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ABSTRACT Ultra-dense networks (UDNs), which can provide extremely high throughput and data rates,
have been considered as one of the key techniques for the fifth generation mobile networks. However,
it may cause severe inter-cell interference and significant energy consumption due to numerous base
stations (BSs) being randomly deployed. To mitigate the interference and boost energy efficiency (EE)
of the UDN effectively, we propose a cluster-based energy-efficient resource allocation scheme in this
paper. The proposed scheme has two stages: clustering stage and resource allocation stage. In clustering
stage, we use a modified K-means algorithm in BS-clustering process to dynamically adjust the number of
BS-clusters based on the density of BSs. Then, in each BS cluster, we divide user equipments (UEs) into mul-
tiple UE-groups with minimum intra-cluster interference. In this way, the complexity of resource allocation
can be greatly reduced. While in resource allocation stage, we design a two-step resource blocks assignment
algorithm and an iterative energy efficient power allocation algorithm based on a non-cooperative game.
Furthermore, we implement simulations under the realistic broadband channel propagation conditions and
the simulation results show that the proposed approach can effectively mitigate the interference and improve
the EE of UDN.

INDEX TERMS Ultra-dense network, energy efficiency, clustering, game theory.

I. INTRODUCTION
With the rapid deployment of smart terminals and the expo-
nential growth in network traffic volume, the traditional
spectrum management and cell division techniques have
been unable to meet the increasing traffic demand [1], [2].
In order to satisfy this ever-growing challenge and require-
ment, research activities on the fifth generation (5G) mobile
networks have been widely developed. One of the 5G key
technical objectives is to reach 1000 times higher mobile
data volume compared to current long term evolution (LTE)
system by 2020 [2]–[4], and ultra-dense network (UDN) is
considered as one of the key techniques of 5G to achieve
this goal. UDN generally consists of a large number of low
power small base stations (BSs) with different types, whose
deployment density is much higher than current mobile com-
munication networks. These small BSs are usually deployed
in hot spots and coverage holes, such as apartments, offices
and shopping malls [4], [5]. However, the increase of
small BSs and the decrease of cell size inevitably result in

significant interference, which may degrade the performance
(e.g., energy efficiency) of UDN [6].

Many resource management schemes have been devel-
oped to mitigate interference and improve system energy
efficiency (EE) for cellular networks [7]–[12]. However, most
of them cannot be applied in UDN directly due to great
computational complexity. Recent years, some researches
focus on reducing computational complexity before allocat-
ing resource for UDN. The clustering approach is considered
as a promising way [13]–[16] to make the topology structures
of UDN be simplified and reduce the complexity of resource
allocation with minimal information exchange. Some exist-
ing works [13], [14] consider cluster-based resource allo-
cation and interference management in femtocell networks.
In [13], the authors use the max-sum algorithm to select
cluster heads (CHs) and then cluster the femtocells based on
CHs. The work in [14] clusters the femtocells based on a
semi-defined programming algorithm. In order tomitigate the
intra-cluster and inter-cluster interference, [13], [14] allocate
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resource based on centralized management. However, the
same resource blocks (RBs) are not allowed to reuse in
different femtocells in a cluster, which will lead to a low
utilization of spectrum and cause a heavy burden for cluster
heads to allocate resource in large-scale clusters. An algo-
rithm which groups small cell UEs based on graph theory is
proposed in [15]. It aims to minimize the total interference in
each cluster and ensure that there is no strong interference
between UEs. However, due to the large number of UEs,
the interference graph which set up edges for any two UEs
is very complex. In view of this, the authors in [16] cluster
BSs according to their neighborhood relationships and group
UEs in each BS-cluster based on the method of [15], but
the imbalance of RBs allocation is not considered. Although
these cluster-based resource allocation schemes can reduce
computational complexity and can mitigate interference, they
are not aimed at optimizing the EE of UDN.

Nevertheless, some other works focus on the EE problems
of UDN. The authors in [17] and [18] have analyzed the
relationship between the system EE and the density of BSs
by using stochastic geometry. The work in [19] investigates
how different BSs and antenna deployment strategies can
impact EE for both indoor and outdoor UDNs. In [20],
the authors explore the improvement of cell breathing for
improving EE in UDN, which jointly consider the space- and
time- variances of the traffic load. In [21], the joint power
control and user scheduling problem is studied. These studies
provide valuable insights of both EE gains and limitations of
UDNs. However, they require a large amount of information
interaction between BSs for EE optimization, which makes
the computational complexity of each BS very high during
resource allocation process.

Therefore, a novel cluster-based energy efficient resource
allocation scheme is proposed in this paper to mitigate inter-
ference and improve EE for UDN with low complexity.
First of all, we propose a modified K-means clustering algo-
rithm, which combines subtractive clustering [22], [23] and
K-means clustering algorithm. It can dynamically adjust the
size (number) of BS-clusters according to the number and
density of BSs. Then, we perform UE grouping with mini-
mum intra-cluster interference in each BS-cluster. After clus-
tering BSs and UEs, we develop a two-step RB assignment
algorithm. The first step is a round robin RB assignment
which is based on the size of UE-groups. The second step is
the compensation phase for assigning remaining RBs to UEs.
Finally, an iterative energy efficient power allocation algo-
rithm is proposed based on a non-cooperative game for each
BS-cluster.

