
Received July 2, 2016, accepted July 31, 2016, date of publication September 28, 2016, date of current version October 31, 2016.

Digital Object Identifier 10.1109/ACCESS.2016.2604289

Protecting Encrypted Signature Functions Against
Intrusions on Computing Devices by Obfuscation
YANG SHI, (Member, IEEE), JINGXUAN HAN, HONGFEI FAN, QINPEI ZHAO, AND QIN LIU
School of Software Engineering, Tongji University, Shanghai 200092, China

Corresponding author: Q. Liu (sse508lab@126.com)

This work was supported in part by the National Natural Science Foundation of China under Grant 61202382 and
Grant 61503286 and in part by the Fundamental Research Funds for the Central Universities.

ABSTRACT Digital signature schemes are widely used to protect information integrity in computer
communications. However, conventional digital signature schemes are secure only in normal attack contexts.
Technically, these schemes assume that the signing algorithm implementation is running in a perfectly secure
platform protected from various kinds of attacks and intrusions. To complement existing studies, this paper
studies how to securely generate identity-based signatures, key-insulated signatures, and fuzzy identity-based
signatures in a more austere attack context, such as on a computing device that is potentially controlled by
an attacker. We use program obfuscation for achieving a higher security level. Concretely, we give three
specialized signature functions—encrypted identity-based signature, encrypted key-insulated signature, and
encrypted fuzzy identity-based signature, and then propose an obfuscator for the three encrypted signature
functions. The efficiency of the proposed obfuscator is theoretically analyzed, and the correctness and
security are proved. Finally, we present experimental results that show the proposed scheme is efficient.
As a result, the obfuscated implementations of these encrypted signature functions can be applied to many
protocols and enhance their security.

INDEX TERMS Encrypted signature, identity-based signature, key-insulated signature, program obfusca-
tion, software protection.

I. INTRODUCTION
Traditionally, in studies on computer system and communica-
tion security, it is assumed that the end-points of the network
or communication channel are trusted and that the appli-
cations are executed in a secure context. In this traditional
model, the attacker has, at most, access to the input/output
behavior of the program because he/she is only able to manip-
ulate or eavesdrop on themessage between the trusted parties.

However, in practice, a program is sometimes executed on
a platform that is not fully trustable. This could be the result
of a physical capture of the computing device, e.g., a lost
mobile phone or tablet, or an unattended sensor node. System
vulnerabilities may also give rise to this issue because an
attacker can intrude the system and even acquire the highest
privileges as a root user or system administrator. With the
fast development of Advanced Persistent Threats, such events
happen even on ‘‘well-protected’’ systems such as the core
systems of information technology companies (e.g., RSA and
Google) or the nuclear industry. ‘‘Side-channel attacks,’’ such
as power analysis, timing analysis, electromagnetic emana-
tion attacks, fault injection, and acoustic analysis, is another

category of threats that exceed the traditional attack model.
Moreover, some new vulnerabilities, such as the ‘‘SSL Heart-
bleed’’ which was disclosed in April 2014 in the widely-
used OpenSSL library, could also enable hackers to extract
information from a remote host. These threats go beyond
the extent of side-channel attacks because the extraction of
cryptographic keys stored in the memory of a remote host is
possible if the attackers are sufficiently ‘‘lucky.’’

Under these threats, in addition to the functionalities of the
security modules of a system, we should focus on defend-
ing the implementations of security-sensitive programs from
attackers that are assumed to have partial or even full access
privileges for the software implementation and control of the
operation system. Digital signature schemes allow a signer
to sign a message with his/her private signing key, and any
other party can verify that the message originates from the
signer and has not been modified in any way. If the secret
signing key of a digital signature scheme or signature related
security scheme is obtained by a hacker, the security of the
scheme will be severely damaged or even completely lost.
Even in a key-evolvement cryptosystem, the security will

VOLUME 4, 2016
2169-3536
 2016 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

6401

Y. Shi et al.: Protecting Encrypted Signature Functions Against Intrusions on Computing Devices by Obfuscation

be lost, at least within a certain time span. As discussed above,
with the privilege of access or even control on the computing
platform, an attacker may do so simply by dumping memory
and recovering high-entropy data those are likely to be a
key. The attacker can also do so by dynamically tracing the
execution of the code to identify the memory containing the
key.

FIGURE 1. Principle of obfuscation.

Fortunately, a signing algorithm can be protected from
these threats if it is obfuscated. Program obfuscation is a
useful technique to enhance the security of an implementation
of a program because it is capable of making the program
‘‘unintelligible’’ while preserving its computational function-
ality. As shown in Fig. 1, an obfuscator is a specialized
‘‘compiler’’ that performs obfuscating transformations [1].
Generally speaking, an obfuscator may change the identifiers,
data, control flow, and even the class hierarchy of a program.
Thus, it would be difficult for an attacker to analyze or break
an obfuscated program.

General purpose commercial obfuscation tools, such
as Zelix KlassMaster,1 Shield4J,2 and Allatori,3 are not
intended to and cannot be used to protect extra-sensitive
information such as keys. They cannot achieve a sufficiently
high level of security from attacks on software implementa-
tions. Moreover, standard digital signature schemes are hard
to obfuscate from the perspective of cryptography. It was
even proved in [2] that digital signature schemes cannot be
securely obfuscated under certain assumptions. Therefore,
we construct some signature-related schemes/algorithms
that are obfuscatable (from the strong security perspec-
tive of provable cryptography) to provide building blocks
for security solutions and applications. Inspired by prior
works such as [3]–[5], we selected encrypted signatures
as the object of our research. In addition, motivated by
the widely used identity-based (ID-based) cryptography,
we focus on finding a specialized obfuscator for an
ID-based signature-related function to protect the secret sign-
ing key at the beginning. Note that although there are some
advances in protecting secret keys of ID-based encryption-
related schemes [6], [7], protecting signing keys of ID-based
signature-related schemes by obfuscation with high compu-
tational efficiency and provable security is still demanded.

An obfuscatable encrypted fuzzy ID-based signing (EFIBS)
algorithm is first provided. We then derive an obfuscatable

1http://www.zelix.com/klassmaster/index.html
2http://shield4j.com/
3http://www.allatori.com/

encrypted ID-based signing (EIBS) algorithm and an obfus-
catable encrypted key-insulated (KI) signing (EKIS) algo-
rithm from the EFIBS because ID-based cryptography and
KI cryptography are widely-used in security solutions. Based
on the carefully designed algorithms, an (unified) obfuscator
for the three algorithms is provided. The main contribution
from a theoretical perspective is the design of an obfuscatable
EFIBS and the proof of the obfuscator’s security. From a
practical perspective, the main contribution is the derived
obfuscatable EIBS and EKIS for building security solutions
and applications.

The rest of this article is organized as follows. Section II
presents the main contributions: obfuscatable EFIBS, EIBS,
and EKIS functions and the obfuscator. Section III presents
a theoretical analysis on the efficiency, correctness (pre-
serving computational functionality), and ‘‘Virtual Black-box
Property’’ (VBP) security of the obfuscator. Section IV pro-
vides experimental results of performance testing. Section V
compares the result of this paper to other studies on obfusca-
tion for cryptographic purposes. Finally, we conclude with a
discussion of our findings in Section VI.

