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ABSTRACT Recent growth in traffic and the resulting congestion and accidents has increased the
demand for vehicle positioning systems. Existing global navigation satellite systems were designed for
line of sight environments and thus accurately determining the location of a vehicle in urban areas with
tall buildings or regions with dense foliage is difficult. Fifth generation (5G) cellular networks provide
device-to-device communication capabilities which can be exploited to determine the real-time location
of vehicles. Millimeter-wave (mmWave) transmission is regarded as a key technology for 5G networks.
This paper examines vehicle positioning using 5G mmWave signals. Both a correlation receiver and an
energy detector are considered for timing estimation. Furthermore, fixed and dynamic thresholds for energy
detection are examined. It is shown that a correlation receiver can provide excellent ranging accuracy but
has high computational complexity, whereas an energy detector has low computational complexity and
provides good ranging accuracy. Furthermore, the Gaussian raised-cosine pulse (RCP), Gaussian pulse,
and Sinc-RCP impulse radio waveforms provide the best performance.

INDEX TERMS Position measurement, vehicular and wireless technologies, millimeter wave
communication, intelligent transportation systems, 5G.

I. INTRODUCTION
A recent report [1] by the World Health Organization indi-
cates that the number of road traffic deaths worldwide has
reached an unacceptably high level of over one million per
year. Further, this has become the leading cause of death
for young people aged 15–29. Current trends suggest that
by 2030 traffic accidents will become the fifth greatest
cause of death unless urgent action is taken. For vehicular
Ad-Hoc network [2], the most promising means of mitigation
is the development of cooperative collision avoidance (CCA)
and emergency warning message (EWM) systems that allow
vehicles to detect potential hazards and take steps to avoid
accidents by sharing information such as location, speed,
and acceleration. These systems require low latency and high
reliability or their routing algorithm [3], particularly with
respect to the location of neighboring vehicles. However,
accurately determining vehicle locations is still a significant
challenge [4].Without this information, it will not be possible
to provide timely warning of potential dangers, and false

warnings will be generated, causing a lack of confidence in
the systems.

Currently, global navigation satellite systems such as the
global positioning system (GPS), global navigation satel-
lite system (GLONASS) [5] and BeiDou satellite position-
ing system (BDS) [6] are widely used in vehicles but are
accurate only in open areas which are free of obstructions.
This is because these systems were designed for line of
sight (LOS) environments. They are inaccurate in non-line
of sight (NLOS) environments such as tunnels or urban areas
with tall buildings. Thus, these systems must be integrated
with other techniques such as short range wireless position-
ing [7]–[9] in wireless sensor networks [10], [11] to improve
the accuracy. For example, a Chinese area positioning sys-
tem (CAPS) based on ultra wideband (UWB) signals has been
proposed [12].

Fifth generation (5G) cellular networks are being devel-
oped to support a variety of innovative applications [13] such
as device-to-device (D2D) communications. In order to meet
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the explosive increase in demand for bandwidth in these
networks, millimeter-wave (mmWave) transmission has been
proposed.Measurement results show that the frequency range
28-38 GHz can be employed with directional antennas in the
base stations and mobile devices [14]. Samsung Electron-
ics [15] has achieved a data rate of 1.2 Gbps at 28 GHz with a
vehicle traveling at over 100 km/h. Measurements at 28 GHz
and 73 GHz in the dense New York urban environment have
been used to derive detailed statistical channel models [16].
It was found that even in NLOS environments, sufficient
signal levels can be obtained at distances up to 200 m.
Further, mmWave signals can provide centimeter level rang-
ing accuracy [17]. The mmWave bands are also being con-
sidered for local multipoint distribution services (LMDS).
At 28 GHz, 38 GHz, and 60 GHz, there is 1 GHz,
2 GHz and 7 GHz of bandwidth available, respectively
[18]. One advantage of 28 GHz is that the signals have
better penetration, so this frequency is considered in this
paper.