Our main contributions in this paper can be summarized
as follows: 1) We propose a modified clustering algorithm
which can form clusters adaptively based on different net-
work scenarios. 2) We design an effective two-step RB
assignment algorithm according to the UE-groups to miti-
gate intra-cluster interference and balance the allocated RBs
among UEs. 3) We develop a power allocation game and per-
form an iterative update algorithm to obtain convergence with

a low complexity. 4) We theoretically analyze the complexity
of our scheme and illustrate the advantage of BS-clustering
before resource allocation.

The remainder of this paper is organized as follows.
Section II describes the system model of UDN and formu-
lates the energy efficient problem. Section III describes our
two-stage cluster-based resource allocation scheme and
implementation process. In Section IV, we analyze the
complexity of our scheme. The simulation results are dis-
cussed in Section V and the concluding remarks are given
in Section VI.

II. SYSTEM MODEL AND PROBLEM FORMULATION
We consider a two-tier downlink UDN which consists of a
picocell tier and a femtocell tier. As shown in Fig. 1, the
triangle and the pentagram represent the pico BS (PBS) and
femto BS (FBS), respectively. Each Voronoi cell is the cover-
age of a PBS and the area of a circle represents the coverage
of a FBS.

FIGURE 1. A two-tier UDN scenario in the area A.

Wemodel the spatial distribution of PBSs and FBSs as two
independent homogeneous poisson point processes (HPPP)
with density λp and λf in the two dimensional Euclidean
plane A. In this paper, there are two types of UEs, namely
outside UEs and inside UEs, which are served by PBSs
and FBSs, respectively. The outside UEs distribute randomly
according to a HPPP with the density λout in A, which
connect with PBSs according to the closest distances. The
insideUEs distribute according to aHPPPwith the density λin
in the coverage of each FBS with radius Rf .
Take privacy into account, we focus on closed-femto access

mode [12] in this paper. For convenience of description,
we define PBSs and FBSs sets as C = (1, 2, . . . ,C) and
F = (1, 2, . . . ,F), respectively. PBSs and FBSs reuse the
same spectrum which can be evenly divided into L RBs. The
set of RBs is denoted by L = {1, 2, . . . ,L}. It’s assumed
that one RB is exclusively assigned to at most one UE. For
clarity, we utilize subscripts ‘‘p’’ and ‘‘f ’’ to distinguish the
parameters which are associated with PBSs or FBSs. For
example, Plp,i denotes the transmit power of PBS i(i ∈ C)
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on RB l. Plf ,j is the transmit power assigned on RB l by FBS j
(j ∈ F). Pp and Pf are the maximum transmit power of a PBS
and a FBS. We denote byMp,i the number of UEs associated
with PBS i, and Mp,i the set of UEs associated with PBS i.
Likewise, the number of UEs and the set of UEs associated
with FBS j are denoted by Mf ,j and Mf ,j. Moreover, let
Mp =

∑C
i=1Mp,i, Mf =

∑F
j=1Mf ,j, and M = Mp +Mf .

The signal to interference plus noise ratio (SINR) received
by picocell UE m over RB l can be written as

SINRlp,i,m =
Plp,iG

l
p,i,m∑C

t 6=i,t∈C P
l
p,tG

l
p,t,m+

∑F
j∈F Plf ,jG

l
f ,j,m+σ

2
,

(1)

where Glp,i,m is the channel gain from PBS i to UE m on

RB l, Glf ,j,m is the channel gain from FBS j to UE m
on RB l, and σ 2 is the variance of additive white gaus-
sian noise (AWGN). For a femtocell UE, the corresponding
SINR is

SINRlf ,j,m =
Plf ,jG

l
f ,j,m∑C

i∈C P
l
p,iG

l
p,i,m+

∑F
t 6=j,t∈F Plf ,tG

l
f ,t,m+σ

2
.

(2)

Accordingly, we can get the rates of picocell UEs and
femtocell UEs on RB l as

Rlp,i,m = W log2(1+ 0 · SINR
l
p,i,m) (3)

and

Rlf ,j,m = W log2(1+ 0 · SINR
l
f ,j,m), (4)

where0 = − ln(5BER)/1.5 is the SINR gap [7] under a given
bit error rate. The binary indicator variables χ lp,i,m and χ lf ,j,m
describe whether RB l is allocated to UE m by PBS i and
FBS j. For example, χ lf ,j,m = 1 or χ lf ,j,m = 0 represents
RB l is assigned to UE m by FBS j or not. We denote by
χm = (χ1

m, χ
2
m, . . . , χ

L
m) the vector indication variables for

RB allocation of UEm, and denote byχ = {χ1,χ2, . . . ,χM }

the vector indication set for RB allocation of all UEs. The rate
of an UE associated with PBS i or FBS j can be expressed as

Rp,i,m =
L∑
l=1

χ lp,i,mW log2(1+ 0 · SINR
l
p,i,m), (5)

Rf ,j,m =
L∑
l=1

χ lf ,j,mW log2(1+ 0 · SINR
l
f ,j,m). (6)

The total throughput of the system is

R(P) =
∑
i∈C

∑
m∈Mc,i

∑
l∈L

χ lp,i,mR
l
p,i,m

+

∑
i∈F

∑
m∈Mf ,j

∑
l∈L

χ lf ,j,mR
l
f ,j,m, (7)

where P is the power feasible region of each BS.