II. OBFUSCATABLE EFIBS, EIBS, AND EKIS
FUNCTIONS AND THE OBFUSCATOR
A. BACKGROUND AND OVERVIEW
Study on obfuscation consists of two main streams. One was
initiated by Collberg et al. [8], [9] from the perspective of
easy-to-achieve but relatively weak protection on the security,
privacy, and intellectual property of software. The results of
this stream are widely used in the practice of software engi-
neering and many obfuscation tools (obfuscators) are avail-
able. The other one was initiated by Barak et al. [10] from
the perspective of providing strong protection with strong
mathematical basis. The main theoretic result of this stream
is that, under the security definition called the VBP, general-
purpose obfuscation is impossible. This theoretic result is
expanded in a number of studies, such as the impossibility of
approximate obfuscation in [11], the impossibility of obfus-
cation with auxiliary input in [2] and the impossibility of best
possible obfuscation in [12].

Fortunately, a number of obfuscatable concrete security-
related functions and corresponding obfuscators [3]–[5],
[13]–[20] have been constructed since 2007. The security
definition used by these findings is the ‘‘Average Case
VBP’’ (ACVBP), which is slightly weaker than the origi-
nal VBP. The main advantage of these functions and obfus-
cators is that they are sufficiently efficient to be applied in
practice and at the same time, provably secure against the
severe threats mentioned above.

This paper falls in within the scope of this approach and
introduces three new obfuscatable functions. Concretely, in
this subsection, four security schemes are described as build-
ing blocks for obfuscatable encrypted signature functions.
The first one is a fuzzy ID-based signature (FIBS) scheme
proposed in [21]. Based on the FIBS scheme, we derive an

6402 VOLUME 4, 2016

Y. Shi et al.: Protecting Encrypted Signature Functions Against Intrusions on Computing Devices by Obfuscation

ID-based signature (IBS) scheme and a KI signature (KIS)
scheme as the second and the third schemes. The last one is
a group homomorphic encryption (GHE) scheme proposed
in [22]. The descriptions of some of the algorithms in the
FIBS and GHE schemes are slightly modified for conve-
nience. Note that this is a nontrivial task to put the schemes in
collaboration because the encryption and signing algorithms
should be ‘‘compatible’’ to build the obfuscatable functions.
Moreover, it is easy to derive IBS/KIS from FIBS. However,
it is not so easy to find a suitable IBS/KIS scheme to acquire
obfuscatable EIBS/EKIS. Therefore, the proposed IBS/KIS
scheme plays an important role in this study. In Fig. 2, we
sketch out the relationship and novelty of the schemes and
algorithms. The number of the relevant section is noted in
parentheses.

FIGURE 2. Overview of Section 2.

B. GENERAL SETTINGS AND COMPUTATIONAL
ASSUMPTIONS
The general setting with algebraic structures and algorithms
in this paper is as follows: p is a prime number, andG andGT
are two multiplicative cyclic groups of order p. Further, we
have a bilinear map ê : G × G → GT with the following
three properties.
• Bilinearity: ê(ua, vb) = ê(u, v)ab where u, v ∈ G and
a, b ∈ Z∗p .

• Non-degeneracy: ∃u ∈ G ∧ ∃v ∈ G s.t. ê(u, v) 6= 1.
• Computability: For all u, v ∈ G, it is efficient to
compute ê(u, v).

The main computational assumption in this study is the
l-linear decisional Diffie–Hellman (l-linear for short)
assumption (when l ≥ 2). This assumption asserts that there
exists no probabilistic polynomial time (PPT) algorithm that
is capable of solving the l-linear problem with non-negligible
probability. The l-linear problem in G is defined as follows:
Let g1, · · · , gl, h,H ∈$ G and r1, · · · , rl ∈$ Z∗p . Given
g1, · · · , gl , g

r1
1 , · · · , g

rl
l , h and H as input, output ‘‘yes’’ if

hr1+···rl = H and ‘‘no’’ otherwise.
Before presenting the concrete schemes and algorithms,

frequently used symbols are listed in TABLE 1.

C. FIBS SCHEME
The FIBS scheme enables a user with identity ω to generate
a signature that can be verified with identity ω′ if and only if
ω and ω′ are within a given distance that is judged by some
metric. The FIBS scheme consists of four algorithms, that is,
Setup, Extract, Sign, and Verify. The usage of the algorithms
is shown in Fig. 3 and their descriptions are shown in Fig. 4.

1. Setup (Algorithm 1): The setup algorithm takes the
system-wide general settings as input. The algorithm

TABLE 1. Frequently used symbols.

FIGURE 3. Working principle of a FIBS scheme.

outputs MK (the master key) and pub (a tuple con-
sisting of public values and system parameters). Let
Gen[G] denote all the generators of G. Note that a
pair of integers (n, d) is the threshold value of the
underlying secret sharing scheme.

2. Extract (Algorithm 2): Suppose that we wish to gener-
ate a signing key for a user whose identity is ω, where
ω is a subset of [1, n]. The extract algorithm takes pub,
MK , and ω as input. It outputs a corresponding private
signing key Kω.

VOLUME 4, 2016 6403

Y. Shi et al.: Protecting Encrypted Signature Functions Against Intrusions on Computing Devices by Obfuscation

FIGURE 4. Algorithms of the FIBS scheme.

In Algorithm 2, GenRandPoly(d, y) is used to generate
a random polynomial q(·) such that the degree of q(·) is
d − 1 and q(0) = y, and T is given by

T (x) = gx
n

2

∏
i∈[1,n+1]

t
1i,[1,n+1](x)
i , (1)

where [1, n + 1] = {1, 2, · · · , n + 1} and the
Lagrange coefficient is given by 1i,[1,n+1](x) =∏

w∈[1,n+1],w6=i (x − w)/(i− w).
3. Sign (Algorithm 3): To sign a message M =

(µ1, · · · , µm) ∈ {0, 1}m, the signing algorithm takes
pub, Kω, and the message M as input and outputs a
signature S = (S1, S2, S3).

4. Verify (Algorithm 4): To verify a signature S =
(S1, S2, S3) with regard to an identity ω′ where |ω′ ∩
ω| ≥ d , the verification algorithm takes pub, S, and
M as input. The algorithm outputs 1 if the signature is
valid, and outputs 0 otherwise.

D. IBS SCHEME
By modifying the FIBS scheme, an IBS scheme is obtained.
Without loss of generosity, we suppose that the set of all
possible ID values of signers is a consecutive subset of N
that starts from 1. Let N be the number of signers; the set
is {1, · · · ,N }. The IBS scheme consists of four algorithms,

i.e., Setup, Extract, Sign, and Verify, as shown in Fig. 5. The
usage of the algorithms of the IBS scheme is similar to the
usage of the corresponding FIBS algorithms, as illustrated
in Fig. 3.

1. Setup (Algorithm 5): The algorithm generates pub
(a tuple consisting of public values and system
parameters) and the master key MK . The algorithm
is implemented by calling the Setup algorithm of the
FIBS scheme.