A number of waveforms have been considered for 5G sys-
tems. The European research project 5GNOW has proposed
a multicarrier waveform to support the diverse requirements
of 5G applications. In [19], the time-frequency efficiency
of three candidate 5G multicarrier waveforms, namely fil-
tered cyclic prefix orthogonal frequency division multi-
plexing (CP-OFDM), filter bank multicarrier (FBMC), and
universal filtered multicarrier (UFMC), were examined.
However, impulse radio (IR) waveforms were not consid-
ered. IR waveforms can provide very accurate positioning,
even in dense multipath, NLOS fading environments, and
thus are better suited for this application than multicarrier
waveforms. This is because of the fine multipath and pre-
cise time resolution (sub-nanosecond to nanosecond), due
to the transmission of very short pulses. In addition, the
wide signal bandwidth results in a very low power spec-
tral density, which reduces interference to other radio fre-
quency (RF) systems. The short pulse duration reduces or
eliminates the distortion and spurious signal detections due
to multipath propagation. These signals can also penetrate
many obstacles to provide a LOS signal. The IEEE 802.15.4a
UWB standard [20] specifies a wireless physical layer using
IR-UWB signaling to enable precision ranging. However,
the ranging performance of mmWave waveforms has not
been examined. Therefore, this paper considers six mmWave
waveforms for positioning applications, namely the Gaussian
pulse, inverse fast Fourier transform (IFFT) pulse, Gaussian
raised-cosine pulse (Gaussian-RCP), Hann-RCP, Sinc-RCP,
and rectangular-RCP. These waveforms are employed in a
pulse position modulation (PPM) system. Both a correlation
receiver and an energy detector [21], [22] with fixed and
dynamic thresholds are considered for ranging. The skewness
of the energy values is employed to improve the ranging
accuracy with a dynamic threshold.

The focus of this paper is on IR mmWave wave-
forms for vehicle positioning. The main contributions
include:

1) MmWave signals and the corresponding power spectral
densities (PSDs) are examined for future 5G cellular
networks.

2) The ranging accuracy of mmWave signals is evalu-
ated and compared using a correlation receiver and
an energy detector based on threshold crossing. The
Gaussian-RCP, Gaussian pulse, and Sinc-RCP wave-
forms are shown to provide the best ranging perfor-
mance. The computational complexity of a correlation
receiver makes it less desirable for real-time vehicle
positioning.

The remainder of this paper is organized as follows.
In Section 2, six mmWave waveforms are examined.
Section 3 presents the system model and the simula-
tion parameters. Section 4 introduces the ranging meth-
ods that will be considered, namely a correlation receiver
and an energy detector with fixed and dynamic thresholds.
Performance results are given in Section 5 to evaluate
and compare the waveforms and ranging methods. Finally,
Section 6 concludes the paper.

II. MILLIMETER-WAVE (mmWave) WAVEFORMS
Both carrier and carrierless waveforms are employed in
impulse radio (IR) systems. Carrierless waveforms include
Gaussian and IFFT pulses, while carrier waveforms typically
have a raised-cosine pulse (RCP) shape such as Gaussian-
RCP, Hann-RCP, Sinc-RCP and Rectangular-RCP. The RCP
waveforms are given by

p(t) = h(t) cos(2π fct) (1)

where h(t) is the baseband pulse, and fc is the carrier or center
frequency.