As the energy consumption at each BS includes two parts:
transmit power and circuit power [11], in the downlink trans-
mission, the total power consumption can be defined as

Pt (P) =
∑
i∈C

∑
l∈L

∑
m∈Mp,i

χ lp,i,mξpP
l
p,i + C · PC,p

+

∑
j∈F

∑
l∈L

∑
m∈Mf ,j

χ lf ,j,mξf P
l
f ,j + F · PC,f , (8)

where ξp ≥ 1 and ξf ≥ 1 denote the reciprocal of drain effi-
ciency of power amplifier of a PBS and a FBS, respectively.
PC,p andPC,f represent the circuit power of a PBS and a FBS,
respectively.

Hence, in this paper, the energy efficiency is defined as the
ratio of the total network throughput over the total network
power consumption with the units of bits/joule. The optimal
RB and power allocation problem is to maximize EE in the
overall network and can be formulated as

max
P,χ

η =
R(P,χ )
Pt (P,χ )

s.t. C1 : χ lp,i,m ∈ {0, 1}, i ∈ C, m ∈Mp,i, l ∈ L,
C2 : χ lf ,j,m ∈ {0, 1}, j ∈ F , m ∈Mf ,j, l ∈ L,
C3 : Plp,i,m > 0, m ∈Mp,i, l ∈ L,
C4 : Plf ,j,m > 0, m ∈Mf ,j, l ∈ L,

C5 :
∑
l∈L

Pp,i,l≤Pp,
∑
l∈L

Pf ,j,l≤Pf , i ∈ C, j ∈ F ,

C6 :
∑

m∈Mp,i

χ lp,i,m ≤ 1,
∑

m∈Mf ,j

χ lf ,j,m ≤ 1, l ∈ L.

(9)

Constrains C1, C2, C6 imply that each RB can only be
assigned to one UE. Constraints C3 and C4 ensure the trans-
mit power to be positive. C5 is the total transmission power
constraints for BS.

III. THE CLUSTER-BASED ENERGY-EFFICIENT RESOURCE
MANAGEMENT SCHEME AND IMPLEMENTATION
Note that problem (9) is in general NP-hard for obtaining the
optimal solution [10], [11]. In order to obtain solutions with
reasonable complexity, the resource allocation can be decom-
posed into RB allocation and power allocation. Even so, there
is still a heavy burden for each BS to collect and analyze the
strategic information from other BSs in UDN with numer-
ous BSs. Therefore, we propose a distributed cluster-based
energy-efficient resource allocation scheme. This scheme has
two stages, which are clustering stage and resource allocation
stage.

The clustering stage has two parts: BS-clustering and
UE-grouping. We first divide all BSs in the network into
several BS-clusters (sub-networks) based on a modified
K-means algorithm. As a result, each BS only needs to ana-
lyze the strategic information from the other BSs within the
same BS-cluster. This will greatly reduce the computational
complexity of each BS. Besides, in order to further mitigate
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the intra-cluster interference, we assign UEs associated with
different cells into UE-groups with low relative interference
effects in each BS-cluster.

After clustering BSs and UEs, the resource allocation stage
is performed. In the RB allocation part, we first allocate RBs
iteratively to UE-groups, and then assign the remaining RBs
of each BS to their UEs based on the channel gain. In the
power allocation part, a game based iterative energy efficient
power allocation algorithm is proposed. Each BS as a player
allocates power selfishly to maximize its own energy effi-
ciency. If no BS is able to improve its utility with a unilateral
deviation, the processes of energy efficiency optimization are
accomplished.

In the following sub-sections, we specifically describe the
four parts of the proposed scheme, and discuss its implemen-
tation process in practical systems.

FIGURE 2. An example of clustering results.

A. BS-CLUSTERING
We obtain BS-clusters base on amodified K-means algorithm
which combines with subtractive clustering and K-means
clustering algorithm. The traditional K-means is constrained
by the initial random selection of the cluster centers and the
number of clusters K needs to be predetermined. In order to
increase the flexibility of our algorithm, we firstly utilize the
subtractive clustering technique, which can reasonably adjust
the number of BS-clusters according to the BS density, to
generate the centers and the number of BS-clusters. Then, we
use K-means algorithm to obtain the final set of BS-clusters
according to the centers and the number of BS-clusters which
are generated by subtractive clustering technique. As dif-
ferent kinds of BSs have different coverages and transmit
power, we cluster PBSs and FBSs respectively. An example
of clustering results is shown in Fig 2, where the blue square
and red points represent the initial clustering centers of PBSs
and FBSs. In order to avoid repeated description, we just
describe the process of FBSs clustering in Algorithm 1. In
this algorithm, SF = {sf1, sf2, . . . , sfF } is the set of FBSs’
coordinate, FZ is the set of FBS-cluster centers, and FC is
the set of FBS clusters. δ and ra are used to determine the
number of BS-clusters in subtractive clustering.

Algorithm 1 FBS Clustering
Input: SF , δ, ra
Output: K , FC, FZ
1 Initialization: Let δ = 0.5 and ra = 0.5min

x
{max

y
{sfx −

sfy}}.
2 Perform subtractive clustering to get the FBS-cluster
center set FZ and K FBS-clusters based on SF .