2. Extract (Algorithm 6): Suppose ID is the identity of a
user. The extract algorithm takes pub, MK , and ID as
input, and outputs a corresponding private signing key
KID for the user.

3. Sign (Algorithm 7): To sign a message M =

(µ1, · · · , µm) ∈ {0, 1}m, the signing algorithm takes
pub, KID, and M as input and outputs a signature S.

4. Verify (Algorithm 8): To verify a signature S with
regard to an identity ID′, the verification algorithm
takes pub, ID′, S, and a messageM as input and outputs
1 or 0 if the signature is valid or invalid, respectively.

E. KIS SCHEME
In this section, we propose a perfectly KIS scheme sup-
porting random-access key updates. The ‘‘perfectly KI’’ is
equivalent to (T–1, T)–KI, and ‘‘random-access key updates’’

6404 VOLUME 4, 2016

Y. Shi et al.: Protecting Encrypted Signature Functions Against Intrusions on Computing Devices by Obfuscation

FIGURE 5. Algorithms of the IBS scheme.

FIGURE 6. The working principle of a KIS scheme.

means a scheme can update SKi to SKj in one ‘‘step’’ for
any i and j. Details of the two terminologies can be found
in [23] and [24], respectively. Note that the signing key of
the current period is not used in the update algorithms (i.e.,
the device key-update and user key-update algorithms), so
we omit the current signing key in the list of parameters
for the update algorithms for simplicity. The KIS scheme
consists of five algorithms, i.e., Setup, Upd, Upd∗, Sign,
and Verify. The usage of these algorithms is illustrated
in Fig. 6.

1. Setup (Algorithm 9): Suppose that T ∈ N is the
number of time periods. The algorithm is implemented
by calling the Setup algorithm of the FIBS scheme. The
algorithm proceeds as follows and outputs a public key
PK (a tuple also includes the system parameters and
public values) and the corresponding master secret key
SK . Note that system parameters and public values are
also stored in the public key PK , so we use PK as a part
of the input of the key-update algorithms and signing
algorithm of the scheme.

2. Device key-update Upd∗ (Algorithm 10): In fact, the
algorithm can directly generate the signing key for a
user of an arbitrary time period t ≤ T . The algorithm
takes PK , SK , and t as input. It outputs a corresponding
‘‘partial’’ signing keyK ′t for time period t . Note that the
value of the partial key equals that of the corresponding

secret key in this scheme, as found in the user key-
update algorithm below.

3. User key-update Upd (Algorithm 11): This algorithm
only serves to fulfill the syntax of a KIS scheme. The
algorithm directly generates the signing key for a user
for an arbitrary time period t ≤ T . The algorithm takes
PK and K ′t as input. It outputs a corresponding private
signing key Kt .

4. Sign (Algorithm 12): To sign a message M =

(µ1, · · · , µm) ∈ {0, 1}m, the signing algorithm takes
PK , the private signing key Kt for time period t , andM
as input. It outputs a signature S.

5. Verify (Algorithm 13): To verify a signature S against
a time period t ′, the verification algorithm takes PK ,
t ′, S, and a message M as input, and outputs 1 or 0 if
the signature is valid or invalid, respectively.

The descriptions of these algorithms are given in Fig. 7.

F. GHE SCHEME
The GHE scheme consists of three algorithms, i.e.,
Algorithm 14, EKGen (encryption key generation algorithm),
Algorithm 15, Enc (encryption algorithm), and Algorithm 16,
Dec (decryption algorithm). l is a parameter used to denote
the number of elements in the cryptographic key. For a
given l, we write the scheme as GHE[l]. In fact, GHE[1]
is the ElGamal encryption scheme [25], and GHE[2] is the
linear encryption (LE) scheme introduced in [26]. Because
the above three signature schemes require that the decisional
Diffie–Hellman (i.e., 1-linear) problem can be efficiently
solved, we suggest that l ≥ 2 in this paper and assume that
the l-linear problem is hard when l ≥ 2. In the rest of this
paper, we omit subscript l if it is not necessary. EKGen takes
the public parameters pub as input and outputs a key pair
(PKe, SKe). Enc takes the public encryption key PKe, and a
(encoded) plaintext M ∈ G as input. The public parameters
pub are used as default system settings. Enc encrypts M and
then outputs the ciphertext C . Dec decrypts the ciphertext
into a plaintext. The three algorithms ofGHE[l] are described
in Fig. 8.
Remark 1: For simplicity, GHE[l].EncPKe (·) is used to

denote encryption with a encryption key PKe.

VOLUME 4, 2016 6405

Y. Shi et al.: Protecting Encrypted Signature Functions Against Intrusions on Computing Devices by Obfuscation

FIGURE 7. Algorithms of the KIS scheme.

FIGURE 8. Algorithms of the GHE scheme.

Similarly,GHE[l].DecSKe (·) is used to denote decryption with
a decryption key SKe.

G. ENCRYPTED SIGNATURE FUNCTIONS
In this section, we introduce three obfuscatable encrypted
signature functions with regard to the above three digital
signature schemes. The three functions are the EIBS, EKIS,
and EFIBS. Let ∗ ∈ {IB,KI ,FIB}. The encrypted signature
generation function E ∗ Spub,sk,PKe (Algorithm 17) works as
shown in Fig. 9, with respect to a tuple pub that consists of
public values and system parameters, i.e., the first element of
the output of ∗S.Setup, a signing key sk of the ∗S scheme, an
encryption key PKe of the GHE scheme.
A typical application scenario of the function is illus-

trated in Fig. 10. This workflow can be further adapted
into various security protocols because ‘‘sign and encrypt’’

FIGURE 9. E∗S function.

is a widely used composition of asymmetric cryptographic
functionalities.

H. OBFUSCATOR
A specialized obfuscator for the EFIBS function is presented
in this section. According to the consistency of parameters

6406 VOLUME 4, 2016

Y. Shi et al.: Protecting Encrypted Signature Functions Against Intrusions on Computing Devices by Obfuscation

FIGURE 10. Sign-then-encrypt (encrypted signing) and
decrypt-then-verify.

and flows of corresponding algorithms of the proposed
IBS and KIS schemes, it is clear that an obfuscator for the
EFIBS function is also capable of obfuscating the EIBS and
EKIS functions.

We propose an obfuscator ObfEFIBS for Cpub,sk,PKe that
implements the EFIBS function EFIBSpub,sk,PKe shown in
Fig. 11 as pseudo code. Intuitively, the obfuscator utilizes a
special property of the carefully designed EFIBS function,
i.e., the encryption applied on the signature and the signing
key is interchangeable. Hence, we can use the encrypted
signing key (in the obfuscated implementation) to generate a
special signature that is the same as the encrypted signature.

The usage of the proposed obfuscator is shown in Fig. 12.
The obfuscator takes an implementation of the EFIBS
function Cpub,sk,PKe as input. It outputs an obfuscated
implementation Rpub,z,PKe preserving the functionality of
Cpub,sk,PKe . The obfuscated implementation Rpub,z,PKe gener-
ates encrypted signatures just as Cpub,sk,PKe does. However, a
hacker cannot extract the signing key from Rpub,z,PKe as in
the original implementation Cpub,sk,PKe because the key is

FIGURE 11. Obfuscator (pseudo code).