A. GAUSSIAN PULSE WAVEFORM
The Gaussian pulse and its derivatives are frequently used as
mmWave waveforms and can be expressed as

g0 (t) = Ae−
2π t2

α2 ,

g1 (t) = A(−
4π t
α2

)e−
2π t2

α2 ,

g2 (t) = A
4π t
α4

e−
2π t2

α2 (−α2 + 4π t2),

...
... (2)

where g0(t) is the Gaussian pulse, gk (t) is the kth derivative
of g0(t), k ≥ 1, and A is a constant used to normalize the
pulse energy. α is the shaping factor which affects both the
bandwidth and fc. The relationship between α, k and fc is

fc =

√
k

α
√
π

(3)

Thus, changing α or k will change the PSD of the wave-
form as well as fc. Figures 1 and 2 show Gaussian pulses with
pulse duration Tp = 0.5 ns, k = 15, and α = 1.1 × 10−10

for fc = 28 GHz, α = 8.1 × 10−11 for fc = 38 GHz,
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FIGURE 1. The 15th derivative Gaussian pulse waveform for three values
of fc .

FIGURE 2. PSD of the 15th derivative Gaussian pulse waveform for three
values of fc .

and α = 5.1 × 10−11 for fc = 60 GHz. These results show
that a smaller value of α results in a shorter pulse duration,
higher center frequency, and larger bandwidth.

B. IFFT PULSE WAVEFORM
A pulse waveform can be obtained by taking the inverse fast
Fourier transform (IFFT) of the desired spectral mask. For
example, assuming a maximum power of 10 W, the PSD is
given by

P (f ) ≈

{√
10Tp
fH−fL

fL ≤ f ≤ fH
0 otherwise,

(4)

where fL and fH are the desired low and high frequencies,
respectively. Taking the IFFT of (3) gives the pulse waveform

h (t) =

√
10Tp

2π
√
fH − fL

(fH sinc (2fH t)− fLsinc (2fL t)) ,

t ∈ [−
Tp
2
,
Tp
2
], (5)

where sinc(x) = sin(πx)/πx.
Figure 3 shows the IFFT pulse for fL = 27.5 GHz,

fH = 31.5 GHz, and Tp = 0.5 ns and 5 ns. Tp determines
the number of sidelobes in the pulse. When Tp = 0.5 ns,
there are no sidelobes, and as Tp increases the number of
sidelobes increases. Figure 4 shows the PSD of the 28 GHz
pulse as well as a 60 GHz pulse with fL = 57 GHz and

FIGURE 3. The IFFT pulse waveform for two values of Tp with fc = 28 GHz.

FIGURE 4. PSD of the IFFT pulse waveform for different values
of fc and Tp.

FIGURE 5. The Gaussian-RCP pulse waveform for three values of fc .

fH = 64 GHz.When Tp = 5 ns, there are more sidelobes than
with Tp = 0.5 ns.

C. GAUSSIAN-RCP WAVEFORM
The raised-cosine pulse (RCP) waveform given in (1) is
considered using the Gaussian pulses in (2), with h(t) = g0(t)
and A = 1. The parameters α and k can be used to
adjust the bandwidth and fc. Figures 5 and 6 show the
Gaussian-RCP pulse waveform and corresponding PSD with
t ∈ [−Tp/2, Tp/2], Tp = 0.5 ns, and α = 0.11 × 10−9 for
fc = 28 GHz, 38 GHz, and 60 GHz.

D. HANN-RCP WAVEFORM
The baseband signal of the Hann-RCP waveform is given by

h(t) = 0.5(1− cos(2π fst)), t ∈ [0,Tp], (6)
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FIGURE 6. PSD of the Gaussian-RCP pulse waveform for three values
of fc .

where fs = 1/Tp. The corresponding PSD is

P(f ) =
Tpsinc2(fTp)

4
(
1− f 2T 2

p

)2 . (7)

Figure 7 shows the Hann-RCP pulse waveform and cor-
responding PSD with fc = 28 GHz, and Tp = 0.5 ns and
5 ns. The bandwidth with Tp = 0.5 ns is smaller than with
Tp = 5 ns.

FIGURE 7. The Hann-RCP pulse waveform and PSD for two values of Tp.