3 Perform K-means algorithm to get the final FBS
clustering set FC = {FC1,FC2, . . . ,FCK } with input
parametersFZ and K . In particular,FCk (k = 1, . . . ,K )
is the set of FBSs in cluster i.

Similarly, we can cluster PBSs and obtain the set of PBS
clusters PC = {PC1,PC2, . . . ,PCK } by using Algorithm 1.

B. UE-GROUPING
Because of the reuse of frequency, ultra-dense and hetero-
geneous BSs may introduce serious interference. In order to
mitigate the intra-cluster interference, we adopt a modified
UE grouping algorithm. Firstly, we build an interference
graph G(V,E). The vertex set V corresponds to the UEs and
edge set E represents the downlink interference conditions
between UEs in each FBS-cluster or PBS-cluster. We use
relative channel loss metrics βp,i,m and βf ,j,m to describe the
impact of total interference on the UE from non-serving BSs
in each PBS-cluster or FBS-cluster, which are defined as

βp,i,m =

∑
t 6=i∈PCk PLp,t,m + σ

2

PLp,i,m
, m ∈MPCk

βf ,j,m =

∑
t 6=j∈FCk PLf ,t,m + σ

2

PLf ,j,m
, m ∈MFCk , (10)

whereMPCk andMFCk are the UE sets associated with PBS
cluster PCk (PCk ∈ PC) and FBS-cluster FCk (FCk ∈ FC),
respectively. PLp,i,m is the path loss of PBS i to UEm, PLf ,j,m
is the path loss of FBS j to UE m.

Then, we need to build relationships (create edges)
between any two UEs in each BS cluster. It’s assumed that
βm1and βm2 represent the relative channel loss of two UEs
(m1 andm2) belonging to the same BS cluster, and the weight
of an edge between UEs can be defined as

E(m1,m2)

= E(m2,m1)

=

{
βm1 + βm2 , m1 and m2 are in different cells
Eth, otherwise.

(11)

The edge weight between two UEs logically represents
the level of signal degradation to UEs used the same RBs.
The smaller weight of the edge between m1 and m2 indicates
that the level of signal degradation to m1 and m2 is smaller.
So our object is to minimize the sum weight of all UE-groups
in different clusters. As there is an upper bound of weight Eth
to constrain the number of UEs in a UE-group, we set Eth
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large enough to enable more UEs in different cells to be clas-
sified into the same group. In this case, the total interference
can be mitigated effectively. We randomly select a vertex as
the starting point from the interference graphG(V,E) of each
BS cluster, and traverse the graph iteratively by adding the
vertices that minimize the weight of current UE-group. Once
the sum weight of edges in a UE-group reaches the upper
bound Eth, the UE-group is extracted and the new UE-group
begins to form from the remaining vertices.

Because the process of UE grouping in PBS-cluster and
FBS-cluster is similar, we only take the UE grouping of
FBS-clusters as an example which is given in Algorithm 2.
We assume G = {G1,G2, · · · ,GK } represents the inter-
ference graphs of K FBS-clusters. V = {V1,V2, · · · ,VK }

and E = {E1,E2, · · · ,EK } are the sets of candidate vertices
and edges, respectively. At the beginning, V holds all ver-
tices in the interference graph of all FBS-clusters. ς is the
current set of UE-group which is extending. ξ is the current
candidate list which doesn’t include the assigned vertices.
GU = {GU1,GU2, · · · ,GUK } denotes the set of UE-group
of K FBS-clusters and each element in GU represents a set
of UE-group of a FBS-cluster.

Algorithm 2 UE Grouping
Input: G, V, E
Output: GU
1 Initialization: ς = ∅, V contains all vertices of all
FBS-clusters.

2 for k = 1 : K
3 GUk = ∅.
4 end
5 for k = 1 : K
6 while Vk 6= ∅

7 Randomly select a vertex v fromVk and let ς = {v}.
8 Create a candidate list ξ , ξ ← Vk\ς .
9 while (the sum weight of ς is less than Eth)
10 Select a vertex as v′ = argmin

v′∈ξ
(
∑

v∈ς E(v, v
′)).

11 Add the selected vertex v′ into ς as ς ← ς∪{v′}.
12 end
13 Remove set ς from set Vk as Vk ← Vk\ς , and

extract the vertices of ς as a new UE-group.
14 Let GUk ← GUk ∪ {ς} and reset ς = ∅.
15 end
16 end

C. RB ALLOCATION
Decomposing RB and power allocation can reduce the com-
plexity of the optimization problem (5) effectively, so we
solve the problem of RB allocation firstly. Because the num-
ber of UEs within each cell is not identical, unbalanced
problem exists in UE grouping. We develop a two-step pro-
portional fair scheduling algorithm to allocate RBs. We first
allocate RBs iteratively to UE-groups based on the channel
gains and then iteratively assign the remaining RBs of each

Algorithm 3 RB Allocation
Input: GU, G, FC, M, L
Output: 5
1 Initialization: Sort all UE-groups in each UE-group set
of GU in the descending order of the number of UEs as
GU′ = {GU′1,GU′2, · · · ,GU′K }.

2 for k = 1 : K
3 while L 6= ∅
4 Schedule the UE-groups in GU′k with round robin

manner, and calculate the channel gain for each RB
of the scheduled UE-group ϕ.

