all PHEVs will response to a same
price by autonomously choosing their own charging profiles,
the PHEVs are effectively interacting with each other through
the average charging profile of the entire population. For
a very large (infinite) population, the effect of each indi-
vidual PHEV on the average charging profile is negligible.
Thus, the average charging strategy seen by every PHEV
is identical. Following the Nash certainty equivalent princi-
ple, a collection of individual charging profiles is a Nash
equilibrium if: (a) each of the individual charging profile
is optimal with respect to a commonly observed charging
profile, and (b) the average of individual charging profiles is
equal to the commonly observed charging profile. Exploiting
this principle, the operator will set price using any increasing
function of the total charging and non-charging loads. The
authors in [88] have shown that, using such a price function
at the operator can ensure load profile flattening. At each
individual user, the response function will find the local
charging profile to minimize the individual charging cost
plus the sum square of deviation from the average charging
profile of the entire PHEV population. The authors have
shown results that load profile is indeed flatten. However, to
implement such a scheme, the operator needs to collect in
each iteration, all individual charging profiles to compute the
average profile before announcing it with a new price. We are
not sure how this can be done efficiently through a practical
communication network.

In the literature, mathematical functions, such as concave
function [89] and linearly decreasing function [89]–[91] have
been used to describe user’s price sensitivity. As described
above, such functions are useful in developing model-based
pricing schemes [78] and in facilitating performance analy-
sis [82]. However, these functions may not be a very accurate
representation of the actual user behaviors. For example, it is
hard to believe that in reality, a driver’s desire to charge their

vehicles decreases linearly with an increasing electricity price
regardless all other factors. The absence of suitable and sim-
ple mathematical functions is partly due to the complexity in
human behaviors. Different drivers may react very differently
to a price change, and may adapt too quickly to a changing
environment, beyond the representation of a simple universal
mathematical expression.

When there is no mathematical function that can accu-
rately describe user’s price sensitivity for model-based
schemes, dynamic price adjustment scheme can still be
developed based on observation or measurement. In [89], a
regression scheme, namely additive-increase-multiplicative-
decrease (AIMD) has been proposed to adjust the charging
cost at a charging station in a timely manner in response to
the difference between a desired vehicle arrival rate and a
measured value. Here, an arrived vehicle is one that demands
charging. The proposed AIMD scheme will linearly increase
the price to slowly decrease the charging demand when the
vehicle arrive at a faster than desired rate. On the other hand,
the price will be exponentially decreased when the vehicle
arrival rate is too high.

B. SPATIAL LOAD SHIFTING
Comparing [89] to [88], we notice that, in additional to
shifting of charging load to off-peak hours, [89] can also shift
load spatially from one location (charging station) to another
location. Spatial shifting of load is justifiable considering
the case where different stations have different capacities,
and a lower cost can be offered by the station with a larger
capacity to attract more drivers or customers. Regarding the
spatial load shifting scheme in [89], the performance objec-
tive is to minimize the vehicle’s waiting time to reach an
available charging outlet. The authors in [89] have assumed
that vehicles arrive according to a Poisson arrival process and
the charging durations are exponentially distributed random
variables. Therefore, the simple M/M/1 queueing model can
be used to determine thewaiting time at each charging station.
In the queueing model, waiting time at each station is a
function of vehicle arrival rate. As such, [89] has proposed to
differentiate the prices among stations to control the arrival
rate at each station to achieve its performance objective
through shifting of load to different locations.

For a different performance objective, the authors in [92]
have proposed a scheme to control the charging prices at
difference stations as a mechanism to guide the dispatch of
a large electric taxi fleet. By optimally dispatching the right
number of taxis to different areas after taking into consider-
ation the respective area’s grid capacity, the service quality
and operating efficiency of taxi system can be improved. The
assumption is that the proportion of taxis serving an area is
statically the same as the proportion of taxis at the charging
stations in that area. Since taxi drivers are cost-sensitive
revenue seekers, the number of taxis at a charging station can
be increased by lowering the station’s price. In [92], the price
at each station is determined using a Stackelberg (leader-
follower) game model, which consists of 2 stages. In the
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first stage, the single service provider that controls all the
charging stations, acts as the leader, and announces the prices
and waiting times at each station. The waiting time here is
determined using a different method than that in [89], and it is
inversely proportional to the number of idle charging outlets.
In the second stage, all the electric taxis act as followers by
responding autonomously to the announced price in such a
way that individual cost is minimized. In this game, different
players in the second stage interact with each other through
the waiting time. Specifically, an action of one driver may
affect the decision of the other drivers through the changes in
waiting time.

In [89] and [92], the prices for different stations are con-
trolled centrally by a single service provider. In a competitive
market place, different charging stations may be operated by
different service providers. These providers may adjust their
prices competitively to maximize individual profit. This com-
petition among multiple charging stations have been formu-
lated as a Bertrand’s oligopoly game in [90]. In such a game,
the aggregated charging load is considered fixed despite the
changes in price, and charging stations compete by setting
their individual prices to attract the right amount of load to
maximize profit. In this model, different charging stations
interact with each other through the constant total demand
where a cheaper price at a competing station will lower the
charging load at other stations. In [90], when a PHEV needs
to charge its battery, it obtains location information of all
its near-by charging stations and sends charging request to
them. Upon receiving the request, each station responses with
its individual charging price which is determined by using
the Bertrand’s non-cooperative oligopoly game model. The
vehicle selects the best charging station after assessing all the
received prices and the travel distance to the stations. Here,
travel distance is considered because it is a cost to the driver.
It is not reasonable to drive a long distance to a charging
station that offers only a negligibly lower price.

A similar problem of competitive charging price setting
in [90] has been formulated as a supermodular game in [93],
where such a game has a guaranteed equilibrium even for pure
strategy. Through the game theoretic model, each charging
station set and announce its price periodically. The price is
determined to maximize the station’s profit, where relevant
physical constraints such as the transmission line capacity,
the number of charging outlets at a station, the energy cost
from grid and renewable source, and the number of potential
customers are taken into account. Here, the customer numbers
at each station are affected by prices announced by different
stations, where a driver will select the station that offers the
lowest cost after considering the travel cost to the station.
Compared to [90], the game model in [93] has considered
more parameters in a realistic smart grid system. However,
the authors in [93] have assumed that the station selection by
a PHEV has no impact on other PHEVs. This may not be
true because PHEVs will suffer from a longer waiting time if
all vehicles select a same station, and a driver must wait for
its turn when all charging outlets are occupied. In practice,

a driver may avoid a cheaper charging station for shorter
waiting time. Such a dependency between drivers through
waiting time has been described earlier in this subsection
for [89] and [92].

Similar to [89] and [92], the dependency between PHEVs
has been considered in [91] through the formulation of wait-
ing time as a function of charging prices of all stations.
In [91], the competitive price setting problem has been for-
mulated as a 2-stage Stackelberg game, where the stations are
the leaders and the PHEVs are the followers. This Stackelberg
game is different from the one in [92] in the sense that all
stations in [92] are centrally control without non-cooperative
competition among them. In the first stage in [91], the charg-
ing stations determine and announce their charging prices
to maximize individual profit. In the second stage, PHEVs
select their respective charging stations, taking into account
the price, travel distance and waiting time. The 2-stage Stack-
elberg game always has an equilibrium which depends on the
charging station’s capacity and the price difference between
the stations.

In addition to dynamic control of charging price, spatial
load shifting can also be achieved through network planning.
In a significantly different approach, the authors in [94] have
formulated a planning problem to minimize system level
power losses by optimizing the number of charging outlets
that are installed at different parking areas. The planning
problem would install fewer outlets at an area that suffers
from higher power losses and receives less PHEV visitations.
The problem formulation has taken into consideration the
typical charging profiles of PHEVs, and the statical charac-
teristics of vehicles that appear at different parking areas.