E. SINC-RCP WAVEFORM
The baseband signal of the sinc-RCP pulse is given by

h (t) = sin
(
π t
T

)
/
π t
T

t ∈ [−
Tp
2
,
Tp
2
]. (8)

where T determines the number of sidelobes in a pulse dura-
tion. When T = Tp/4 there is one sidelobe on each side of
the mainlobe, and as T decreases the number of sidelobes
increases. The corresponding PSD is

P (f ) =
Tp

16π2

∣∣Si (2π + π fTp)− Si (−2π + π fTp)∣∣2 , (9)
where Si(x) =

∫ x
0 sin t

/
t dt . Figure 8 presents the sinc-RCP

pulse waveform and corresponding PSD for fc = 28 GHz
with T = Tp/4 and Tp/8. This shows that as T decreases, the
bandwidth increases.

FIGURE 8. The Sinc-RCP pulse waveform and PSD for two values of T .

F. RECTANGULAR-RCP WAVEFORM
The baseband signal of the rectangular-RCP pulse is
defined as

h (t) =

1 t ∈ [−
Tp
2
,
Tp
2
]

0 otherwise,
(10)

with PSD

P (f ) = Tpsinc2
(
fTp
)
. (11)

Figure 9 presents the waveform and corresponding PSD
of the Rectangular-RCP pulse with fc = 28 GHz, and
T = 0.5 ns.

FIGURE 9. The Rectangular-RCP waveform and corresponding PSD.

III. SYSTEM MODEL
The system model is presented in this section. This model
includes the pulse shaping, modulation, channel, and receiver.
The parameters for the six pulse shapes considered are given
in Table 1.

With pulse position modulation (PPM), the transmitted
signal can be expressed as

s (t) =
∑+∞

−∞
p
(
t − jTf−ajε

)
, (12)

where j and Tf are the index and frame duration, respectively,
and ε is the PPM time shift so that if aj = 1, the signal will
be shifted, and otherwise there is no time shift. The PPM
parameters employed in this paper are given in Table 2.

Considering multiple vehicles to be positioned, pulse
position modulation with time hopping (PPM-TH) can be
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TABLE 1. Pulse waveform parameters.

TABLE 2. PPM parameters.

employed, in which case the transmitted signal can be
expressed as

s (t) =
∑+∞

−∞
p
(
t − jTf − cjTc − ajε

)
, (13)

where Tc is the chip duration. Time hopping is achieved via a
pseudorandom integer-valued sequence cj, which differs for
each user to allow for multiple access communications.

In a multipath channel, the signal may be scattered,
reflected, and diffracted, which causes fading. To date, there
is no generally accepted 5G channel model. However, the
AWGNchannel can be considered as a baseline for communi-
cation systems. In this case, the received signal can be written
as

r(t) = Gs(t−τ )+ n(t) (14)

where s(t) is the transmitted signal, G is the channel gain,
τ is the delay, and n(t) is AWGN with PSD N0. Because of
themotion of vehicles, a Doppler frequency shift exists which
is given by

fd = v ∗ fc/C, (15)

where v is the relative speed of the vehicle and C is the speed
of electromagnetic wave.

IV. POSITION ESTIMATION METHODS
In general, there are two kinds of positioning techniques,
range based and non-range based. Time of arrival (TOA) [23]
and time difference of arrival (TDOA) [24] are range based
methods, while fingerprinting based on the received signal
strength (RSS) [25], [26] and angle of arrival (AOA) [27]
are non-range based methods. Range based TOA positioning
techniques are more suitable for IR communication systems
as they can exploit the high time resolution possible with the
short mmWave signals [28].

In TOA positioning, the time for a signal to travel between
nodes can be used to estimate the distance between them.
This can be obtained in cellular networks using base station
locations [29] and in infrastructureless or ad hoc networks
using anchor or reference node locations [30], [31]. TOA
positioning is also called circle localization in two dimen-
sions (2D) or spherical localization in three dimensions (3D).
For example, in 2D the range between a target node and a
base station can be seen as the radius of a circle centered at
the base station as shown in Fig. 10. In this figure, the base
stations are located at (X1, Y1), (X2, Y2) and (X3, Y3), and
the corresponding radii are D1, D2 and D3. The estimated
position is the joint intersection of the circles. Positioning in
2D space requires at least 3 base stations, and in 3D space at
least 4 base stations.