5 Let Glϕ =
∑

m∈ϕ G
l
m(∀l ∈ L), and assign l∗ to

UE-group ϕ with l∗ = argmaxl Glϕ .
6 Remove l∗ from L as L← L\{l∗}.
7 Mark the l∗th RB of FBS in FCk as |ϕ|, and let

5(|FCk |, l∗)← |ϕ|.
8 end
9 end
10 for j = 1 : F
11 while L′j 6= ∅
12 Assign l∗ to the current scheduled UE m, with l∗ =

argmaxl Glf ,j,m, l ∈ L′j.
13 Remove l∗ from L′j as L

′
j← L′j\{l∗}.

14 Mark the l∗th RB of FBS j asm, and let5(j, l∗)←
m

15 end
16 end

BS to their UEs based on the channel gain. In order to depict
simply, we only take the RB allocation of FBSs as an exam-
ple, and the details are given in Algorithm 3. In this algorithm,
L′ = {L′1,L

′

2, · · · ,L
′
F } represents the set of remaining RBs

of each FBS after the first step in RB allocation and G is the
channel gain set of all UEs. The outcome of RB allocation is
denoted by a set 5 with dimension F × L. Each element,
which is the index of UE, records the object of each RB
allocation for each FBS. ϕ is the current set of UE-group
which is being allocated RBs. |FCk | and |ϕ| denote the index
set of FBSs and UEs in FCk and ϕ, respectively.

D. POWER ALLOCATION
Due to the large number of BSs in UDN, centralized power
allocation is impractical. In this case, we seek for a subopti-
mal solution with distributed power allocation which is for-
mulated as a non-cooperative game. Each BS as a player allo-
cates power selfishly to maximize its own energy efficiency.

We focus on the power allocation of FBS j (j ∈ FCk ). Let
Pf ,−j denote the set of other FBSs’ power allocation vectors
in FCk , and the best response of power allocation of FBS j
can be described as

P∗f ,j = arg max
Plf ,j∈Pf

ηf ,j(Pf ,j,Pf ,−j), (12)

wherePf is the feasible region of FBSs’ power. The objective
is to design a feasible power allocation scheme to find the best
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response P∗f ,j under total power constraints. So FBS j needs

to solve the following power optimization problem.
Problem 1:

Max ηf ,j =

L∑
l=1

Rlf ,j

L∑
l=1

(ξf Plf ,j + P
l
f ,C )

s.t. C4,C5, (13)

where Rlf ,j = W log2(1+P
l
f ,jG

l
f ,j/(I

l
f ,j + σ

2). I lf ,j denotes the

total interference received by FBS j on l, which is expressed
as

I lf ,j =
∑

x∈FCk ,x 6=j
Plf ,xG

l
f ,x +

∑
y∈FC−k

Pf
LGlf ,y

+

∑
i∈PC

Pp
LGlp,j

, (14)

where
∑

y∈FC−k Pf /LG
l
f ,y +

∑
i∈PC Pp/LG

l
p,j denotes the

interference from other clusters with equal power allocation.
Glf ,x is the channel gain from FBS x to the UE of FBS j on
RB l. Plf ,C denotes the constant circuit power consumed by

FBS j on RB l and Pf ,C =
∑L

l=1 P
l
f ,C .

Problem 1 can be considered as a parameterized concave
programming problem according to the dinkelbach algo-
rithm [12], and thus, we have the following lemma.
Lemma 1:

Max F(ηf ,j) = Rf ,j(Pf ,j,Pf ,−j)− qf ,jPt (Pf ,j)

s.t. C4,C5, (15)

where Rf ,j =
∑L

l=1 R
l
f ,j, Pt (Pf ,j) =

L∑
l=1

(ξf Plf ,j + P
l
f ,C ) and

Pf ,j is the current power allocation strategy set of FBS j. The
maximum EE of FBS j, q∗f ,j = Rf ,j(P∗f ,j)/Pt (P

∗
f ,j) can be

obtained if and only if F(q∗
f ,j
) = 0.

Proof: The proof of the lemma and its detailed conver-
gence analysis are described in [24].

According to the analyses above, we can design an equiv-
alent optimal problem

Max Uf ,j(Pf ,j,Pf ,−j) = Rf ,j(Pf ,j,Pf ,−j)− qf ,jPt (Pf ,j)

s.t. C4,C5. (16)

The optimal solution to (16) is equivalent to the solution
to (13) at the optimal value P∗f ,j, and solving the EE prob-
lem (13) can be realized by the optimal power allocation
based on (16) for a given qf ,j and then update qf ,j until
F(q∗f ,j) = 0. As a result, if we figure out the optimal prob-

lem (16), the EE problem can be solved.
In order to solve (16), we formulate a non-cooperative

power allocation game as

GFCk = {FCk ,Pf ,j,Uf ,j}, (17)

where FCk denotes the player set which includes ||FCk ||
FBSs and Pf ,j refers to the strategy set. Uf ,j is the utility
function set which is given as

Uf ,j(Pf ,j,Pf ,−j) =
L∑
l=1

(W log2(1+ P
l
f ,jH

l
f ,j)

− qf ,j(ξf Plf ,j + P
l
f ,C )), (18)

where H l
f ,j=G

l
f ,j/(I

l
f ,j+σ

2) and Pf ,j= (P1f ,j,P
2
f ,j, . . . ,P

L
f ,j).