C. SUMMARY
Indirectly-controlled charging schemes play an important
role in exploring the use of dynamic electricity pricing,
e.g., differential day-night pricing, real-time pricing, etc., to
meet the growing PHEV charging needs while preventing
grid overload. Accurate price setting to shift charging load
requires an accurate understanding of the user’s price sen-
sitivity. Unfortunately, existing works have adopted simple
mathematical functions for price sensitivity for tractability
in performance analysis and optimal control development.
The accuracy of these price sensitivity functions should be
verified. Accurate price sensitivity function must be used, or
the research may remain academic in nature.

Compared to the literature for uncontrolled charging that
depends on detailed power flow analysis to verify the impact
of charging load on smart grid, the competitive pricing
research has not focused on power flow analysis. As such,
the actual impact of such price-based charging schemes on
the smart grid may need further investigation.

In spatial load shifting, existing game theoretic schemes
have used waiting time for a charging outlet as a met-
ric to influence the distribution of PHEVs among different
charging stations. The formulation of these waiting times
have not taken into account the difference between fast and
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TABLE 3. Smart charging schemes.

slow charging, which will significantly affect the overall
performance.

V. SMART CHARGING
Compared to indirectly-controlled charging that can only
control out-of-system parameters, smart charging controls
directly a set of charging parameters, such as output powers
at different chargers, charging time patterns, etc. The con-
trol can be flexibly applied to only a subset of the vehicles
in different ways, but not necessarily to all vehicles in a
homogeneous way. With an increased flexibility in control,
[47] and [68] have shown that smart charging can support a
significantly higher PHEV penetration, compared to uncon-
trolled charging.

Smart charging schemes are often developed through the
formulation of constrained optimization problems, where the
constraints are to keep power quality within acceptable limits,
to prevent disruptive grid destabilization, and to satisfy all
charging demands. In these formulations, the controllable
actions are the optimization variables. Other non-controllable
parameters are information that must be collected from or
provided by the smart grid. As introduced earlier in Section II,
there is a diverse set of performance objectives, such as min-
imizing power losses, minimizing cost, maximizing profit,

improving voltage regulation, etc, which can be classified
into operational or financial objectives. In this section, as
summarized in Table 3, we organize the surveyed smart
charging schemes according to their performance objectives,
and group them into optimal finance and optimal operation.

A. OPTIMAL FINANCE
Different chargers at different locations suffer from different
power losses, depending on the characteristics of the eletrical
network. These characteristics include the length of the cables
between the charger and the substation, as well as the cable
impedance. The lost power cannot be sold to the user and
cannot be used to perform works. Therefore, power losses
affect operator’s revenue and profit.

In [47] and [49], a scheme has been proposed to minimize
power losses, while maintaining the voltage deviation at each
bus within an acceptable limit and keeping the output powers
at all chargers below their maximum ratings. In this scheme,
all PHEVs are assumed to have been plugged-in at the begin-
ning of a time period and must be fully charged at the end of
the given period. This problem is formulated as a quadratic
programming constrained optimization where optimization
variables are the charging start times for vehicles. This is
not a conventional quadratic programming problem, but an
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iterative algorithm where each iteration involves solving the
power balance equations to provide initial values to the
quadratic programming problem in the subsequent iteration.
The iteration will continue until a convergence is achieved in
the power flow analysis. The evaluation results have shown
that minimizing power losses in the electrical network will
also minimize voltage irregularity.

Similar to [47] and [49], the authors in [95] have aimed
to minimize power losses and improve voltage regulation.
In contrary to [47] and [49] which control charging start
times, the authors in [95] have proposed to control the output
powers at chargers. Also, the scheme in [95] has not directly
used transmission line losses as the minimization objective.
Instead, the authors have discovered that loss minimization
can be achieved by maximizing load factor, or minimizing
load variance. This finding is true independent of grid topol-
ogy if the maximum base load energy is small enough and the
sum of the energy required for all PHEVs is large enough.
The use of load factor or load variance has the benefit of
ensuring convexity in the performance objective function for
optimization. The convexity allows a faster finding of the
optimal control action, and the use of commercially available
optimization tool. Therefore, the authors in [95] have claimed
that the proposed scheme is suitable for real-time power
dispatch in support of PHEV charging control.

Minimization of power losses is also an objective of [96].
However, achieving the minimum losses is not the ultimate
objective, and it is only a part of the performance objective
function to minimize the operator’s cost. The scheme wants
to minimize power losses while keeping voltage within an
acceptable limit and ensuring total power demand can be ade-
quately supported by existing infrastructure. This is achieved
by controlling which plugged-in PHEVs to be charged at
what time in a discrete time model, after taking into con-
sideration the randomness in driver’s charging behaviors,
time-dependent energy prices and transmission line losses.
As described earlier, chargers at different locations suffer
from different losses. Therefore, [96] has used loss sensitivity
to select the PHEV that contributes the least to system losses,
and to begin charging that particular vehicle as soon as possi-
ble. The loss sensitivity quantifies the changes in power losses
with respect to changes in the charger’s load. In practice, loss
sensitivity is computed by temporarily increasing the loads
at each charger by a small amount of 5%. From this small
load perturbation, it is then possible to determine the loss
sensitivity due to load changes at each candidate charger from
its Jacobian matrix of power flow. Simulation results show
that the proposed scheme can support a much higher (63%)
PHEV penetration compared to that (32%) of uncontrolled
charging.

A problem similar to [96] has been formulated in [97]
to directly maximize operator’s profit for a system that has
multiple parking areas sharing a single distribution trans-
former. Here, the profit comes from a difference between the
wholesale power price and the retail price, multiplied by the
aggregated charging load. The hourly prices are exogenously

known day-ahead. There is a penalty on profit if the operator
cannot fulfill all the charging demands within a give time
horizon. The network limitations, such as power limits at the
charging points, the parking areas and the distribution trans-
former, are considered as constraints. This constrained opti-
mization problem has a finite horizon with a fixed number of
discrete time intervals. The control variables are the charging
powers at each charging points, which can only be changed
at the beginning of each time interval. The optimization
problem can be solved centrally through a mixed integer liner
programming. However, the authors have argued that solving
such a problem centrally is not scalable in the case of a very
large PHEV population. Hence, they have further proposed
to use distributed sub-gradient method, to decompose the
mixed integer linear programming problem into multiple sub-
problems, one for each parking area. Specifically, through
Lagrangian relaxation, the constraint on the shared trans-
former is added as a penalty term to the original optimization
objective function. With a local scope of a parking area,
the new optimization problem has a much smaller number
of variables, and thus can be solved more efficiently. Also,
multiple copies of the local optimization can be solved in
parallel, one for each parking area.

Maximizing profit is also the objective of the charging
scheme proposed in [98], for a single parking area. The profit
is calculated in the same way as in [97], but without penalty
for missing demand deadline. Instead, charging deadlines are
hard constraints. The authors have observed that visitors to
the parking area can be classified into regular and irregular.
Regular PHEVs travel daily between their homes and works,
following a typical mobility pattern every weekday. Irregular
PHEVs represent visitors from other places on short non-
routine journeys. With such an observation, the authors have
proposed a scheme consists of two layers, namely routine
layer and correction layer. The routine layer analyzes the
mobility traces of individual regular PHEVs to identify their
average arrival and departure times from the parking areas.
These times become constraints of a mixed-integer linear
programming problem. Other constraints include the grid’s
technical limitations. Given the day-ahead power price, the
optimization problem has been solved using CPLEX to deter-
mine a rough charging profile for each PHEV, ahead of time.
At real time, when the actual arrival and departure times
differ from their expected values, the correction layer will
modify the charging profile using heuristic, which unfortu-
nately has not be clearly described. Also, the correction layer
is responsible in real-time handling of the charging demand
of irregular PHEVs. The authors claim that the main novelty
is in the use of actual mobility traces of regular PHEVs in
controlling their charging profiles at a parking area.