VOLUME 4, 2016 6407

Y. Shi et al.: Protecting Encrypted Signature Functions Against Intrusions on Computing Devices by Obfuscation

FIGURE 12. Obfuscation.

skillfully hidden in Rpub,z,PKe . Note that it is not neces-
sary to feed the whole implementation Cpub,sk,PKe into the
obfuscator in practice. A set of arguments that consists of
pub, sk , and PKe is sufficient for generating an obfuscated
implementation.

III. THEORETICAL ANALYSIS OF THE OBFUSCATOR
In this section, a theoretical analysis of the efficiency, cor-
rectness, and security of our proposed obfuscator is provided.
Because the EIBS and EKIS functions are in fact specific
instances of the EFIBS function, we only focus on the case
of EFIBS.

A. EFFICIENCY ANALYSIS
The numbers of various operations required to generate/run
an obfuscated implementation are listed in TABLE 2.
In this table, ‘‘Rand’’ denotes the operation that randomly
selects element in Zp, ‘‘Add’’ denotes addition in Zp, ‘‘Mult’’
and ‘‘Exp’’ denote multiplication and exponentiation in G,
respectively, and ‘‘Neg’’ denotes an operation that generates
an additive inverse in Zp. It is shown in the table that the
obfuscator and obfuscated implementation have high effi-
ciency in general because all the operations can be performed
efficiently. Furthermore, in concrete applications, usually a
small value of l, such as 2 or 3, are used.

TABLE 2. Efficiency of functions and algorithms (as the number of
operations).

∗ Note that in practice, the ‘‘m’’ in the last row should
be 0 because m exponentiation operations in computing, i.e.,∏m

j=1 v
µj
j , can be replaced by

∏m
j=1 xj, where xj = vj ifµj = 1,

and otherwise xj = 1.

B. PRESERVING FUNCTIONALITY
Let C = {Cλ}λ∈N be a family of probabilistic functions
and Obf be an obfuscator. The correctness of the obfuscator
requires that, on any C ∈ Cλ, with overwhelming probabil-
ity, Obf(C) behaves almost identically to C for all inputs.
Technically, the property is called ‘‘Preserving Functional-
ity,’’ as given by Definition 1 [3], [13].

Definition 1 Preserving Functionality (Correctness): A
PPT machine Obf is an obfuscator for C if there exists a
negligible function negl(λ) for any input length λ for which
the following holds:

∀C ∈ Cλ,

Pr
coins of Obf

C ′← Obf(C) :
∀x ∈ {0, 1}λ,
Diff (C(x), C ′(x)) ≤ negl(λ)

 ≥ 1-negl(λ).

(2)

Note that the probability is taken over the random coins used
by Obf, and Diff denotes the statistical distance between
C ′(x) and C(x).
Theorem 1 (Preserving Functionality): Consider any

Cpub,sk,PKe ∈ Cλ and let Rpub,z,PKe = ObfEFIBS (Cpub,sk,PKe).
On each possible input, the output distributions of Cpub,sk,PKe
and Rpub,z,PKe are identical.

Proof: Let PKe = (ga, gb). On an arbitrary non-empty
message M , the output of Cpub,sk,PKe is

(c1, c2, c3) =

 {GHE[l].EncPKe (S
(i)
1)|i ∈ ω},

{GHE[l].EncPKe (S
(i)
2)|i ∈ ω},

{GHE[l].EncPKe (S
(i)
3)|i ∈ ω}

, (3)

where(
{(S(i)1)|i ∈ ω}, {(S(i)2)|i ∈ ω}, {(S(i)3)|i ∈ ω}

)
= (S1, S2, S3) = FIBS.Sign (M ,Kω) . (4)

Let

Kω = {{Di| i ∈ ω} , {di| i ∈ ω}} (5)

and

M = (µ1 . . . µm) ∈ {0, 1}m. (6)

For any i ∈ ω, we have

c(i)1 =

PK
x ′i,1
e,1 , · · · ,PK

x ′i,l
e,l ,

g
∑l

k=1 x
′
i,k · Di ·

(
v′ ·

∏m
j=1 v

µj
j

)s′i
, (7)

c(i)2 =
(
PK

x ′′i,1
e,1 , · · · ,PK

x ′′i,l
e,l , g

∑l
k=1 x

′′
i,k · di

)
, (8)

c(i)3 =
(
PK

x ′′′i,1
e,1 , · · · ,PK

x ′′′i,l
e,l , g

−s′i+
∑l

k=1 x
′′′
i,k

)
, (9)

where x ′i,1, · · · , x
′
i,l, x

′′

i,1, · · · , x
′′
i,l, x

′′′

i,1, · · · , x
′′′
i,l, s
′
i are uni-

formly randomly selected from Zp.
For the same message, Rpub,z,PKe outputs

Rpub,z,PKe (M) =
(
{σ1,i|i ∈ ω}, {σ2,i|i ∈ ω}, {σ3,i|i ∈ ω}

)
.

(10)

Hence, for any i ∈ ω, we have:

σ1,i = (U (i)
1 , σ

(i)
1) =

PK
xi,1+u

(i,1)
1

e,1 , · · · ,PK
xi,l+u

(i,l)
1

e,l ,

g
∑l

k=1

(
u(i,k)1 +xi,k

)
·K (i)

1 ·

(
v′

m∏
j=1

v
µj
j

)si
,
(11)

6408 VOLUME 4, 2016

Y. Shi et al.: Protecting Encrypted Signature Functions Against Intrusions on Computing Devices by Obfuscation

σ2,i =
(
U (i)
2 , σ

(i)
2

)
=

PK
yi,1+u

(i,1)
2

e,1 , · · · ,PK
yi,l+u

(i,l)
2

e,l ,

g
∑l

k=1 yi,k+u
(i,k)
2 · K (i)2

,
(12)

σ3,i =
(
U (i)
3 , σ

(i)
3

)
=

(
U (i,1)
3 , · · · ,U (i,1)

3 , σ
(i)
3

)
=

(
PK

u(i,1)3
e,1 , · · · ,PK

u(i,l)3
e,l , g−si+

∑l
k=1 u

(i,k)
3

)
, (13)

where u(i,k)1 , xi,k , u
(i,k)
2 , yi,k , u

(i,k)
3 , si, 1 ≤ k ≤ l are uni-

formly random elements of Zp.
It is clear that (c1, c2, c3) and the output of Rpub,z,PKe (M)

are identically distributed. This completes the proof.