Definition 1: Formally, a transmit power allocation strategy
P∗ = (P∗f ,j,P

∗
f ,−j) is a Nash equilibrium (NE) [25] of the

game GFCk if, for all players j ∈ FCk , we have that

Uf ,j(P∗f ,j,P
∗
f ,−j) ≥ Uf ,j(Pf ,j,P∗f ,−j), (19)

where Pf ,j 6=P∗f ,j.
The concept of NE offers a predictable outcome of a game

in which multiple agents with conflicting interests compete
through self-optimization and reach a stable point where no
player wishes to deviate. The proofs for the existence and
uniqueness of NE point in the power allocation game are as
follows.
Theorem 1: Assuming the strategy space of power allo-

cation is alf ,j ≤ Plf ,j ≤ blf ,j, ∀j ∈ FCk , l ∈ L, the Nash
equilibrium exists and is unique in the game GFCk .

Proof: The Proof is presented in Appendix.
In the proposed game GFCk , we develop a distributed

iterative power allocation algorithm to obtain the NE. Specif-
ically, if the NE is P, the power allocation can be updated as
P(t + 1) = f(P(t)).

P(t + 1) = Plf ,j(t + 1)

= [
Plf ,j(t)H

l
f ,j(t)

1+ Plf ,j(t)H
l
f ,j(t)

·
W

qf ,jξf ln 2
]
blf ,j
alf ,j
, (20)

where [x]ba = max{a,min{x, b}}. It has been proved that
power allocation iteration converges to the fixed point (NE),
if f(P) is a standard function which satisfies the following
conditions [8]: 1) positivity f(P) > 0; 2) monotonicity P1 >

P2 ⇒ f(P1) > f(P2); 3) scalability µf(P) > f(µP),∀µ > 1.
In the proposed game, as Plf ,j ∈ [alf ,j, b

l
f ,j], (j ∈ FCk ,

l ∈ L), condition 1 can be easily satisfied. If Plf ,j ≥ P̄lf ,j,
(j ∈ FCk , l ∈ L), we can obtain

f(Plf ,j)− f(P̄lf ,j)

= (Plf ,j − P̄
l
f ,j) · (

H l
f ,j(t)

1+ Plf ,j(t)H
l
f ,j(t)

·
W

qf ,jξf ln 2
) ≥ 0,

(21)

which illustrates f(P) is a monotone function. Hence, condi-
tions 2 can be satisfied. Besides, when ∀µ > 1, and then

µf(Plf ,j)− f(µPlf ,j)

=
µWPlf ,j(t)

qf ,jξf ln 2
(

H l
f ,j(t)

1+ Plf ,j(t)H
l
f ,j(t)

−
H l
f ,j(t)

1+ µPlf ,j(t)H
l
f ,j(t)

)> 0,

(22)
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which implies the function f(P) satisfy the scalability in
conditions 3. These analyses indicate that the NE can be
obtained by the iteration approach designed as (20).

In the process of iteration, if Pf ,R(Pf ,R ≥ 0) is the remain-
ing power in the process of power allocation, then

blf ,j = Pf ,R + Plf ,j. (23)

Note that blf ,j should be update in each iteration and
alf ,j = 0 in the game. We only take the optimal power allo-
cation of a FBS-cluster as an example, which is described in
Algorithm 4. QFCx = {· · · , qf ,j, · · · }, j ∈ FCk is the input
set of each iteration which represents the current EE set of
each FBSs in FCk . PFCk is the output power vectors of
all FBSs in FCk . T and ε denote the maximum number
of iterations and the maximum tolerance value, respectively.

Algorithm 4 Power Allocation
Input: FCk , G, T
Output: PFCk
1 Initialization: Set the maximum number of iteration T
and maximum tolerance value ε. Set iteration index t = 0
and initial EE ηFCk (t) = 0.

3 Let Plf ,j = Pf /L, j ∈ FCk , l ∈ L and QFCx = RFCk
(PFCx )/Pt (PFCx ).

4 Repeat:
5 Set t = t + 1, Update power strategies of each FBS in
FCk based on (20) and (23) and calculate the current EE
ηFCk (t).

6 if ηFCk (t)− ηFCk (t − 1) < ε

7 Return PFCx and QFCx .
8 else
9 Set QFCx = RFCk (PFCx )/Pt (PFCx ).
10 until convergence indication is true or t = T .

E. IMPLEMENTATION
In this paper, we aim at developing a cluster-based energy
efficient resource allocation scheme for UDN, and divide the
scheme into four parts for implementation. According to the
analysis above, the implementation details are as follows.

We first obtain the location information of PBSs and FBSs
by core network and femto gateways (F-GW), respectively.
And then according to the location information of BSs, we
utilize the modified K-means clustering algorithm to get
PBS-clusters and FBS-clusters, respectively. At the same
time, each cluster needs to select a cluster head (CH) and
only the CHs can get the location information of UEs and BSs
from core network and F-GW. The selection of CHs needs to
be based on the actual situation of the system, such as the
load or location of BSs. Next, each CH implements the UE
grouping and the first step RB allocation in each BS-cluster
based on the proposed algorithms. Once CHs complete the
process, they broadcast the results to each BS in their own
BS-clusters. Then each BS accomplishes the second step RB
allocation based on the received information. Because BSs

are not required to report their information to other BSs and
CHs, the whole process has a lower signaling overhead. After
allocating RBs, the game based iterative energy efficient
power allocation algorithm is applied. In this algorithm, each
BS as a player selfishly allocates power to maximize its own
energy efficiency. If no BS is able to improve its utility with
a unilateral deviation, our scheme accomplishes all processes
of energy efficiency optimization in UDN.