FIGURE 10. TOA positioning in two dimensions (2D).

In 3D, the coordinates (x, y, z) of a target node can be
determined by solving the system of equations

√
(X1 − x)2 + (Y1 − y)2 + (Z1 − z)2√
(X2 − x)2 + (Y2 − y)2 + (Z2 − z)2

. . . . . .√
(Xk − x)2 + (Yk − y)2 + (Zk − z)2


=


D1
D2
. . . . . .

Dk

,
(16)

where (Xk , Yk , Zk ) is the position of the kth base station,
and Dk is the range from the target node. Errors exist in the
Dk due to clock drift, noise, fading, and Doppler shifts. The
effects of these errors can be mitigated using methods such
as least-squares estimation (LSE), the Chan algorithm, the
Taylor algorithm, or Kalman filtering [32]. For convenience,
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(16) can be expressed as

AI = b, (17)

where

A = −2


(X1 − Xk) (Y1 − Yk) (Z1 − Zk)
(X2 − Xk) (Y2 − Yk) (Z2 − Zk)

. . . . . .

(Xk−1 − Xk) (Yk−11 − Yk) (Zk−11 − Zk)

,
(18)

I = −2

 xy
z

, (19)

and

b =


D2
1 − D

2
k − X

2
1 + X

2
k − Y

2
1 + Y

2
k − Z

2
1 + Z

2
k

D2
2 − D

2
k − X

2
2 + X

2
k − Y

2
2 + Y

2
k − Z

2
2 + Z

2
k

. . . . . .

D2
k−1 − D

2
k − X

2
k−1+X

2
k − Y

2
k−1+Y

2
k −Z

2
k−1+Z

2
k

.
(20)

Then the coordinates of the target node can be obtained
from

I = A−1b. (21)

Accurate range estimation is the key to precise positioning,
so the focus here is on ranging with different IR waveforms.
The twomain types of ranging algorithms, namely correlation
receiver and energy detector, are now presented.

A. CORRELATION RECEIVER
The goal of range estimation is to obtain an unbiased estimate
of the TOA τ̂ from the received signal r(t). If the received
signal r(t) is sampled at a frequency fs, the resulting signal
can be expressed as

R[i] = r(i/fs), i = 0, 1, 2, . . . (22)

A correlator receiver is used to correlate a referenced tem-
plate S with R, then the unbiased estimate of τ̂ corresponds
to the position m̂ of the correlation peak which is given by

m̂ = argmax{
∑
i

R [i]× S[i− m]} (23)

The range estimate is then

d̂ = C × m̂/fs (24)

A correlation receiver is optimal for TOA estimation, but
sampling at the Nyquist rate has high computational com-
plexity. In addition, a priori channel estimation is required,
including the amplitude, delay, and phase of each multipath
component. Because of the channel estimation and sam-
pling rate requirements, a correlation receiver may not be
practical for vehicular positioning applications. In [33], the
IEEE 802.11p standard was employed with OFDM modu-
lation for vehicle positioning. This required computing the
cross-correlation between the received signal and the short

preamble. Thus, this technique is specific to the standard and
the performance is dependent on the preamble length, which
is fixed.

FIGURE 11. Block diagram of the energy detection receiver.

B. ENERGY DETECTION WITH A FIXED THRESHOLD
As opposed to the complex correlation receiver, energy detec-
tion is a simple non-coherent method for TOA estimation.
An energy detector consists of a square-law device, an inte-
grator with integration period Tb, and a decision mechanism,
as shown in Fig. 11. The integrator output or energy value
Z [n] can be expressed as

Z [n] =
nTbfs−1∑

i=(n−1)Tbfs

|R(i)|2 , (25)

where n = 1, 2, . . . ,Nb is the sample index with respect to
each integration period. Because of inter-frame leakage due
to the multipath channel, the integration duration is set to
2Tf so that Nb = (2Tf )/Tb. The TOA estimate is obtained
by comparing the integrator output with a threshold. This
solution has low complexity because a low sampling rate can
be employed and channel estimation is not required.

