
Received August 3, 2016, accepted September 22, 2016, date of publication September 28, 2016, date of current version January 4, 2017.

Digital Object Identifier 10.1109/ACCESS.2016.2614325

A Petri Net Method for Compatibility
Enforcement to Support
Service Choreography
JING BI1, (Senior Member, IEEE), HAITAO YUAN2, (Member, IEEE),
AND MENGCHU ZHOU3,4, (Fellow, IEEE)
1Beijing Engineering Research Center for IoT Software and Systems, School of Software Engineering, Beijing University of Technology, Beijing 100124, China
2School of Software Engineering, Beijing Jiaotong University, Beijing 100044, China
3Department of Electrical and Computer Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
4Key Laboratory of Embedded System and Service Computing, Ministry of Education, Tongji University, Shanghai 201804, China

Corresponding author: H. Yuan (htyuan@bjtu.edu.cn)

This work was in part supported by the Beijing Natural Science Foundation under Grant 4164090 and National Natural Science Foundation
of China (NSFC) under Grant 61374148.

ABSTRACT Non-local choice mismatch is one of the most important problems in the Internet-scale and
service-based workflow ecosystems. The state-of-the-art method can solve it by generating adaptors to check
deadlock-freeness based on a reachability graph. The states in the reachability graph give clues to re-design
the composition. Deadlocks are resolved via an iterative process. However, this method is inefficient due
to the overlook of the future deadlock state and the requirement of many interactions with a developer.
In this paper, an abnormity prevention strategy based on an optimal controller is proposed for collaboration
services described by Web Services Choreography Description Language. To overcome the deficiencies of
the previous work, we describe service choreography by using service workflow nets. Then, by combining
structure and reachability analyses, we formulate a different reachability graph called controlled reduced
one. We next develop a maximally permissive state feedback control policy to prevent abnormity. We finally
construct an optimal controller for the administrator of service composition to avoid deadlocks in service
choreography. The advantage of our methodology is verified via an example.

INDEX TERMS Service choreography, Petri net, hybrid optimal controller, deadlock prevention, Web
service.

I. INTRODUCTION
Internet has helped us create the popular and most newest
application and computing paradigms, such asWeb 3.0, cloud
computing, big data, mobile Internet, social networking, and
the Internet of Things. Due to its open, dynamic, and evolv-
ing environment, Internet continues to help us develop new
software technologies. These technologies should be able to
evolve to effectively deal with rapid changes, and adaptable,
context aware between runtime contexts and user demands
[1], [2]. Future Internet research promotes a distributed-
computing environment, in which an increasing number of
interactions are completed through workflow service invo-
cations. In these Internet-scale and service-based workflow
ecosystems, the dynamical coordintion and automatical com-
position for service workflow systems are key enablers for
this concept [3], [4].

Current service composition mechanisms mostly sup-
port service orchestration, based on Web Services Business

Process Execution Language (WS-BPEL) [5], a centralized
method to compose multiple services into a larger
application [6]. Orchestration works well in minimal context
changes and static contexts with predefined services. These
assumptions are unadapted in the Internet-based workflow
ecosystem, where different service workflow providers and
consumers keep changing and cannot be coordinated by a
centralized method.

In contrast, service interaction specification languages,
e.g., Web Services Choreography Description Language
(WS-CDL) [7], and Web Service Choreography Interface
(WSCI) [8], all provide a decentralized method that provides
a looser way to design service composition by specifying par-
ticipants andmessage protocols between them. Service chore-
ographies describe peer-to-peer message exchanges among
participant services from a global perspective. In this case,
they are significantly different from service orchestrations
in which different partners cooperate with other services

VOLUME 4, 2016
2169-3536
 2016 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

8581

J. Bi et al.: Petri Net Method for Compatibility Enforcement to Support Service Choreography

FIGURE 1. Non-local choice mismatch.

to realize an objective. However, choreography-based sys-
tems usually consider two problems: Firstly, a realizability
check confirms if each implemented participant can realize
choreography such that it conforms to the choreography role
specifying its expected behavior. Secondly, a conformance
check makes sure if the global interaction of a series of
services satisfies the choreography [9]. Therefore, web ser-
vice choreographies may fail to work because inconsistent
semantics may be buried in their interfaces and protocols
among systems of different participants.

To address these problems, researchers have proposed
many methods [10]–[12]. However, most of them focus on
direct composition between services. Partial compatibility is
very common in the real-world web service interfaces and
protocols. It denotes that the functionality of two or more
web services is complementary, but their interfaces and pro-
tocols contain mismatches [13], [14]. Therefore, they cannot
be immediately composed. Partial compatibility can cause
problems including mutual waiting mismatch [15], unspeci-
fied reception mismatch [16], and non-local choice mismatch
[17]–[19]. This work solves the problem of non-local choice
mismatch for partial compatibility. This can be formulated as:
the local choices of two services are different, and this leads
to a discrepant behavior that causes deadlock [20], as shown
in Fig. 1.

In Fig. 1, a service makes a local choice after it sends
message x (x!). For example, it sends a message y (y!) or z (z!).
However, its partner also makes a local choice, and waits
for the message y (y?) or the message z (z?) after its partner
receives message x (x?). If a service and its partner make the
same choices, i.e., its partner is expecting to receive y but it
is sending y, there is no problem. However, if its partner is
expecting to receive z, it is sending y, this causes a non-local
choice mismatch.