Another profit maximization charging scheme has been
proposed in [99]. However, different from [98] that makes a
profit from charging PHEVs, the profit in [99] is obtained
from offering voltage regulation service to the smart grid
while charging a fleet of PHEVs. The offer of regulation
service by PHEVs is a key feature of V2G which will be
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discussed more extensively in Section VI. The uniqueness
of [99] is in providing such regulation service without bidi-
rectional charging. The authors have considered the inclu-
sion of renewable energy sources, such as wind and solar
generators, which may inject intermittently power into the
electrical grid. Since the battery capacity of a single PHEV
is too small to have an impact on the grid, an aggregator
must exist to combine a group of PHEVs in an area. The
aggregator can make a profit when it is requested by the grid
operator to regulate up or down the voltage. The regulation is
achieved by setting a proper preferred operating point (POP)
for each PHEV. In [99], the POP equals to the charging set-
point, which defines the average, maximum and minimum
charging powers at each outlet. An optimization problem
has been formulated to maximize the profit by choosing the
optimal charging set-points for all PHEVs. The constraints
are limits as indicated by the maximum and minimum aggre-
gated power required to properly regulate the voltage. The
optimization has been solved using linear programming. The
results show that it is feasible to offer regulation service
without bidirectional power flow. However, this study has not
taken into consideration the grid’s technical limitation, such
as thermal loading, and maximum charger output.

Profit can be maximized by minimizing cost. Thus, the
authors in [100] have proposed to minimize the total energy
cost purchased to fulfill all the charging demand. It is
assumed that the operator can buy energy from day-ahead
market at wholesale price, and from current market at retail
price, where retail price is generally higher than wholesale
price. To exploit the lower wholesale price, the authors pro-
pose a two-layer scheme, where the first layer buys energy
from the day-ahead market to serve a fraction of the PHEV
population, and the second layer uses the real-time market to
serve the rest of the population as well as to adapt to deviation
in the actual demand from the expected value which has been
determined in the first layer using statistical data. This two-
layer approach is conceptually similar to that in [98]. In [100],
the first layer is designed as a scheduler that controls charging
time to minimize energy cost, in the view of the constraints
imposed by individual PHEV service demands, and grid lim-
itations. The paper considers three types of charging levels,
similar to those in Table 2. Although this first layer problem
has been presented as a constrained optimization, it is not
solved using mixed integer linear programming. Instead, a
heuristic has been used to allocate the lowest price charging
time slots to each PHEVs, at a fixed power depending on the
outlet’s charging level. This is different frommost of the other
smart charging schemes, which allow any charging power as
long as it does not exceed the maximum rating. We believe
that this fixed power allocation considered by [100] is closer
to reality compared to other works. The second layer is
designed as a dispatcher that uses a heuristic to distribute the
purchased energy to PHEVs, following as close as possible
the outcomes from the first layer.

A system model and problem definition similar to [100]
has been adopted in [101]. They both have considered buying

energy from the day-ahead market to service a group of
PHEVs at minimum cost, but [101] has further dealt with
the existence of multiple co-located aggregators. In [101],
the aggregator is called fleet operator (FO), where each
FO is responsible for a fleet of PHEVs, with them the FO
has entered into a contract. In this system model, there are
three main components, namely grid operator, FO and the
PHEVs. The authors have provided a detailed description on
the processes that govern the interactions among the three
components. Specifically, each FO needs to first determine
the optimal charging profiles for its own group of PHEVs.
This is a constrained optimization problem solved using lin-
ear programming, where the constrains are drivers’ demands
to be fully charged before departure. Based on the optimal
profiles, hourly energy consumption can be determined. All
FOs will submit their consumption estimates to a virtual mar-
ket. The market formulates another optimization to allocate
actual consumptions to minimize the sum square of deviation
from the optimal consumption. The constrain for this second
optimization is the capacity limits of the grid. This second
optimization is solved using Lagrangrian relaxation method,
and the Lagrange multiples are used as shadow prices. If the
shadow price is greater than zero, all FO will add their
respective shadow prices to the day-ahead market price, and
repeat the optimization to compute their energy consump-
tions. The iterative process ends when all shadow prices are
not greater than zero. Although this paper has not provided
details for real-time dispatch such as those given in [100], the
results here show a significant (45%) reduction in charging
cost.

For the objective to minimize cost needed in charging a
fleet of 50 PHEVs, made up by an equal number of taxis
and private cars, the scheme in [102] has used wind gener-
ated power to offset part of the energy cost. In this scheme,
the main novelty is in the use of a detailed battery model
to account for the charging efficiency. For a less efficient
battery, the energy acquired by the battery is less than the
energy drawn from the electrical grid. The detailed battery
model suggests that the internal battery power is a non-linear
function of the external charging power, and internal power
is often lower than external power. Through a simple Taylor
series expansion, the authors have approximated the non-
linear relation using a quadratic function, where the coef-
ficient of the quadratic term depends on the battery model.
Then, an optimization problem is formulated to minimize the
energy cost by controlling the charging power and charging
time for every plugged-in PHEV over a period of time. The
optimization is solved using quadratic programming, and the
results are compared to that of another optimization formu-
lation that assumes a simple linear relation between internal
and external powers. The results indicate that the performance
difference between the quadratic and linear models is only
about 2%. The authors have stated that this small difference
in performance does not justify the increased complexity in
using quadratic programming. The authors have also con-
cluded that a linear battery model is good enough.
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Smart grid operators can maximize their return-on-
investment on the infrastructure bymaximizing its utilization,
where utilization is generally calculated as the demand-to-
supply ratio which must be kept below unity to avoid over-
load. The authors in [103] have proposed a heuristic charging
scheme to maximize average utilization. The scheme treats
PHEV charging problem like a transmission scheduling prob-
lem in communication networks, where each power supply
and charging demand is represented by a token. These tokens
are kept in two separate queues, one for supply and the other
for demand. A supply token is removed from its queue when
the power it represents starts to flow. Demand tokens are
removed from the queue to match the supply as close as
possible while guaranteeing that utilization is below unity
at all times. The difference between supply and demand
indicates the amount of wasted energy. Eachmatched demand
token is used to guide on which PHEV charging requests to
be actually performed in correspondence to the supply. When
the demand tokens are removed from the queue in a first-
in-first-out manner, there is a need to decide which supply
token, the demand token should first attempt to match to.
In making this decision, the scheme has tried the following
four policies: (a) in the increasing order of supply end time,
(b) in the decreasing order of the amount of energy that is
left in the supply token, (c) select a supply token uniform
randomly, and (d) in the increasing order of supply token’s
current utilization. Evaluation results show that regardless of
the policy, a high utilization above 0.95 can be achieved with
a very large (> 2 million) PHEV population.

Energy network utilization can be maximized by maxi-
mizing the amount of energy delivered all PHEVs within a
time period. A charging scheme has been proposed in [104]
to maximize the total energy delivered by controlling the
charging power at each plugged-in PHEVs. The constraints
are the grid limitations, which include charger’s maximum
output power, tolerable voltage deviation and maximum ther-
mal loading. The authors have assumed a specific energy
network topology and configuration, and perform power flow
analysis to find the voltage drop and thermal loading at each
bus in the presence of only residential (non-charging) load.
Given this baseline setting, further power flow analysis is
performed to identify the impact of adding extra power load
at a charging outlet. This helps in quantifying the voltage and
thermal loading sensitivities in response to varying charging
load. This sensitivity parameters is conceptually similar to
the loss sensitivity introduced earlier in [96], but differs in
practice. The authors in [104] have discovered that both
voltage and thermal loading sensitivities are approximately
linear. Therefore, the constrained optimization becomes a
simple linear programming problem. Apart from the linear
approximation, one of the main novelties in this scheme is
the inclusion in constraint, a limit in variation in charging
power between two consecutive time steps. This constraint
is practically important because rapid and large variation in
charging power is harmful to battery.