One of the simplest energy detection estimation methods
is maximum energy selection (MES), where the maximum
energy value is considered as the start of the signal or the
time of arrival. Then the TOA estimate as

τMES = [min {n|Z [n] = max (Z )} − 0.5]× Tb (26)

However, the maximum value may not correspond to the
first arriving signal component, particularly in NLOS envi-
ronments. As shown in Fig. 12, the first energy value (cor-
responding to the actual TOA), may be located before the
maximum value Z[nmax], i.e. n̂ ≤ nmax. In this case, an
appropriate threshold should be selected to estimate the TOA,
and the technique is called threshold crossing (TC) TOA
estimation. The received energy values are compared with the

FIGURE 12. TOA estimation based on the received energy.
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threshold ξ ∈ (0, 1], and the first energy value crossing this
threshold is considered as the TOA estimate, given by

τTC = [min{n|Z [n] ≥ ξ ×max(Z )} − 0.5]× Tb (27)

A fixed threshold is often employed, for example ξ = 0.6,
and if ξ = 1 this method is the same as MES.

C. ENERGY DETECTION WITH A DYNAMIC THRESHOLD
It is difficult to determine an appropriate fixed thresh-
old ξ for all channel environments, in which case a
dynamic threshold can be employed. The problem is then
how to obtain a suitable threshold, i.e. how to establish
a relationship between the energy detector values and ξ .
In [34], a dynamic threshold was proposed based on the
statistics of UWB signals. In this paper, the threshold is
obtained based on the standard deviation and skewness of the
mmWave signal energy values.

1) STATISTICS OF THE ENERGY DETECTOR VALUES
The standard deviation and skewness are measures of signal
variability and are given by

σ =

√√√√ 1
Nb − 1

Nb∑
i=1

(
Zi − Z̄

)2
, (28)

and

S =
1

(Nb − 1) σ 3

Nb∑
i=1

(
Zi − Z̄

)3
, (29)

respectively, where Z is the mean of the energy values If these
values have a normal distribution, the skewness will be 0,
in fact this occurs for any symmetric distribution.

2) STATISTICAL CHARACTERISTICS OF THE ENERGY VALUES
In order to examine the statistical characteristics of the energy
values, for each SNR value, 1000 channel realizations were
generated with an integration period Tb = Tf /30=0.1667 ns.
Figure 13 shows that the standard deviation is not monotonic
for the six waveforms, but the skewness shown in Fig. 14
is monotonic. Further, the change in the skewness is sig-
nificant for SNR values between 10 dB and 25 dB. This

FIGURE 13. Standard deviation of the energy values.

FIGURE 14. Skewness of the energy values.

variation is greater than that of the standard deviation from
10 dB to 20 dB. Therefore, skewness is a better choice to
determine the threshold.

3) CURVE FITTING FOR THE THRESHOLD
In order to fit the curve of skewness versus threshold,
2000 realizations for each SNR=4, 5, . . . , 40 dB were gen-
erated with thresholds ξ = 0.1, 0.2, . . . , 1. For each realiza-
tion, the threshold with least estimation error was selected as
the best threshold ξbest . Then the best threshold was deter-
mined for each skewness value. A degree three polynomial
was fit using the least-squaresmethod to provide a threshold ξ
for each skewness value S, where S is the x-coordinate and
ξ is the y-coordinate. The coefficients of the polynomial
were generated by minimizing the sum of the squares of the
residuals. Theith residual ri for the ith pair (S, ξ ) is defined
as

ri = yi − ŷi (30)

where yi is the best threshold and ŷi is the fitted threshold for
the ith pair. The sum of the squares of the residuals is given
by