C. ACVBP
In this subsection, we study the security of the proposed
obfuscator with respect to the ACVBP. ACVBP was intro-
duced by Hohenberger et al. [13], and it was extended
to ACVBP with respect to Dependent Oracles (DOs) by
Hada [3]. This extension permits distinguishers to have sam-
pling access not only to� C � but also to a set of oracles
that are dependent on C .
Remark 2: For a Turing machine TM , its black-box access

to a probabilistic function C can be categorized into ‘‘oracle
access’’ and ‘‘sampling access.’’ The formermeans that TM is
allowed to set both regular inputs and random inputs. This is
denoted by TMC , as is conventional. Sampling access means
that TM is only permitted to set the regular input. This is
denoted by TM�C�.
Definition 2:An obfuscator Obf forC satisfies the ACVBP

with respect to DOs T if the following condition holds: There
exists a simulator S (PPT oracle machine) such that, for every
PPT oracle machine D (distinguisher), every polynomial f ,
all sufficiently large λ ∈ N, and every z ∈ {0, 1}poly(λ),∣∣∣∣∣∣∣∣
Pr
[
C ← Cλ;C ′← Obf (C) ;
b← D�C,T (C)�

(
C ′, z

) : b = 1
]

−Pr
[
C ← Cλ;C ′′← S�C�

(
1λ, z

)
;

b← D�C,T (C)�(C ′′, z)
: b = 1

]
∣∣∣∣∣∣∣∣

<
1
f (λ)

, (14)

where D�C,T (C)� means that, in addition to C , D also has
sampling access to all oracles in the set T (C).

When obfuscating normal encrypted signature functions,
T (C) is commonly assigned to the signing function, such as
in [3]–[5], [14], [16], and [17]. However, we should consider
collision attacks from some corrupted users against the pro-
posed obfuscator. Therefore, we suppose that an adversary
against the obfuscator is capable of obtaining the signing
key of corrupted users, excepting the user who generates the
obfuscated implementation as a challenge, that is, the adver-
sary can access the Extract oracle on any corrupted user’s
identity. Because there are certain restrictions on the contents
of queries, the set of oracle-restrictions pairs dependent on C
is defined asR(C). For instance, in this paper, we define that
R(C) = {(FIBS.ExtractMK , id≈ID)}, where id≈ID denotes

|ID ∩ id | ≥ d . Conventionally, we omit the braces in the
description of the set when |R(C)| = 1, and the restrictions
are denoted as superscripts, e.g., FIBS.Extract [id≈ID]MK .

Accordingly, we use the extended version of ACVBP
with respect to DOs, i.e., ACVBP with respect to DOs and
Restricted Dependent Oracles (RDOs), which is proposed
in [27] as follows.
Definition 3:An obfuscator Obf forC satisfies the ACVBP

with respect to DO set T and RDO set R if and only if there
exists a simulator S (PPT oracle machine) such that, for any
distinguisher D (PPT oracle machine), all sufficiently large
numbers λ ∈ N, any polynomial f , and every z ∈ {0, 1}poly(λ),∣∣∣∣∣∣∣∣
Pr
[
C ← Cλ;C ′← Obf (C) ;
b← D�C,T (C),R(C)�

(
C ′, z

) : b = 1
]

−Pr
[
C ← Cλ;C ′′← S�C�

(
1λ, z

)
;

b← D�C,T (C),R(C)�
(
C ′′, z

) : b = 1
]
∣∣∣∣∣∣∣∣<

1
f (λ)

,

(15)

where D�C,T (C),R(C)� means that D has sampling access
to C , all the oracles that are contained in T (C), and the
restricted oracles that are contained in R(C).
For ID-based crypto-systems, ACVBPwith respect to DOs

and RDOs is stronger than ACVBP with respect to DOs
because the adversary’s extra accesses to RDOs are permitted
in the former case. Similarly, ACVBP with respect to DOs is
stronger than the standard ACVBP. In Theorem 2, we prove
that the proposed obfuscator satisfies ACVBP with respect
to DOs and RDOs, therefore no adversary is capable of
distinguishing a real obfuscated implementation and the fake
implementation that is generated by a simulator who does
not know the signing key. Clearly, the theorem implies that
a hacker cannot extract the signing key from an obfuscated
implementation. Otherwise, the hacker could use the key to
distinguish the real and fake implementations.
Theorem 2: The obfuscator ObfEFIBS for the pro-

posed EFIBS functionality satisfies ACVBP with respect
to DO T (C) = FIBS.SignskID and RDO R(C) =
FIBS.Extract [id≈ID]MK , where C = EFIBSpub,skID,PKe .

Proof: Suppose that ID = ω. The probabilities
that a distinguisher D�C,T (C),R(C)� outputs 1 given the
real and simulated distributions are defined respectively as
(16) and (17), as shown at the bottom of the next page, where
the simulator Sim works as shown in Fig. 13.

For contradiction, assume that there exists a distinguisher
D�C,T (C),R(C)� that can distinguish between C ′ and C ′′

with a non-negligible probability. Without loss of generality,
we suppose that PrNick −PrJunk = δ > 0.
We then construct a pair of adversaries, (A,B), which

breaks the ciphertext indistinguishability of the GHE scheme
as follows.

Using algorithmA.Init and playing the security game with
B and D, as shown in Fig. 14, A produces a pair of plaintext〈
skID, sk ′

〉
, public settings, and system parameters of the GHE

scheme. Suppose that the system parameters were gener-
ated honestly, that is, the adversary A does not intentionally

VOLUME 4, 2016 6409

Y. Shi et al.: Protecting Encrypted Signature Functions Against Intrusions on Computing Devices by Obfuscation

FIGURE 13. The simulator.

FIGURE 14. Security game.

set any ‘‘backdoor’’ in these parameters. Alternatively, we
can specify that the parameters are setup by a trusted third
party. Note that after the adversary A is initialized, ID, skID,
and pub are private ‘‘member variables’’ of A. Algorithms
A.OC , A.OS, and A.OE are used to reply on the O�C�,
O�T (C)�, and O�R(C)� queries from D, respectively. Fur-
ther, B.CTGen is used to generate the challenge ciphertext
and A.Guess is used to ‘‘guess’’ the value of d in B.CTGen.
The descriptions of the algorithms are shown in Fig. 14. Note
that these algorithms only serve for this security proof and
will never be put into practical use; hence, we ignore their
numbering.

Note that if the random coin d = 1, then Rpub,ct,PKe
equals Rpub,Junk,PKe generated by the simulator S, otherwise,
Rpub,ct,PKe is a valid output of ObfEGS .

The two probabilities Pr
[
d = 0 ∧ d ′ = 0

]
and Pr[d = 1∧

d ′ = 1] are calculated as follows, where D∗ denotes

D�C,T (C),R(C)�.

Pr[d = 0 ∧ d ′ = 0]

= Pr[d = 0] · Pr
[
1 = D∗(Rpub,ct,PKe)|d = 0

]
+ Pr[d = 0] ·

(
(1/2) · Pr

[
1 6= D∗(Rpub,ct,PKe)|d = 0

])
= (1/2) · Pr

Nice
+(1/2) ·

(
(1/2) · (1− Pr

Nice
)
)

=

(
Pr
Nice
+1
)
/4 (18)

Pr
[
d = 1 ∧ d ′ = 1

]
= Pr [d = 1] ·

(
(1/2) · Pr

[
1 6= D∗

(
Rpub,ct,PKe

)
|d = 1

])
= (1/2) · (1/2) ·

(
1− Pr

Junk

)
=

(
1− Pr

Junk

)
/4 (19)

Finally, the advantage of A in the chosen-plaintext
attack (CPA) against the GHE scheme is

AdvIND−CPA,GHEA = 2 · Pr
[
d ′ = d

]
− 1

= 2 ·
(
Pr
[
d ′ = 0 ∧ d = 0

]
+ Pr

[
d ′ = 1 ∧ d = 1

])
− 1

= 2 ·
(
PrNice+1

4
+

1− PrJunk
4

)
− 1

= 2 ·
(
1
2
+

PrNice−PrJunk
4

)
− 1

=
PrNice−PrJunk

4
=
δ

2
. (20)

If δ = PrNick −PrJunk is non-negligible, so is the advantage
AdvIND−CPA,GHEA . This contradicts the indistinguishability of
ciphertexts against CPAs on the GHE scheme based on the
l-linear assumption. This completes the proof.