B. OPTIMAL OPERATION
Flattening the combined charging and non-charging load
profile plays an important in improving power quality, net-
work stability and operational efficiency of the electrical
grid. The authors in [105] have proposed a scheme to flatten
load profile at a transformer, while taking into considera-
tion the technical limitations of the grid. These limitations
include maximum charging power, acceptable voltage devia-
tion, maximum current and maximum thermal loading. They
serve as the constraints to an optimization, where the objec-
tive function is the sum square of the difference in load at
the transformer, between two consecutive hours. The control
variables are the charging profiles at all outlets. The feasi-
bility of charging profiles are verified through power flow
analysis on a specific grid topology and configuration. Also,
a charging profile is feasible only if there is PHEV plugged-
in to the respective outlet. The authors have established the
chances of plug-in at an outlet by analyzing the statistical data
from a mobility survey carried out in the city of Madrid in
Spain. For a large number of charging outlets, the solution
space is too large to be efficiently handled as a conventional
optimization. Therefore, the authors have adopted a meta-
heuristic method, specifically genetic algorithm to search for
the optimal solution. In this genetic algorithm, each gen in a
chromosome defines the charging power at a specific outlet.
Simulation results show that the load profile can indeed be
flatten. Since the charging profiles are based on statistical
mobility data, we feel that it has no ability to adjust to
real-time deviation from the expected behaviors, where such
ability has been designed into [100] presented earlier.

Another load flattening PHEV charging scheme has been
proposed in [106]. In this scheme, the objective is to flatten
the load profile at the same time of minimizing the peak
load. The authors have considered a system model where
an electrical grid supports 100-200 homes, and each home
has a charging outlet. Two types of control strategies are
considered, namely local and global strategies. In the local
strategy, a home control unit manages the charging profile for
its own vehicle, in the presence of non-charging load from
home appliances. The scheme first determine an ideal load
profile, which is a flat line of the average load over the entire
time horizon within which the vehicle must be completely
charged. Then, the performance objective can be achieved
by minimizing the sum square of difference between the
scheduled and ideal loads, over all time steps within the hori-
zon. The control variables are charging time and power. The
optimization is constrained by transmission line capacity, and
the need to fulfill the charging demand. This optimization has
been solved using a quadratic programming. Different from
this local strategy, the global strategy does not require the
home control unit to manage the charging. Instead, the home
control unit simply submits the charging demand and local
load profile to a control center. At the center, the optimization
is identical to that of the local one, but with a larger number
of control variables. The same quadratic programming is
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applied to solve the global optimization. As expected, results
show that the global strategy can lead to a flatter load profile,
due to the global view on the system.

With limited capacity in a residential distribution network,
the electricity supply may not fulfill all charging demands
at some instances. When such a congestion occurs, it is
necessary to ensure fairness in charging opportunity among
all the vehicles. To be fair, each vehicle should receive an
entitled share of the available energy drawn from the smart
grid. From the operator’s perspective, it is more efficient to
avoid chargers at a remote location because of their higher
power losses due to their longer distance from the substation.
In order to ensure fairness, [107] has proposed a scheme that
will allocate at least one unit of energy per control interval to
each plugged-in vehicle, regardless of their power losses. In a
separate work, [108] has shown that a distributed charging
control can lead to a better fairness compared to a centralized
scheme, where the fairness is measured in terms of the devi-
ation from the average SOC among all vehicles at the time
they leave for their respective trips. In this distributed scheme,
each vehicle can decide on its own charging profile based on a
pre-defined probability distribution. The distribution function
is created through interaction with a central controller that
provides the vehicle with predictions about the future energy
consumption in the grid.

Instead of considering only fairness in energy share, the
authors in [109] have also considered the relative importance
of charging to a particular vehicle. Specifically, a PHEV with
a SOCwhich is high enough to meet its daily need, should not
compete equally with another vehicle that has a much lower
SOC, that is insufficient for its next trip. The authors terms
this consideration as discouraging fairness because it acts to
discourage a high SOC vehicle to compete equally with a low
SOC vehicle, for an universal fairness. Here, the universal
fairness means all PHEVs have at least enough energy for
their next trips. In [109], an entropy-weighted combination
of charging fairness and discouraging fairness has been used
as the objective function in a dynamic optimization problem.
The optimization problem is formulated as a Semi Markov
Decision Process, and solved using the neuro-dynamic pro-
gramming. The use of dynamic programming allows the
scheme to learn from the charging process, sufficient infor-
mation that characterizes the system features and parameters,
which are not deterministic. The system parameters include
PHEV number, locations, arrivals and electricity demand.
These parameters are regulated adaptively to meet the PHEV
charging requirements even if the daily PHEV mobility and
demand on electricity are unknown a priori.

For the purpose of avoiding congestion in energy distri-
bution networks and achieving fairness in charging opportu-
nities, the authors in [110] have proposed to adopt the idea
of medium access control protocol from wireless commu-
nication networks, to manage PHEV charging. The paper
assumes a fleet of PHEVs share a single transformer, and all
vehicles will be charged using level 2 fast charging. Due to
the much higher output power at each outlet for fast charging,

the transformer can be severely overloaded when many vehi-
cles are charged simultaneously. Since fast charging requires
much shorter time than the entire over-night parking time,
the charging durations should be carefully scheduled to avoid
overloading without affecting the desire to get all vehicles
fully charged by the next morning. To schedule the charging
time, each PHEV will first divide its charging demand into
multiple small units, analogues to data packets in commu-
nication networks. For example, 4 hours of level 2 charging
is broken into 48 packets, each is for just 5 minutes. Then,
for each packet, its PHEV will send a charging request to the
transformer in a probabilistic manner. Says, there are three
levels of transmission probabilities, namely P1, P2 and P3,
such that P1 > P2 > P3. Further assume that the vehicle will
first attempt to send its request using probability P2. If the
request is received and granted by the transformer, the vehicle
will send its subsequent request at a higher probability P1.
If the request is not granted, the vehicle will retransmit the
same request at a lower probability P2. With such a trans-
mission probability adaption performed independently at all
PHEVs, the authors have shown results to confirm that grid
overloading can be avoided and charging opportunities are
fairly distributed among all plugged-in vehicles.

Without significant deviation in performance objectives,
there are existing smart charging schemes such as [99]
and [102], that have considered the adoption of renewable
energy in their system models. Integration of renewable
energy into smart grid is an important but challenging topic,
due to the energy’s intermittent nature and highly variable
output powers. The issue of renewable energy integration is
more extensively addressed by bidirectional charging, and the
survey of relevant schemes is presented in Section VI.

C. SUMMARY
With the flexibility in choosing control parameters, various
smart charging schemes have been proposed for different
performance objectives, and system constraints. Thus, in gen-
eral, most smart charging schemes have been formulated as
constrained optimization problems. For such problems, the
performance objectives are to maximize financial rewards or
to optimize operation efficiency. Themain constraint is to ful-
fill the charging demand for all plugged-in PHEVs. The other
system constraints should include technical limitations of the
electrical grid, expectations on power quality and conditions
to prevent network disruptions. Most of the existing scheme
have considered the maximum charger power as a constraint.
However, other technical limits of the grid and requirements
on power quality have not been consistently considered in all
existing works. Despite largely different objectives and con-
straints, most optimization problems share a common control
variable, which is the charging profiles of individual PHEVs,
where each profile defines charging set-point, time, energy
and/or power. Most of the optimization problems are solved
numerically using different types of dynamic programming
techniques, as well as heuristic algorithms.
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TABLE 4. Bidirectional charging schemes.

VI. BIDIRECTIONAL CHARGING
Recall that bidirectional charging is different from smart
charging because the former supports V2G which allows
PHEVs to discharge energy to the smart grid. Supplying the
electrical grid with energy from PHEVs is feasible because
the vehicles are parked for an estimated 90-95% of their total
lifetimes, and more than 90% of all vehicles are not driven
even during on-peak travel hours. In general, both bidirec-
tional and smart charging schemes can be similar in terms of
their performance objectives and control mechanisms, with
bidirectional charging has the additional control in the direc-
tion of energy flow. In most of the cases, the performance
objectives are tominimize cost ormaximize profit at operator,
aggregator and/or PHEVs, by controlling the charging and
discharging profiles at individual PHEVs. The constraints are
to fulfill the driver’s charging demands and to satisfy the
grid’s technical limitations. On top of the similarities, bidirec-
tional charging is set apart from smart charging by addressing
three issues, namely (a) provide ancillary services, (b) support
large scale adoption of renewable energy sources into smart
grid, and (c) account for battery degradation. As summarized
in Table 4, we organize this section to focus on schemes that
address fully or partly these three issues.