Ss =
n∑
i=1

r2i =
n∑
i=1

(yi − ŷi)
2 (31)

where n is the number of pairs (S, ξbest ). The corresponding
polynomials for the 6 waveforms are

ξ = −0.0014S3 + 0.0207S2 − 0.1650S + 0.7777

(Gaussian Pulse),

ξ = −0.0034S3 + 0.0421S2 − 0.2140S + 0.8007

(IFFT Pulse),

ξ = −0.0006S3 + 0.0147S2 − 0.1593S + 0.7787

(Gaussian-RCP),

ξ = −0.0013S3 + 0.0221S2 − 0.1765S + 0.7903

(Hann-RCP),

ξ = −0.0019S3 + 0.0263S2 − 0.1839S + 0.7934

(Sinc-RCP),

ξ = 0.0009S3 −−0.0002S2 − 0.1590S + 0.8090

(Rectangular-RCP). (32)
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V. PERFORMANCE RESULTS AND DISCUSSION
In this section, the ranging performance with the mmWave
waveforms is evaluated using the mean absolute error (MAE)
which is given by

MAE = C ×
1
N

N∑
n=1

∣∣tn − t̂n∣∣ , (33)

where tn is the nth actual propagation time, t̂n is the nth TOA
estimate, C is the speed of electromagnetic wave, and N is
the number of ranging estimates. With a vehicle speed of
v = 240 km/hour, from (15), the Doppler shift is fd =
6.22 kHz.

A. CORRELATION RECEIVER PERFORMANCE
The MAE performance of the six waveforms was determined
using the correlation receiver with 2000 realizations for each
value of SNR=0, 1, . . . , 20 dB, and the results are presented
in Fig. 15. This shows that the performance of the Gaussian-
RCP, Gaussian Pulse, and Sinc-RCP waveforms is similar,
whereas the Rectangular-RCP and IFFT waveforms have the
worst performance. When SNR=0 dB, the MAE with the
Rectangular-RCP waveform is nearly 0.01 m, which is more
than twice that of the Gaussian-RCP waveform.

FIGURE 15. MAE with a correlation receiver.

B. ENERGY DETECTOR PERFORMANCE
WITH A FIXED THRESHOLD
Figure 16 presents the MAE of the range estimation using
an energy detector with a fixed threshold ξ = 1 for SNR

FIGURE 16. MAE with a fixed threshold ξ = 1.

FIGURE 17. MAE with a fixed threshold ξ = 0.6.

values from 5 dB to 30 dB. This shows that the Gaussian
pulse, Gaussian-RCP, and Sinc-RCP have the best perfor-
mance which is similar, while the Hann-RCP, IFFT pulse,
and Rectangular-RCP have the worst performance. For exam-
ple, when SNR=14 dB, the MAE of the Gaussian Pulse,
Gaussian-RCP and Sinc-RCP is about 0.22 m, while that of
the Rectangular-RCP is about 0.62m.When SNR>19 dB, the
MAE of the Rectangular-RCP decreases to 0.05 m, while the
error with the other waveforms is less than 0.02 m. Figure 17
presents the MAE of the range estimation using an energy
detector with a fixed threshold ξ = 0.6 for SNR values from
5 dB to 30 dB. In general, the MAE is smaller than that in
Fig. 16, so the threshold is a key parameter in determining
the performance of energy detector methods.