IV. EXPERIMENTAL RESULTS
The proposed algorithms were implemented in Java by apply-
ing the Java Pairing-Based Cryptography Library [24]. The
performance was tested on a PC with an Intel i7 CPU
(@3.5 GHz). To report the experimental results compactly,
we merge algorithms that are almost the same in software
implementation, and consequently with almost the same effi-
ciency, into a group. The seven algorithm groups are listed

Pr
Nick
= Pr

(pub,MK)← FIBS.Setup

(
1λ
)

(PKe, SKe)
$
←− GHE .EKGen (pub)

skID = (K1,K2)
$
←− FIBS.Extract(pub,MK , ω)

C ′← ObfEFIBS (C) ; b← D�C,T (C),R(C)�
(
C ′
) : b = 1

, (16)

Pr
Junk
= Pr

(pub,MK)← FIBS.Setup

(
1λ
)

(PKe, SKe)
$
←− GHE .EKGen (pub)

skID = (K1,K2)
$
←− FIBS.Extract(pub,MK , ω)

C ′′← Sim�C()�(); b← D�C,T (C),R(C)�
(
C ′′
) : b = 1

, (17)

6410 VOLUME 4, 2016

Y. Shi et al.: Protecting Encrypted Signature Functions Against Intrusions on Computing Devices by Obfuscation

FIGURE 15. Algorithms used in the security game.

in TABLE 3. The first column presents the unified identities
of groups. Note that Alg.∗ (in this section) and Algorithm.∗
(in Section 2) do not denote the same object.
Fig. 16 shows that a positive correlation exists between the

running time of Alg. 1 and the parameterm. Whenm is fixed,
the running time increases with the value of n in the FIBS
scheme (as well as N in the IBS scheme or T in the KIS
scheme, where N stands for the number of users in the IBS
scheme and T stands for the number of time periods in the
KIS scheme). The increasing rate of time cost for Alg. 1, as
shown in Fig. 17, converges at around 1.33 when n, N , or
T become large (e.g., at 90). Obviously, the increasing rate
of time is rarely sensitive to m when n, N , or T are greater
than 40. This result indicates that although the running time of
the setup algorithm (Alg. 1) increases linearly with the values
of N or T , this increase is rather ‘‘slow.’’ Therefore, even in
an ID-based system with a large number of initial users or a
KI system with a large number of time periods, the efficiency
of Alg. 1 is still acceptable.

According to the descriptions of Algs. 2–7, parameter n
takes little effect in these algorithms. Hence, we set

FIGURE 16. Running time of Alg. 1.

n = 100 in the experiments on Algs. 2–7 for convenience.
In the experiments to test the performance of the IBS and KIS
schemes, we set |ω| = 1 and provide the running times of

VOLUME 4, 2016 6411

Y. Shi et al.: Protecting Encrypted Signature Functions Against Intrusions on Computing Devices by Obfuscation

FIGURE 17. Increasing rate of time versus n, N or T of Alg. 1.

TABLE 3. Algorithm groups.

the Algs. 2–7 for the different sets of parameters in Fig. 18.
This figure indicates that parameter m has little effect on the
performance of these algorithms. Parameter m is important
because it denotes the size of the input message and, thereby,
we further investigate the little effect of setting different m in
Fig. 19. Setting the same parameter l and different |ω| values
ranging from 10 to 100 in Algs. 5–7, the average running
times for m = 64 and m = 128 vary very little, e.g., the
running time for m = 128, l = 3 in Alg. 7 increases less than
0.02 times that with m = 64, l = 3. Based on this result, we
can set m to be a fixed value, e.g., 64 or 128, when studying
the performance of Algs. 5–7 in a variety of situations.

We display the running times of different |ω| for Algs. 5–7
(only in the FIBS scheme) with a fixed m (m = 128) in
Fig. 20. These results lead to the conclusion that the running
time linearly increases with increments of |ω|. Note that
|ω| = 1 in both the KIS and IBS schemes, so the two schemes
are omitted in the experiment corresponding to Fig. 20.

To compare the efficiency of using Alg. 5 (the original
encrypted FIBS generation algorithm) and Alg. 7 (the obfus-
cated encrypted FIBS generation algorithm), we performed
an experiment on their running time. As it is necessary to run

FIGURE 18. Running time of Algs. 2–7.

FIGURE 19. The average differences of running time with different m in
Algs. 5–7 vary little.

the obfuscator (Alg. 6) once to obtain the implementation of
Alg. 7, the running time of Alg. 7 should include the running
time of Alg. 6 once. Thereby, the ratio of the running time of
using Alg. 7 versus that of using Alg. 5 is shown in Fig. 21
with respect to the number of runs, calculated as follows:

Time of run Alg.7 × times + Time of run Alg.6 once
Time of run Alg.5 × times

− 1,

l = 2, 3, m = 128, ω = 1, 60. (21)

Experimental results show that the ratio decreases while
the number of runs increases. When ω = 60, the increment
in the running time of using Alg. 5 is larger than that of using
Alg. 7, while the number of runs is greater than nine for l = 3
and seven for l = 2. When ω = 1 (in the case of KIS or IBS),
the increment in the running time of using Alg. 5 is larger
than that of using Alg. 7, while the number of runs is larger
than seven for l = 3 and five for l = 2. Based on this, we
can conclude that the use of the obfuscated implementation
(Alg. 7) is more time efficient in most scenarios.

6412 VOLUME 4, 2016

Y. Shi et al.: Protecting Encrypted Signature Functions Against Intrusions on Computing Devices by Obfuscation

FIGURE 20. The running time of different |ω| for Algs. 5–7 with fixed m.

FIGURE 21. Ratio of the running time of using Alg. 7 versus that of using
Alg. 5 with respect to the number of runs.

V. RELATED STUDIES AND COMPARISONS
A number of obfuscatable cryptographic functions and cor-
responding obfuscators for these functions with accept-
able computational costs have been presented since 2007.
TABLE 4 lists the functions and corresponding obfuscators
to the best of our knowledge, where the last line is ours in
this paper. As shown in TABLE 4, the proposed obfuscator
is the first one for EIBS, EKIS and EFIBS. Furthermore, the
proposed obfuscator and encrypted signature functions use
distinct building blocks and complexity assumptions that are
distinct from all previous studies. Note that an obfuscatable
EIBS is sketched out as a by-product of the obfuscatable
encrypted group signature and an EKIS is also derived in [27].
However, the authors of [27] did not provide a concrete
description of the algorithms and a strict security analysis.
Furthermore, even if an EIBS/EKIS is implemented follow-
ing the idea in [27], compared with the proposed obfuscatable
EIBS/EKIS, it would be much less efficient because compos-
ite order groups are used.