The amount of energy each PHEV can discharge to smart
grid depends on the user’s mobility behaviors. Through anal-
ysis of mobility data, the authors in [57] have shown that each
vehicle may contribute about 2.6 kW for up to 15 minutes
upon request, with a 47% depth of battery discharge. While
each PHEV may contribute only a small amount of energy
to the smart grid in a non-continuous manner, a fleet of
PHEVs may work collectively in providing a sustainable and
continuous energy flow. To facilitate this collective effort, an
aggregator is needed to bind and control a significant number

of PHEVs within a region, so that their combined energy flow
is smoothen over time. The authors in [111] have defined the
roles of an aggregator for V2G, and describe its operation
in electricity market. According to [111], the operator is
expected to manage the charging of a fleet of PHEVs, to
smoothen the aggregated load and charging profiles. Hence,
aggregator can shield the operator from large variation in
supply and demand introduced by any single PHEV. As such,
aggregator plays an critical role and becomes a necessity in
bidirectional charging. In the increasing presence of PHEVs
and bidirectional charging, recent literature has equated the
role of an aggregator to virtual power plant, which is a
model that manages some geographically dispersed elec-
tricity generations and demands, as if they are a single
entity [112]–[114].

Through an aggregator, a fleet of PHEVs can be con-
tracted and paid by the grid operator to provide ancillary
services, which include spinning reserves and regulation
services [39], [115]. Spinning reserves are the idle sources
that can dispatch power to the grid within 10 minutes of a
request. These are the services which are generally paid to be
immediately available, but they do not generate power unless
requested. Compared to spinning reserves that are only on
standby, regulation service are under real-time control of the
operator. Regulation services are used to prevent excessive
voltage deviation and to keep the grid frequency as close
to a target, e.g., 50 or 60 Hz as possible. The frequency
needs to be regulated because the extend of a frequency shift
indicates a corresponding gap between supply and demand.
These ancillary services are expanded functionalities offered
by PHEVs through smart grid, and they are made possible
by bidirectional charging. The ancillary services allow smart
grid to rapidly self-regulate and heal, to improve system
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FIGURE 8. Charging-discharging cycles add to accumulated energy losses
because battery efficiency is not perfect [119].

reliability and security, and tomore efficientlymanage energy
delivery and consumption.

The success of PHEV in reducing greenhouse gas emis-
sion depends on the cleanliness of electricity source that is
used to charge the battery [116]. Therefore, it is ideal if
clean renewable energy can be used to charge PHEVs. Since
renewable energy is also wanted to partially power up the
smart grid independent of PHEVs, the energy’s intermittent
nature and highly variable output powers can impose severe
risk to the grid operation. Through bidirectional charging,
PHEVs can collectively act as a reservoir in filling the gap
between uncertain supply and random demand. By ensur-
ing such a closer match between supply and load profiles,
bidirectional charging supports both a higher PHEV pene-
tration and a wider renewable energy integration into smart
grid [117], [118].

Providing ancillary services and adopting renewable
energy sources require frequent and deep charging-
discharging cycles of PHEV battery. Such cycles can rapidly
degrade the battery [17], [120]. In addition to unwanted
battery degradation, each charging-discharging cycle will
also add to an accumulated energy losses. This is because, as
illustrated in Fig. 8, the battery efficiency is less than 100%.
As such, the amount of energy needed to restore a give SOC
after discharging, will be larger than the amount of energy
draw from the battery. The battery degradation and energy
losses are amplified when energy is required from the battery
to supply for non-productive reactive power. In view of the
problem, the authors in [121] have shown that it is possible
to configure a charger system to avoid the discharging energy
from battery to provide reactive power, when the DC link
capacitor is enough to fully supply the required reactive
power for level 1 slow charging.

A. MINIMIZING COST
The authors in [122] have considered a power system at West
Denmark, where wind turbines contribute 27% of the total
electricity output. In such a system, PHEVs are needed to
provide regulation service through load frequency control.
In [122], the system model assumes individual PHEV can
buy and sell power from the day-ahead market. Therefore,
every PHEV can act to minimize its own charging cost by
establishing a charging-discharging profile based on the day-
ahead price. For each PHEV, a local optimization has been
formulated to minimize its total cost over a finite time hori-
zon, subject to maximum input and output powers at the

charger and the need to keep battery SOC within a range
of 0.2 to 0.8. The range is justified to leave some spare
capacity to provide for regulation services. Also, each PHEV
battery must be fully charged before starting a journey, and
the SOC gap will be filled by energy from real-time market.
The vehicle departure time is a statistical average obtained
from analyzing past mobility data. The authors have indi-
cated that this optimization has been solved using sequential
quadratic programming. However, we have noticed that the
objective function is indeed a linear function, that sums a time
series of charging-discharging powers multiplied by their
respective price. Thus, there is probably no need of quadratic
programming, but linear programming. Nevertheless, results
form the paper show that the scheme can bring about a very
significant financial benefit. Specifically, while fulfilling all
charging demands for driving needs, the PHEV owners can
still collectively make a profit. If this is true, it means owning
a PHEV can help in generating income. Although there is no
detail in how frequency regulation can be performed in the
formulated optimization, results show that it leads to a signif-
icant reduction in power deviation from a planned value. The
scheme has not accounted for the cost of battery degradation
arises from frequent charging-discharging cycles.

Consider a workplace parking area which is equipped with
a photovoltaic farm to partially supply its energy requirement,
a scheme has been proposed in [123] to minimize the total
cost to charge all the parked PHEVs by theirs respective
deadlines. The cost is incurred in purchasing energy from
the electrical grid when the solar generated output is not
sufficient. Also, when the grid load is too high, the PHEVs
may return energy to the grid to make money to partially
offset the total cost. The impact of these two way power flows
on the grid are governed by the power balance equations,
which are highly non-linear. To avoid solving these non-linear
equations in optimization, the proposed scheme uses a fuzzy
logic controller to decide which PHEV to be charged or dis-
charged at what power at current decision step. Fuzzy logic is
used here for its ability to deal with decision rule in linguistic
form. For example, the linguistic rule may be written as ‘‘a
PHEV with high SOC can be charged later’’. The controller
divides all PHEVs into five classes based on their SOC and
parking durations. The classification is used to prioritize the
charging service and to select the proper charging power. For
example, the highest priority class has low SOC and short
deadline, and thus requires immediate charging at high power
and is not allowed to discharge. In making dispatch decision,
the controller considers this priority classes, as well as two
other factors, namely the current energy price and the grid
loading. There is not specification on how the regulation
service are implemented, but results show that the scheme
can successfully maintain voltage deviation within limits at
the same time of reducing charging cost. The scheme has
not considered the effect of charging-discharging cycles on
battery health.

The work in [123] has been extended in [124] to include
statistical and forecasting models. These models account for
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the various uncertainties in the system, such as the solar
power outputs, the PHEVs arrival times, and the amounts
of energy available in PHEV batteries upon their arrivals.
While still considering PHEV charging at parking lots sim-
ilar to [123], the authors in [125] have developed a scheme
to minimize the total (charging and parking) cost and the
insufficiency in reactive power supply. The scheme has for-
mulated a multi-objective optimization problem to determine
the best charging profile with reactive power compensation
at each charging outlets. The optimization problem has been
solved using a normalized normal constraint method with
Lagrangian.