C. ENERGY DETECTOR PERFORMANCE
WITH A DYNAMIC THRESHOLD
Figure 18 presents the MAE of the range estimation based
on the fitted curves given in Section 4.3 for SNR values
from 5 dB to 30 dB. This shows that a dynamic threshold
provides better performance than a fixed threshold. For exam-
ple, when SNR=5 dB, the MAE with the dynamic threshold
is about 0.5 m, but with a fixed threshold ξ = 0.6 is about
0.6 m and with ξ = 1 is close to 0.9 m. For all waveforms, the
dynamic threshold accuracy at low SNRs is better than with
a fixed threshold. From a waveform perspective, the same
conclusions can be drawn as with a fixed threshold, namely,
the Gaussian pulse, Gaussian-RCP and Sinc-RCP waveforms

FIGURE 18. MAE with a dynamic threshold.
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FIGURE 19. MAE with different thresholds.

are the best, while the Rectangular-RCP waveform provides
the worst performance.

Figure 19 presents the MAE with different thresholds for
the Gaussian-RCP. This shows that the dynamic threshold
provides better performance than with the fixed thresholds
for most SNR values, particularly when the SNR is less than
17 dB. When the SNR is greater than 23 dB, all thresholds
provide similar performance of about 2 cm. Considering the
results in Figures 16 to 19, it can be concluded that a dynamic
threshold is a better choice for an energy detector.

D. mmWAVE WAVEFORM SELECTION
For both the correlation receiver and energy detector, the
accuracy of the Gaussian-RCP, Gaussian pulse, and Sinc-
RCP waveforms is the best, and the Rectangular-RCP wave-
form provides the worst performance. In a vehicular envi-
ronment, a Doppler shift typically exists, in which case the
PSD should be as close to ideal as possible. Thus, the energy
in the signal sidelobes should be low to have good ranging
accuracy. Figures 2 and 6 show that there are no sidelobes
in the Gaussian-RCP and Gaussian pulse with a PSD greater
than −150 dB/GHz, so they should provide the best ranging
accuracy. Conversely, Figures 4, 7, 8 and 9 indicate that the
sidelobes have a PSD of −14 dB/GHz in the Rectangular-
RCP, −22 dB/GHz in the IFFT pulse, −25 dB/GHz in
the Sinc-RCP, and −28 dB/GHz in the Hann-RCP, so the
accuracy of the Rectangular-RCP is the worst. The Sinc-RCP
is better than the Hann-RCP and IFFT pulse because it has a
PSD which is more concentrated in the mainlobes.

E. COMPUTATIONAL COMPLEXITY
Equation (23) indicates that the computational complexity
of a correlation receiver is primarily due to the correlation
operation. An energy detector consists of a square-law device
followed by an integrator. Employing a dynamic threshold
is more complex than a fixed threshold, but the difference
should not be substantial. In order to compare the compu-
tational complexity of these methods, 1000 iterations were
generated for the correlation receiver, energy detector with a
fixed threshold and energy detector with a dynamic threshold.
The average execution time is given in Table 3.

This shows that the energy detector execution times with
the fixed and dynamic thresholds are similar, but the time

TABLE 3. Average execution time with three methods.

for the correlation receiver is substantially higher. Thus, an
energy detector is a more practical solution for real-time
applications.

VI. CONCLUSION
In order to meet the demands of vehicular environments,
six millimeter wave (mmWave) waveforms were consid-
ered for timing estimation. These waveforms were evaluated
using both an energy detector and a correlation receiver.
Performance results were presented which show that with all
estimation methods, the Gaussian-RCP, Gaussian pulse, and
Sinc-RCP waveforms provide the best performance, while
the Rectangular-RCP waveform has the worst performance.
While the accuracy of the correlation receiver is better than
that of the energy detector, it is more complex due to the
fact that a high sampling frequency and channel estimation
are required. Further, it was shown that the energy detector
performance with a dynamic threshold is much better than
that with a fixed threshold. Thus, an energy detector is an
excellent choice for vehicle positioning using D2D commu-
nications in emerging 5G cellular networks. To date, there
are no generally accepted 5G waveforms, so six impulse
radio (IR) waveforms were investigated which are well suited
to accurate ranging. Once 5G standards have been developed
with candidate waveforms, they can be compared with the
waveforms considered in this paper.
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