TABLE 4. A comparison of related studies.

Moreover, as we mentioned in the introduction, under
security definitions that are weaker than the ACVBP (e.g.,
indistinguishable obfuscation [28]) or using non-standard
security model (e.g., generic graded encoding model [29]),
a variety of candidates of general-purpose obfusca-
tors [28]–[30] have been proposed in recent years.
However, there are two issues with these techniques.
First, their security has been seriously challenged by
recently developed cryptanalysis approaches such as those
in [31]–[33]. Second, they have been implemented with
heavyweight techniques that incur high computational cost
and thus are somewhat impractical nowadays.

In summary, there is still no efficient approach for con-
structing a general-purpose obfuscator that satisfies ACVBP.
Therefore, it is valuable to find obfuscatable EIBS, EKIS, and
EFIBS functions as well as to design a corresponding secure
and efficient obfuscator.

4Acronyms of complexity assumptions in Table 4 are explained as follows.
(i) AgExt: Aggregate Extraction
(ii) CDH: Computational Diffie–Hellman
(iii) DBDH: Decisional Bilinear Diffie–Hellman
(iv) DH: Diffie–Hellman
(v) DLIN: Decisional Linear
(vi) HSDH: Hidden Strong Diffie–Hellman
(vii) SD: Subgroup Decision
(viii) SDHI: Strong Diffie–Hellman Indistinguishability
(ix) SXDH: Symmetric External Diffie–Hellman

VOLUME 4, 2016 6413

Y. Shi et al.: Protecting Encrypted Signature Functions Against Intrusions on Computing Devices by Obfuscation

VI. CONCLUSIONS
To provide building blocks for security schemes and proto-
cols that are partially running in austere security contexts
such as a computing device that is potentially controlled by an
attacker, we provided three obfuscatable cryptographic func-
tions, that is, EFIBS, EIBS, and EKIS, and then provided an
obfuscator for them. We proved that the proposed obfuscator
is correct and secure, that is, the obfuscator preserves their
functionalities and satisfies the ACVBP with respect to DOs
and RDOs. Furthermore, experimental results show that the
proposed algorithms are efficient. In future, we plan to apply
these obfuscatable functions in practical security schemes
and protocols for validation.

REFERENCES
[1] B. Barak et al., ‘‘On the (im)possibility of obfuscating programs,’’ J. ACM,

vol. 59, no. 2, Apr. 2012, Art. no. 6.
[2] S. Goldwasser and Y. T. Kalai, ‘‘On the impossibility of obfuscation with

auxiliary input,’’ in Proc. 46th Annu. IEEE Symp. Found. Comput. Sci.,
Oct. 2005, pp. 553–562.

[3] S. Hada, ‘‘Secure obfuscation for encrypted signatures,’’ in Advances
in Cryptology–EUROCRYPT. Berlin, Germany: Springer-Verlag, 2010,
pp. 92–112.

[4] R. Cheng, B. Zhang, and F. Zhang, ‘‘Secure obfuscation of encrypted
verifiable encrypted signatures,’’ in Provable Security. Berlin, Germany:
Springer-Verlag, 2011, pp. 188–203.

[5] R. Nishimaki and K. Xagawa, ‘‘Verifiably encrypted signatures with short
keys based on the decisional linear problem and obfuscation for encrypted
VES,’’ Designs, Codes Cryptograph., vol. 77, no. 1, pp. 61–98, 2015.

[6] Y. Watanabe and J. Shikata, ‘‘Identity-based hierarchical key-insulated
encryption without random oracles,’’ in Proc. 19th IACR Int. Conf. Pract.
Theory Public-Key Cryptograph., Taipei, Taiwan, 2016, pp. 255–279.

[7] J. Yu, R. Hao, H. Zhao, M. Shu, and J. Fan, ‘‘IRIBE: Intrusion-
resilient identity-based encryption,’’ Inf. Sci., vol. 329, pp. 90–104,
Feb. 2016.

[8] C. Collberg, C. Thomborson, and D. Low, ‘‘A taxonomy of obfuscat-
ing transformations,’’ Dept. Comput. Sci., Univ. Auckland, Auckland,
New Zealand, Tech. Rep. 148, 1997.

[9] C. S. Collberg and C. Thomborson, ‘‘Watermarking, tamper-proofing, and
obfuscation—Tools for software protection,’’ IEEE Trans. Softw. Eng.,
vol. 28, no. 8, pp. 735–746, Aug. 2002.

[10] B. Barak et al., ‘‘On the (im)possibility of obfuscating programs,’’ in
Advances in Cryptology–CRYPTO. Berlin, Germany: Springer-Verlag,
2001, pp. 1–18.

[11] N. Bitansky and O. Paneth, ‘‘On the impossibility of approximate obfus-
cation and applications to resettable cryptography,’’ in Proc. 45th Annu.
ACM Symp. Theory Comput., 2013, pp. 241–250.

[12] S. Goldwasser and G. N. Rothblum, ‘‘On best-possible obfuscation,’’
J. Cryptol., vol. 27, no. 3, pp. 480–505, 2014.

[13] S. Hohenberger, G. N. Rothblum, A. Shelat, and V. Vaikuntanathan,
‘‘Securely obfuscating re-encryption,’’ J. Cryptol., vol. 24, no. 4,
pp. 694–719, Oct. 2011.

[14] C. Li, Z. Yuan, and M. Mao, ‘‘Secure obfuscation of a two-step oblivious
signature,’’ in Network Computing and Information Security, vol. 345.
Berlin, Germany: Springer-Verlag, 2012, pp. 680–688.

[15] N. Chandran, M. Chase, and V. Vaikuntanathan, ‘‘Functional re-encryption
and collusion-resistant obfuscation,’’ in Theory of Cryptography. Berlin,
Germany: Springer-Verlag, 2012, pp. 404–421.

[16] X. Feng and Z. Yuan, ‘‘A secure obfuscator for encrypted blind signa-
ture functionality,’’ in Network and System Security. Berlin, Germany:
Springer-Verlag, 2014, pp. 311–322.

[17] X.Wei, Z. Yuan, X. Li, X. Feng, and J. Liu, ‘‘Secure obfuscation for tightly
structure-preserving encrypted proxy signatures,’’ in Proc. 9th Int. Conf.
Comput. Intell. Secur. (CIS), 2013, pp. 589–593.

[18] R. Cheng and F. Zhang, ‘‘Secure obfuscation of conditional re-encryption
with keyword search,’’ in Proc. 5th Int. Conf. Intell. Netw. Collaborative
Syst. (INCoS), 2013, pp. 30–37.

[19] N. Chandran, M. Chase, F.-H. Liu, R. Nishimaki, and K. Xagawa,
‘‘Re-encryption, functional re-encryption, and multi-hop re-encryption:

A framework for achieving obfuscation-based security and instantia-
tions from lattices,’’ in Public-Key Cryptography–PKC. Berlin, Germany:
Springer-Verlag, 2014, pp. 95–112.