Still considering charging PHEVs at a parking area under
the supervision of an aggregator, the authors in [126] allow
a PHEV to use its stored energy to charge another PHEV via
the aggregator, bypassing the grid. This type of direct energy
exchange between vehicles is called vehicle-to-vehicle (V2V)
to differentiate itself from V2G. In [126], V2V is in addition
to permit a PHEV to discharge energy to grid to make a
profit. Similar to many existing works, [126] assumes the
aggregator can buy and sell energy with prices quoted in
the day-ahead market. Considering this pricing information
together with the arrival and departure times of each PHEVs,
the aggregator aims to minimize a cost function that consists
of three components. The first component is the net cost of
buying and selling energy to the grid. The second component
is the cost of missing service requirement, when PHEVs are
not fully charged at their departures. The third component is
the cost of operating V2V. The authors state that the V2V
cost is due to control and energy conversion activities, without
giving much detail. We feel that the cost is most likely a result
of inefficiency as depicted in Fig. 8. In operating V2V, the
scheme considers the effect of charging-discharging cycles
on battery health. To preserve battery lifetime, the scheme
will not discharge the battery SOC below a threshold, which
is set at 0.7. This is a rather high minimum SOC threshold
compared to existing literature. The paper has done a sensi-
tivity analysis to show that lowering the threshold can further
lower the total cost, but not significantly. Specifically, when
threshold is set to 0, such that the battery is allowed to fully
discharge, the cost will be reduced further by only 5%. Yet,
this cost reduction has not taken into account a further loss in
battery lifetime. In this scheme, the control variables are the
charging and discharging time, charging power and direction
of energy flow, subject to grid’s limitations. This constrained
optimization problem has been solved using mixed integer
linear programming. Unfortunately, this work has not consid-
ered the use of renewable energy and provision of ancillary
services.

Without specific consideration on renewable energy
sources, the authors in [127] have proposed a scheme to
minimize charging cost by controlling the charging powers
at each PHEVs and the charging load within each 1-hour
interval. The scheme aims to support a huge populations of
PHEVs and thus, argues that a single centralized scheme
is not scalable. Therefore, [127] has formulated a global

and a local optimization problems. The global optimiza-
tion accounts for the total number of PHEVs to be charged
within a day, based on the statistical characteristics of vehicle
arrivals. On the other hand, multiple copies of local opti-
mizations at different aggregators can collectively handle a
larger number of vehicles with dynamic and random arrivals.
The local optimization has considered the effect of battery
degradation by adding a cost for battery lifetime reduction,
where the cost is a quadratic function of the amount of
energy exchanged. The problems have been solved as convex
optimization.

Instead of focusing solely on cost, the authors in [128] have
proposed to simultaneously minimize the cost and carbon
emission by controlling the charging schedules and powers
at all plugged-in PHEVs. The optimization problem for-
mulation has taken into consideration the need to provide
spinning reserves as well as the adoption of wind and solar
generated energy sources. The problem has been solved using
particle swarm optimization technique. The same technique
has also been used in [129] to find the optimal charging and
discharging profiles for each PHEVs in minimizing cost. The
cost here include the charging cost and battery degradation
cost. In [129], the battery degradation cost is a function of
battery capacity, battery lifetime at a given discharge depth
and the amount of energy discharged. While the scheme does
provide ancillary service in the form of frequency regulation,
it has not considered renewable energy. The model in [129] is
unique in the sense that significant effort has been invested
in accurately estimating charging load using a fuzzy logic
method, that accounts for random driver behaviors and sta-
tistical distribution of different vehicle types.

In a typical household, thermostatically controlled appli-
ances, such as refrigerator, electric water heater, and the
heating, ventilation, and air-conditioning (HVAC) system,
collectively account for more than half of total residential
energy consumption. Therefore, electric bill can be reduced
if these appliances are powered by PHEVs’ batteries. The
work in [130] has looked into the interaction between PHEV,
HVAC and grid, within a residential area that has a num-
ber of households. In the literature, using PHEV battery to
supply energy to a premise or building is termed Vehicle-to-
Building (V2B), to differentiate itself fromV2G. In this work,
an optimization has been defined to minimize cost while
jointly satisfying energy demand of PHEV and HVAC. The
vehicles must be fully charged within their respective parking
durations, where the arrival and departure times are statistical
average determined from mobility survey. The HVACs must
be supplied with required energy to keep the temperature
at a preferred value, with an acceptable deviation limits.
The preferred temperatures differ for different households.
The optimization cost function is a sum of energy cost and
discomfort cost, where the discomfort cost is a linear function
of temperature deviation from its preferred value. The energy
cost depends on the price of buying and selling energy in
the day-ahead market, where the buying and selling prices
are assumed equal at a time, but change hourly. The vehicles
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are allowed to sell excess energy to the grid, as long as the
travel requirements can be satisfied, battery SOC is within
acceptable range and grid’s technical limitations are not vio-
lated. The optimization considers a time slotted model, where
control decision is made at every 1-hour interval based on
the energy pricing information and electricity demand. The
control action decides how much energy should be bought
from the grid at each time slot; and how to allocate and
schedule the energy usage; and to exchange energy between
PHEVs andHVAC. This is indeed a constrained optimization,
but it has not considered usage of renewable energy, nor cost
of battery degradation. In order to preserve battery health,
the authors simply maintain SOC within a prescribed range
as mentioned above. Also, there is no mention of offering
of ancillary services to the grid, apart from allowing PHEV
discharging to fill the demand gap. Nevertheless, results show
that a very significant (65%) cost saving can be achieved,
where a higher saving is obtained when the average PHEV
travel distance is shorter. This is reasonable because a shorter
distance leads to more energy remains in PHEV, ready to be
sold back to grid for a profit.

B. OTHER THAN MINIMIZING COST
Compared to the majority of works that have focused on
minimizing cost, the authors in [131] have wanted to mini-
mize power losses and to avoid usage of tap-changers. The
paper states without giving further explanation that, avoid-
ing the use of tap-changer is to prevent overusing control
assets. We believe frequency use of tap-changer can expedite
its wear-and-tear and shorten its lifetime, because it is an
electromechanical device designed to control voltage with
mechanical movement. The paper assumes a small radiant
network with combined heat and power (CHP) units, in addi-
tion to houses, where each house has an PHEV on top of
residential (non-charging) load. A time coordinated optimal
power flow formulation has been presented, where each time
step solves an optimal power flow problem with parameters
time-correlated to the previous time step. At each time step,
the cost function is a weighted of the power losses and the
magnitudes of tap-changer movements. The control variables
are the charging and discharging powers at each PHEVs, as
well as the movements at tap-changers. The results show that
V2G can significantly reduce power losses, and the largest
reduction comes from controlling PHEVs that are located
farthest from themain energy supply point. This is reasonable
because PHEVs help is supplying energy locally to avoid the
long distance between supply and demand, and thus to reduce
losses. The results also show that there is little impact on the
losses, which are caused by PHEVs that are located close
to the main supply point. Therefore, controlling PHEVs far-
away from themain supply point with increased computation,
is more worthwhile. This paper has not considered ancillary
services and battery degradation.