IV. COMPUTATIONAL COMPLEXITY
In this part, we analyze the complexity of our scheme based
on different stages.

The complexity of clustering stage is composed by BS-
clustering and UE-grouping. According to the algorithm
complexity of subtractive clustering and K-means, the com-
plexity of BS-clustering withK BS-clusters can be calculated
as O(d2S2) + O(SKt), where O(d2S2) is the complexity of
subtractive clustering with K clustering centers, and O(SKt)
is the complexity of k-means algorithm. Besides, S is the
number of BSs, d = 2 represents the two dimensional
coordinate of BSs, and t is number of iterations of K-means
algorithm. If we assume the average numbers of BSs and UEs
in each BS-cluster are N and Mc and assume the average
number of UEs accessed to each BS is Ms, the complexity
of UE-grouping is (K (N − 1)[Ms + (Ms − 1) + · · · + 1]),
which can be rewritten as O(S2M2) in the worst case.
The complexity of resource allocation stage is O(KL2 +

KMc log(Mc) + M (L − LMs/Ng − 1)2) + O(SL(N − 1)Ī ),
where O(KL2 + KMc log(Mc) + M (L − LMs/Ng − 1)2)
and O(SL(N − 1)Ī ) denote the complexity of RB allocation
and power allocation, respectively. Ng, N and Ī are average
number of UE-groups, BSs and iterations of power allocation
in each BS-cluster.

The calculative complexity of all BSs in power alloca-
tion without BS-clustering is O(SL(S − 1)) for each itera-
tion. However, BS-clustering reduces it to O(SL(N − 1)),
where S � N . Although the processes of BS-clustering and
UE-grouping in our scheme introduce some complexity, they
effectively reduce the calculative complexity of each BS in
power allocation and mitigate the interference efficiently in
RB allocation.

V. SIMULATION RESULTS AND DISCUSSION
In this section, we conduct simulations to verify the effective-
ness of the proposed scheme in mitigating interference and
optimizing energy efficiency of UDN. The drain efficiencies
of PBS’ and FBS’ power amplifier are set to 0.022 and
0.017, respectively. Other simulation parameters are listed in
Table 1. We consider Reyleigh fading to model the channels
between BSs to UEs, and the pathloss models for inside UEs
and outside UEs are based on [12]. We compare our scheme
with other three resource allocation schemes which are listed
in Table 2.

At first, we validate the convergence of our scheme by
examining the evolution of energy efficiency in iterations.
Fig. 3(a) shows the energy efficiency evolution of different
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TABLE 1. Simulation parameters.

TABLE 2. Related resources allocation schemes.

FIGURE 3. Energy efficiency evolution in different FBS-clusters, (a) Energy
efficiencies of different FBSs clusters. (b) Average energy efficiency of all
FBS-clusters.

FBS-clusters when the density of FBS is λf = 0.0023. We
can see that the energy efficiency can reach stable state in
less than 20 iterations. In other words, the power allocation
game can obtain Nash equilibrium within 20 iterations in this
example. Due to the number and the locations of FBSs in
each FBS-cluster are different, the final convergent values
of energy efficiency in different FBS-clusters are unequal.
Fig. 3(b) is the evolution of average energy efficiency of
all FBS-clusters in iterations. We can see that the average
energy efficiency reaches stable state in about 15 iterations,

which clearly illustrates the convergence of the power alloca-
tion game in this paper.

FIGURE 4. System throughput under different densities of FBSs.

The next, we investigate the impact of the FBSs’ density on
system throughput of UDN. Fig. 4 shows the system through-
put with different density of FBSs for four schemes listed in
Table 2. We can see that the system throughput increase with
the density of FBSs in all schemes. The proposed scheme (S1)
has higher throughput than other schemes when λf > 0.0012,
and this superiority is more obvious if λf is further increased.
Comparing S1 with S3 and comparing S2 with S4, we can
find that the schemes which are based on Algorithm 2 and
Algorithm 3 (S1 and S2) can obtain higher throughput. This
is because that we assign UEs associated with different
cells into UE-groups with low relative interference effects
(Algorithm 2), and allocate the same RBs to UEs in a UE-
group (Algorithm 3). In this way, the system interference can
be mitigated effectively. On the other hand, comparing S1
with S2, S1 can obtain higher throughput. It indicates that
the power allocation strategies based on Algorithm 4 (S1) can
effectively mitigate interference.