[20] R. Cheng and F. Zhang, ‘‘Obfuscation for multi-use re-encryption and
its application in cloud computing,’’ Concurrency Comput., Pract. Exper.,
vol. 27, no. 8, pp. 2170–2190, 2015.

[21] P. Yang, Z. Cao, and X. Dong, ‘‘Fuzzy identity based signature with
applications to biometric authentication,’’ Comput. Electr. Eng., vol. 37,
no. 4, pp. 532–540, 2011.

[22] F. Armknecht, S. Katzenbeisser, and A. Peter, ‘‘Group homomorphic
encryption: Characterizations, impossibility results, and applications,’’
Designs, Codes Cryptograph., vol. 67, no. 2, pp. 209–232, 2013.

[23] Y. Dodis, J. Katz, S. Xu, and M. Yung, ‘‘Strong key-insulated signature
schemes,’’ in Public Key Cryptography–PKC. Berlin, Germany: Springer-
Verlag, 2003, pp. 130–144.

[24] Y. Dodis, J. Katz, S. Xu, and M. Yung, ‘‘Key-insulated public key cryp-
tosystems,’’ in Advances in Cryptology–EUROCRYPT. Berlin, Germany:
Springer-Verlag, 2002, pp. 65–82.

[25] T. ElGamal, ‘‘A public key cryptosystem and a signature scheme based
on discrete logarithms,’’ IEEE Trans. Inf. Theory, vol. 31, no. 4,
pp. 469–472, Jul. 1985.

[26] D. Boneh, X. Boyen, and H. Shacham, ‘‘Short group signatures,’’ in
Advances in Cryptology–CRYPTO. Berlin, Germany: Springer-Verlag,
2004, pp. 41–55.

[27] Y. Shi, Q. Zhao, H. Fan, and Q. Liu, ‘‘Secure obfuscation for encrypted
group signatures,’’ PLoS ONE, vol. 10, no. 7, p. e0131550, 2015.

[28] S. Garg, C. Gentry, S. Halevi, M. Raykova, A. Sahai, and B. Waters,
‘‘Candidate indistinguishability obfuscation and functional encryption for
all circuits,’’ in Proc. IEEE 54th Annu. Symp. Found. Comput. Sci. (Focs),
Oct. 2013, pp. 40–49.

[29] Z. Brakerski and G. N. Rothblum, ‘‘Virtual black-box obfuscation for all
circuits via generic graded encoding,’’ in Theory of Cryptography. Berlin,
Germany: Springer-Verlag, 2014, pp. 1–25.

[30] B. Barak, S. Garg, Y. T. Kalai, O. Paneth, and A. Sahai, ‘‘Protect-
ing obfuscation against algebraic attacks,’’ in Advances in Cryptology–
EUROCRYPT. Berlin, Germany: Springer-Verlag, 2014, pp. 221–238.

[31] J. H. Cheon, K. Han, C. Lee, H. Ryu, and D. Stehlé, Cryptanalysis of
the Multilinear Map Over the Integers. Berlin, Germany: Springer-Verlag,
2015, pp. 3–12.

[32] J.-S. Coron et al., Zeroizing Without Low-Level Zeroes: New MMAP
Attacks and Their Limitations (Lecture Notes in Computer Science).
Berlin, Germany: Springer-Verlag, 2015, pp. 247–266.

[33] B. Minaud and P.-A. Fouque, Cryptanalysis of the New Multilinear Map
Over the Integers. (The International Association for Cryptologic Research
(IACR)), USA, 2015.

[34] B. Waters, ‘‘Efficient identity-based encryption without random oracles,’’
in Advances in Cryptology–EUROCRYPT. Berlin, Germany: Springer-
Verlag, 2005, pp. 114–127.

[35] L. Chen and T. P. Pedersen, ‘‘New group signature schemes,’’ in Advances
in Cryptology–EUROCRYPT. Berlin, Germany: Springer-Verlag, 1995,
pp. 171–181.

[36] D. Hofheinz and T. Jager, ‘‘Tightly secure signatures and public-key
encryption,’’ in Advances in Cryptology–CRYPTO. Berlin, Germany:
Springer-Verlag, 2012, pp. 590–607.

[37] X. Boyen and B. Waters, ‘‘Full-domain subgroup hiding and constant-size
group signatures,’’ in Public Key Cryptography–PKC. Berlin, Germany:
Springer-Verlag, 2007, pp. 1–15.

[38] Y. Shi, H. Fan, and G. Xiong, ‘‘Obfuscatable multi-recipient re-encryption
for secure privacy-preserving personal health record services,’’ Technol.
Health Care, vol. 23, no. s1, pp. S139–S145, 2015.

YANG SHI (M’13) received the B.S. degree in
electronic engineering from the Hefei University
of Technology, China, in 1999, the M.S. degree
in pattern recognition and intelligence systems
from theKunmingUniversity of Science and Tech-
nology, China, in 2002, and the Ph.D. degree in
pattern recognition and intelligent systems from
Tongji University, Shanghai, China, in 2005.

From 2005 to 2011, he was with Pudong CS&S
Co., Ltd., Shanghai, China. Since 2012, he has

been an Associate Professor with the School of Software Engineering, Tongji
University. His research interests include cryptography, information security,
and software protection.

6414 VOLUME 4, 2016

Y. Shi et al.: Protecting Encrypted Signature Functions Against Intrusions on Computing Devices by Obfuscation

JINGXUAN HAN received the B.S. degree in soft-
ware engineering from Tongji University, Shang-
hai, China, in 2014.

Since 2014, he has been aGraduate Student with
the School of Software Engineering, Tongji Uni-
versity, Shanghai, China. His current research is
mainly focused on cryptography and information
security.

HONGFEI FAN was born in Suzhou, China, in
1985. He received the B.Eng. degree in soft-
ware engineering from Tongji University, China,
in 2007, and the Ph.D. degree in computer sci-
ence from Nanyang Technological University,
Singapore, in 2013.

Since 2014, he has been an Assistant Professor
with the School of Software Engineering, Tongji
University. His research interests include informa-
tion security and software engineering.

QINPEI ZHAO received the B.S. degree in
automation technology from Xi’dian University,
Xi’an, China, in 2004, the M.S. degree in pattern
recognition and intelligent systems in Shanghai
Jiaotong University, Shanghai, China, in 2007, and
the Ph.D. degree in computer science from the
University of Eastern Finland in 2012.

From 2013, she was a Lecturer with the
School of Software Engineering, Tongji Univer-
sity, Shanghai. Her research interest includes clus-

tering algorithms and multimedia processing, location-based service and
security, and privacy protection.

QIN LIU received the B.S. degree in industrial
automation from the Dalian University of Technol-
ogy and Science, China, in 1998, the M.S. degree
in software engineering from Southampton Solent
University, U.K., in 2001, and the PhD degree in
software engineering from Northumbria Univer-
sity, Newcastle, U.K., in 2006. Since 2007, she
has been with the School of Software Engineering,
Tongji University, Shanghai, China. She is cur-
rently a Professor and the Executive Dean of the

School of Software Engineering, Tongji University. Her research interests
include software measurement, information security and privacy, data min-
ing, and data analysis.

VOLUME 4, 2016 6415