The authors in [132] have considered a radiant energy
distribution network with three feeders and 12 buses. A total
of 3 charging stations are attached to the farthest bus from the

FIGURE 9. Response functions for droop control.

slack bus, and each charging station has 150 charging outlets.
Says, the bus where charging stations are connected to is
called the connection bus. In the presence of time-varying
loading, the authors want to flatten the load profile at the con-
nection bus, at the same time of providing ancillary service
to maintain the connection bus voltage within an acceptable
limit. For this purpose, the authors have designed a fuzzy
logic controller to control the aggregated power flow at the
connection bus. The power flow can be positive or nega-
tive. A positive (negative) value means energy flows from
(to) the connection bus to (from) the aggregator to charge
(discharge) the PHEVs. In deciding the power flow, the con-
troller takes into consideration of three inputs: (a) energy
available from all plugged-in PHEVs, (b) voltage at connec-
tion bus, and (c) required ancillary service duration. Fuzzy
membership functions have been presented for each of the
three inputs. The basic principle of the controller’s fuzzy
inference engine is that PHEVs will be discharged if their
energy availability is high and the bus voltage is low. On the
other hand, the PHEVs should be charged if the bus voltage
is high. After finding the desired aggregated power flow,
the scheme will divide the flow among the three charging
stations, proportional to the aggregated available energy at
each station. At each station, the share of power flow is further
distributed among the plugged-in PHEVs under its care. The
allocated power flow is then used to determined the charging
current at each outlet. The paper shows that the scheme can
indeed flatten the load profile, and the voltage is kept within
limits. However, the paper has not taken into consideration
integration of renewable energy and battery degradation due
to charging-discharging cycles. According to our understand-
ing, in this paper, the term ‘‘power flow’’ means apparent
power, which depends on both active and reactive powers.
Also, each battery has been modeled as a P-Q (but not P-V)
bus which is connected to the connection bus. Yet, the authors
have assumed that power factor is unity. Then, it is not clear
what is providing for the required reactive power at each
PHEV.
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A large scale integration of renewable energy sources into
smart grid can exploit the load frequency control capability of
bidirectional charging to perform frequency regulation. The
authors in [133] have proposed a scheme to satisfy PHEV
charging schedules at the same time of offering such ancillary
services. The scheme is autonomous and distributed because
each charging outlet will made its own control decision
depending on the locally measured frequency and individual
charging demand. The charging demand is to fully restore
PHEV’s SOC by a plug-out time, which is stated by the driver
at the time of plug-in. The frequency regulation is achieved
through a unique droop control. As illustrated in Fig. 9,
droop control involves altering the magnitude and direction
of power flow in response to changes in frequency deviation.
Generally, when a frequency becomes higher compared to
a target value, more energy should be drawn from the grid
to charge PHEVs. In a different work, droop control can
be designed to offer priority to charging PHEV instead of
keeping frequency deviation at zero [134]. The droop control
in [133] is different from that in [134] in the sense that [133]
has taken into account the battery SOC and charging dead-
line in setting the charging power. In addition to changing
the droop control response function, the maximum charging
power in [133] is also dependent on battery SOC, which the
authors have assumed can be obtained accurately. Despite
the dependency on battery SOC, the scheme has not taken
into account the effect of such control on battery degradation
and lifetime. Results have shown that frequency deviations
can be maintained within a desired range in the presence of
fluctuation in renewable energy outputs. Here, the authors
have not specified any particular type of renewable energy,
and have modeled the fluctuation in renewable power outputs
as a normally distributed random variable.

C. SUMMARY
Bidirectional charging adds flexibility to smart grid in sup-
porting a higher PHEV penetration, and a greater renewable
energy adoption. Bidirectional charging requires PHEVs to
function as energy source from time to time to fill the gap
between random demand and uncertain supply. This require-
ment amplifies the range anxiety problem, where drivers are
concerned by the potential of emptying the battery before
reaching the destination. A larger battery capacity may help
in reducing the range anxiety. But, the high cost of a larger
battery, coupled with the rapid battery degradation and sig-
nificant energy losses due to frequent and deep charging-
discharging will make the benefit of bidirectional charging
less obvious to individual PHEV owners. As such, instead
of imposing further requirements on PHEVs, the success
of bidirectional charging, so as V2G concept will depend
largely on the ability of aggregator in efficiently binding a
huge number of small mobile energy storages, taking into
consideration imperfect efficiency. Thus, aggregator is not
optional, but one of the most critical elements in bidirectional
charging.

VII. RESEARCH CHALLENGES
In this section, we discuss some open research issues that
deserve further attention from the research community.

A. STANDARDIZED EVALUATION MODEL
Simulation is a very power tool in studying PHEV charging
schemes because it avoids the need to develop physical test
system and thus, speeding up invention and reducing cost.
There is a large number of existing works evaluating the
impact of PHEV charging schemes on the smart grid through
simulations. However, these rich set of existing results are
not easily reusable due to the lack of commonality in eval-
uation settings, simulation platforms and use-case scenarios.
Reusability and reproducibility of published research results
are important in ensuring efficient deployment of research
resources. Most effort should not be wasted to repeat similar
studies and evaluations, that have been completed by the
research community. Standardization of evaluation model is
an important step toward optimal sharing and exploitation of
common results. It is ideal if various simulation and evalua-
tion programs can bemade open-source and freely accessible.

In standardizing an evaluation model, the following issues
need to be considered:
• Mode of simulation: The simulation platform must inte-
grate both power and communication networks for real-
istic evaluations. Currently, power-focused evaluations
rely mainly on Monte Carlo simulations and power
flow analysis that examine stationary statistics of a grid.
On the other hand, communication network research
have depended on random-event-driven simulations,
using OPNET, NS2, Qualnet, OMNET++, etc, which
are capable of finding the worst case performance in the
presence of unsynchronized time events. These events
are not synchronized because each event is an outcome
of a multi-stage process, and each stage alone is a ran-
dom process. For example, sending a data packet from a
wireless sensor to an aggregator involve stages, such as
random channel fading, random noise and interference,
random transmission delay, etc. There exist some efforts
that partly combine hardware to a computer simulation,
to more accurately capture interaction between power
and communication networks [135]. We need to decide
on the mode of simulation, and believe that random-
event-driven simulation should form the basis. This is
because it can avoid the use of hardware for wide-spread
adoption, and it can detect extreme conditions due to
uncoordinated events.

• Simulation platform: There are existing tools in
MATLAB, such as MATPOWER [136] that are open-
source and are very useful in analyzing power flow for a
given electrical grid topology. However, there is no com-
monly adopted platform for power-focusedMonte Carlo
simulations, where various papers seem to have their
own proprietary simulation and tool implementations.
For communication network related research, OPNET
and Qualnet are commercial tools that users must
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pay for. Open-source tool, such as NS2 and OMNET++
have efficient simulation engines that are well main-
tained by volunteers. We need to decide a common
platform to combine the details of both power and com-
munication networks.

• Simulation framework: Performance of a proposed
scheme depends on many factors, such as non-charging
load, driving behaviors, charging behaviors, grid topol-
ogy, etc., as discussed earlier in Section III. A com-
prehensive simulation framework is needed to integrate
all these necessary factors and components into a sin-
gle simulation platform. For this purpose, we suggest
to adopt the framework presented in Fig. 4, with the
enrichment of communication network components.

B. THEORY OF PHEV CHARGING
Power flow analysis is necessary in evaluating the impact of
uncontrolled charging load on the grid. The same analysis
is also needed in assessing the effectiveness of various con-
trolled charging schemes. Unfortunately, power flow analysis
involves a set of power balance equations that are highly non-
linear, and can only be solved numerically. Consequently,
there is a lack of analytical results and theories for PHEV
charging. We need to develop a set of common theories
and analytical results, possibly through some approximations
such as the linear approximation proposed in [73], to facilitate
network planning and performance trade-off in a cost efficient
manner. With such theories, system level performance and
dimensioning can be done quickly without computationally
expensive simulations. While the biggest challenge is in lin-
earizing the power balance equations through approximation,
other linear approximations such as those for the nodal sensi-
tivity in [104] and for internal-external battery power in [102],
may help in enriching the theory for rapid network planning.

C. INTEGRATION WITH COMMUNICATION NETWORKS
The importance of communication networks in controlled
charging scheme has been introduced earlier in [35] and [36],
as well as been illustrated in Fig. 1. This dependency on
communication has been specifically stated in some schemes,
such as [98], [99], and [106]. While there is no doubt about
its importance, these schemes have simply assumed com-
munication related issues will be solved separated by other
works, or the communication networks are perfect. For exam-
ple, [112] has proposed a system architect for virtual power
plant that depends on bidirectional charging. As a critical
module in the architecture, the authors have identified various
communication requirements and have suggested some infor-
mation process flows. However, the authors have also stated
that they expect real-time data can be obtained from existing
utilities supervisory, control and data acquisition (SCADA)
system; and have not proposed any method to fulfil the
communication requirements. In the literature, most of the
existing charging schemes have not mentioned how an effi-
cient information exchange can be supported by a realistic
communication network.