In fact, the system throughput increases with the number of
RBs. However, as the density of FBSs increases, the system
will introduce severe inter-cell interference which makes the
rate on each RB decrease greatly. As a result, the system
spectral efficiency decreases with the density of FBSs for all
schemes as shown in Fig. 5. It is noticeable that the proposed
scheme S1 has the highest system spectral efficiency when
λf > 0.0012.
Finally, we compare the system energy efficiency of our

scheme with the other three schemes by varying λf . Unlike
the variation curves of system throughput and the system
spectral efficiency, the energy efficiency in Fig. 6 increases
with λf to a peak and then start to decrease for an arbitrary
curve. This is because when λf surpasses a certain threshold,
continuing to increase λf will make more interfering FBSs
close to UEs, which causes the gain of the system through-
put cannot compensate the negative effects of the increased
power consumption. As the density of FBSs increases, the
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FIGURE 5. System spectral efficiency under different densities of FBSs.

FIGURE 6. System energy efficiency under different densities of FBSs.

system energy efficiency of S1 and S3 decrease more slowly
compared to S3 and S4. This indicates that our power
allocation algorithm effectively improves energy efficiency.
In particular, the proposed scheme S1 has the highest energy
efficiency when λf > 0.0009, and S1 improves the energy
efficiency by 71% compared to S4 when λf = 0.0027. This
advantage will be more obvious with the further increase
of λf .

VI. CONCLUSION
In this paper, we have designed a distributed cluster- based
energy-efficient resource allocation scheme for UDN. This
scheme has two stages, namely, clustering stage and resource
allocation stage. In the clustering stage, we firstly separate
BSs in the two-tier UDN into multiple BS-clusters based
on a modified K-means algorithm, which is beneficial to
reduce the computational complexity of power allocation.
To mitigate the intra-cluster interference, we develop another
clustering algorithm to group UEs in each BS-cluster into
UE-groups with minimum intra-cluster interference. In the
resource allocation stage, a two-step RB allocation algorithm

and a game based iterative energy efficient power alloca-
tion algorithm have been proposed. System-level simulation
results show that the proposed scheme can mitigate inter-
ference, meanwhile, it can improve the system throughput
and energy efficiency efficiently, and this superiority is more
obvious if the density of BSs is further increased in UDN.

APPENDIX
Theorem 2: Assuming the strategy space of power allocation
is alf ,j ≤ Plf ,j ≤ blf ,j, ∀j ∈ FCk , l ∈ L, the Nash equilibrium
exists and is unique in the game GFCk .

Proof: According to Nash theorem, if the following two
conditions are satisfied, a Nash Equilibrium exists in the
game GFCk .
1) Plf ,j is a nonempty, convex and compact subset in the

Euclidean space.
2) U l

f ,j is continuous and quasi-concave in Plf ,j.

AsPlf ,j ∈ [alf ,j, b
l
f ,j], condition 1 can be easily satisfied. For

conditions 2, it is obvious that U l
f ,j is continuous with respect

to Plf ,j. So we only need to proof the quasi-concavity of U l
f ,j

in Plf ,j.
Note that

∂U l
f ,j(P

l
f ,j,P

l
f ,−j)

∂Plf ,j
=

SINRlf ,j
1+ SINRlf ,j

·
W

qf ,jξ ln 2
, (24)

∂2U l
f ,j(P

l
f ,j,P

l
f ,−j)

∂(Plf ,j)
2

= −
W
ln 2

(
H l
f ,j

1+ SINRlf ,j
) < 0, (25)

and ∂2U l
f ,j(P

l
f ,j,P

l
f ,−j)/∂(P

l
f ,j)

2 < 0, the utility function

U l
f ,j(P

l
f ,j,P

l
f ,−j) is strictly concave with respect to Plf ,j with

the given interference power. So, the Nash equilibrium of
game GFCk exists.
The optimal solution of GFCk is argmaxU l

f ,j(P
l
f ,j,P

l
f ,−j).

For the continuous derivative function U l
f ,j, the neces-

sary condition for the first order derivative optimization is
∂U l

f ,j(P
l
f ,j,P

l
f ,−j)/∂P

l
f ,j = 0. If (Plf ,j)

∗ is local optimal in

[alf ,j, b
l
f ,j], the Nash equilibrium can be obtained by

∂U l
f ,j(P

l
f ,j,P

l
f ,−j)

∂Plf ,j
= 0

⇒ (Plf ,j)
∗
=

(SINRlf ,j)
∗

1+ (SINRlf ,j)
∗
·

W
qf ,jξ ln 2

(26)

Due to the utility function U l
f ,j(P

l
f ,j,P

l
f ,−j) is strictly con-

cave with respect to Plf ,j, according to the sign of the
derivative, it would monotonically increase or decrease with
increasing Plf ,j. If there is no local optimum in [alf ,j, b

l
f ,j],

then the optimal value would be blf ,j, if ∂U
l
f ,j(P

l
f ,j,P

l
f ,−j)/

∂Plf ,j > 0 in [alf ,j, b
l
f ,j] or a

l
f ,j otherwise. So the optimal

VOLUME 4, 2016 6831



L. Liang et al.: Cluster-Based Energy-Efficient Resource Management Scheme for UDNs

solution of the game GFCk is

(Plf ,j)
∗
=


alf ,j, Plf ,j ≤ a

l
f ,j

(SINRlf ,j)
∗

1+ (SINRlf ,j)
∗
·

W
qf ,jξ ln 2

, alf ,j ≤ P
l
f ,j ≤ b

l
f ,j

blf ,j, Plf ,j ≥ b
l
f ,j.

(27)

This completes the proof.
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