In reality, due to PHEV’s mobility, we except wireless
communication networks will be used for controlled charging
schemes, but wireless communication channels are far from
perfect. Given the unreliable nature of wireless links and
limited communication bandwidth, it is important to consider
the effect of radio propagation impairments, such as channel
fading, path loss, etc., on the performance of charging control
and grid stability. We see the following emerging research
areas:
• Minimize dependency of charging control on high-speed
communications: It is useful to develop a charging
scheme that has minimum dependency on communi-
cations, and such communication is not too expensive
or unavailable. In order to achieve this objective, we
may move control decision as close as possible to the
PHEVs. A good example of this approach is the method
proposed in [133] that has the individual charging out-
lets making their own decisions locally. This approach
allows rapid response to sudden changes without much
reliance on communications. In such an approach, there
is still a need to coordinate the local decision makers
with a center controller, although such a communication
will happen at a much lower rate and consume signifi-
cantly less bandwidth. The drawback of such a method
is the loss of global optimality where excessive power
flow from one local decision point cannot be directed
timely to another local decision point which is under-
power. We believe that specially designed communica-
tion schemes are required to support such a distributed
decision making model. Different communications QoS
are needed for local and global decision makers. The
local decision maker needs data packets to be received
with minimum delay and can probably tolerate a higher
level of packet losses, as compared to the global deci-
sion maker which expects very reliable transmissions
for a potential higher delay. One important aspect in
such a communication scheme is the number of local
decision makers that can be supported by each global
decision maker, in view of the QoS requirements. The
work in [137] has related analytically packet delay and
transmission reliability to the number of smart meters
that can be supported in a cluster. Such findings can
be exploited in this research for controlled charging
schemes

• Minimize impact of communication errors on charg-
ing control: Communication errors has a big impact
on load management. For example, [138] has consid-
ered load control through dynamic pricing and shown
that communication errors can impose a lower limit
in price update interval and an upper limit in price
update quantum. When communication errors cannot be
eliminated with a finite financial resource, we should
consider minimizing their impact on charging control at
an acceptable cost. A proper objective function should
be defined to include both the charging related perfor-
mancemetrics and the cost; as well as impact of reducing
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communication errors. Such an objective function can
facilitate a managed trade-off between fulfilling charg-
ing demand and tolerating communication errors.

• Customized communication system architecture:PHEVs
are new types of mobile intelligent power consumption
devices in smart grid, and emerging green transportation
vehicles. These vehicles require a powerful, automated
and intelligent energy service network over a wide area
so that they will not face an excessive risk of energy
deficiency. For such an energy service network, the net-
work infrastructure and the communications demands
of various terminals, devices and monitoring systems,
should be studied. The communication system archi-
tecture should be adapted to interactive user services
scenarios and intelligent monitoring of energy opera-
tions, by means of new technologies, e.g. Internet of
Things (IoT). A novel design of different networking
schemes in access networks and backbone transmis-
sion networks should be investigated in order to meet
the multi-scene and multi-operation interaction require-
ments. Furthermore, the networking schemes should
provide efficient technical support to implement intel-
ligent, cross-regional, and interactive energy services
to electric vehicle users. The communication system
architecture should facilitate the development and test
of smart charging algorithms and other capabilities
of the future smart grid, such as remote monitoring
of PHEVs.

D. EXPLOITATION OF BIG DATA ANALYTIC
Electricity market operators and charging service providers
rely on forecasting tools that provide short, medium and
long-term estimation on non-charging and charging loads.
Detailed stochastic modelings of driver’s charging andmobil-
ity behaviors have helped in accurately predicting the charg-
ing load. However, in the existing literature, these forecasts
are based on traditional statistical analysis. With the rapid
growth in smart mobile devices, sensor networks, social
media, and Internet technologies, a large volume of uncon-
ventional data have become available in real-time. Big data
analytic should be used to exploit useful values from these
real-time data to further enhance charging efficiency and
grid stability [139], [140]. The research challenges are in the
followings:
• Efficient use of big data: We need to first establish a
quantitative metric to measure the benefits of big data
exploitations. Generally, we need to know the reward of
knowingmore accurately and quickly, the characteristics
of some random behaviors in charging process. Then,
we need to find out the cost of achieving such improve-
ment in accuracy and timeliness. This will require us to
identify the types of raw data that are needed to esti-
mate mobility behaviors, charging behaviors, demand
profiles, and supply profiles. After knowing the benefits
and cost, we can optimize the data size and time-scale,
for real-time estimation and data exploitation.

• Alleviate range anxiety: Range anxiety is a real issue.
In fear of becoming stranded, PHEV owners often plug
into public stations to top-up their batteries, and at peak
times, rather than find themselves out of fuel on a high-
way. By harnessing big data, potentially in the future,
charging stations can be more strategically installed to
alleviate the concern, placing less stress on peak-time
power grids. However, current technologies that esti-
mate how much longer a battery will last, still provide
inaccurate measurements, because they use computer
models that rely heavily on the driver’s recent behavior
and do not account for other factors. Therefore, a big
challenge is the development of new software that uses
a big data approach to gather information from multiple
sources in order to very accurately estimate electric
vehicle range. The driver should need only to provide a
destination address or GPS coordinates, and the software
could combine historical data alongwith predictive data-
variables such as traffic data, road surface characteris-
tics, tire pressure rates and even weather, to determine
how much longer a driver can go before the batteries are
flatted out. This big data based software should be an
effective tool for providing information to drivers based
on information on PHEV use. More specifically, by
providing directions to charging stations and equipment.
If the location of a PHEV is known, suitable charging
stations can be identified. Together with the collection of
information from charging stations, including its future
schedule, this means that drivers can be directed to the
charging station with the shortest waiting time when
the level of charge in their PHEV is running low. The
directions in this case are provided by the car navigation
system. By applying statistical analysis and prediction
functions to location and speed information from a large
number of vehicles, it could be possible to identify
which roads are congested or to estimate how long it
will take to reach the charging station. Furthermore, the
availability of accurate arrival time predictions improves
the convenience of PHEV use because it allows the use
of charging outlets to be scheduled and drivers to be
informed of how long they will need to wait before their
vehicles can start charging.

• Support new use-case scenarios: With the rapid devel-
opment of technology and fast moving consumer
appetite, new usage scenarios for PHEV are expected to
appear from time to time. Typically, new use-cases have
limited historical data to refer to, and may depend on big
data analytic to identify indirect data to boost confidence
level, in new charging scheme design. For example, self-
driving and autonomous PHEVs may experience rapid
grow in near future, and there is competition among
a few potential deployment strategies. One question is
about allowing these self-driving PHEVs be controlled
centrally all the times, or be autonomous most of the
times. These are new deployment scenarios because, as
compared to human-driven PHEVs, self-driving PHEVs
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may have more predictable routes and battery SOC.
However, the extend of this predictability is not known.
There is limited data that we can refer to in develop-
ing joint optimization of route planing and charging
scheduling. For such optimization of a new use-case, big
data analytic may help in closing the gap by identifying
and extracting the most relevant indirect data.

VIII. CONCLUSIONS
We have classified PHEV charging schemes into four classes,
and reviewed various existing schemes within each class. The
review has discovered that there are several open research
challenges that deserve attentions. It is necessary to stan-
dardize the evaluation model for charging scheme evalua-
tions. This standardization is to ensure reproducibility and
reusability of published research results. Reusable results in
public domain can ensure efficient deployment of research
resources. There is a need to develop some general analytical
results and theories for PHEV charging to facilitate system
level performance planning and trade-off in an cost efficient
manner. Such theories are expected to reduce the need of
expensive computation in performance evaluations. There is
also a need to consider a realistic communication network
model in charging scheme designs and evaluations. Without
such consideration, the charging schemes that assume ideal
communication system may not work in practice. Finally, the
research of charging scheme should exploit emerging big data
technologies to take advantage of the vast unconventional
real-time data to establish a more accurate forecast on vari-
able load, renewable power output, and driver’s behaviors.
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