Enforcing partially compatible services to work with each
other without any deadlock is valuable to the reuse of ser-
vices. In the case of non-local choice mismatch, we assume
that the administrator of service composition constructs an
optimal enforcement controller in the message channel for
service choreography, which can free programmers from
identifying subtle and hard-to-identify deadlocks. Hence,

FIGURE 2. Three steps in optimal enforcement of compatibility.

programmers can concentrate on business process logic and
rely on the optimal controller to guarantee a deadlock-free
execution.

As shown in Fig. 2, to address the challenge of non-local
choice mismatch in service choreography, we:

1) propose a controlled composition-of-service workflow
net (C-CSWN) model to describe service choreography;

2) construct a controlled reduced reachability graph
(CRRG) to efficiently identify deadlocks; and

3) design an optimal controller to implement an optimal
control policy for incompatible services.

Compared with the existing works, the main contributions
of this paper are as follows:

1) We adopt a controlled Petri net-based approach
to find out non-local choice mismatch in service
choreography.

2) If non-local choice mismatch exists, we provide a
solution based on an optimal controller to address
incompatible service choreography.

The rest of the paper is organized as follows. Section II
presents a motivating scenario for compatibility analysis.
Section III proposes a controlled composition-of-service
workflows net tomodel service choreography. Section IV car-
ries out compatibility analysis and proposes a control policy
to avoid deadlock-prone choreography. Section V gives the
method to build the controller. Section VI summarizes the
related work, and Section VII concludes the paper.

II. MOTIVATING SCENARIO
To illustrate the issue of non-local choice mismatch in the
environment of service collaboration, the following example
from supply chain domain is cited from [17]–[19] to address
the question above. Assume that three web services expect
to exchange messages and each has its own internal busi-
ness process, i.e., Clients (C), Online Shop (S), and Third
Party Checkout (T). They are developed by and deployed
in different Internet-based partners. Creating choreography
services is able to collaborate existing Internet-scale services.

8582 VOLUME 4, 2016

J. Bi et al.: Petri Net Method for Compatibility Enforcement to Support Service Choreography

FIGURE 3. Service choreography and incompatibility in the environment
of service collaboration.

For example, an online shop service provides clients with
online products. It can outsource the checkout service to a
third party, in which case clients are directed to a Third Party
Checkout service to pay for the on-line shop service. The brief
choreography workflow services of C, S and T are shown in
Fig. 3.

C’s service workflow is as follows:
C1) C requests S by submitting a booking message (sent

ProductBooking);
C2) C receives a product message (receiveProduct) from S;
C3) C invokes its own operation of Approve or Cancel

and returns the correspondingmessage (sentApprove or
sentCancel) to S;

C4) If the Approve operation is called, the payment oper-
ation is ready, and C waits for a payment message
(receivePayment) from T; Otherwise if Cancel opera-
tion is called, C terminates the booking workflow;

C5) C calls Visa or Master payment operation and returns
the message (sentVisa or sentMaster) to T.

S’s service workflow is as follows:
S1) S receives a bookingmessage (receiveProductBooking)

from C and enters the state of providing products;
S2) S calls a booking operation and returns a product mes-

sage (sentProduct) to C;
S3) S starts the receiving operation (receiveApprove or

receiveCancel) and waits for a message of Approve or
Cancel
from C.

T’s service workflow is as follows:
T1) T receives a payment message (receivePayment)

from S;
T2) T calls a payment operation and returns a payment

message (sentPayment) to C;
T3) T starts the receiving operation (receiveVisa or receive-

Master) and waits for a message of Visa or Master
from C.

The smooth interaction among C, S and T is essen-
tial to the success of a business transaction. In the above
scenario, assume that the message interfaces of all services

are completely matched, but the service operation behavior
mismatches. For example, if C expects payment business
to be with Master C5 (sentMaster), while T calls Visa T3
(receiveVisa) for payment, then the interaction leads to a
deadlock, as shown in the thick lines of Fig. 3.
To avoid such incompatibility behavior, we propose an

optimal enforcement method to identify activities that cause
deadlocks and to avoid executing them, without changing the
internal business process of an individual service.

III. MODELING CONTROLLER-BASED
SERVICE COMPATIBILITY
A. INTERACTION PETRI NETS
Assuming that readers are familiar with Petri nets [21]–[25],
we model an Interaction Service Workflow Net (ISWN) for a
business process.
Definition 1 (ISWN): An interaction service workflow net

is an extended Petri net ISWN= (P,T ,F), where
1) P is a finite set of state places. P = PI∪PM , where

a) PI is a set of internal places;
b) PM is a set of message places; and
c) PI∩PM = ∅;

2) T is a finite set of transitions, P∩T = ∅; and
3) F⊆(P×T)∪(T×P) is a set of directed arcs connecting

state places and transitions.
An ISWN is said to be pure if it has no self-loops,

i.e., if ∀p∈P, ∀t∈T , [(p, t)∈F⇒(t, p)/∈F]. If an ISWN is
pure, its incidence relation can be represented by a matrix
E :P×T→{0, 1,−1}, called the incidence matrix of the
ISWN, where

E(p, t) =

1 if (t, p)∈F
−1 if (p, t)∈F
0 otherwise

(1)

There preset and postset of a transition t are defined as
•t = {p|(p, t)∈F} and t• = {p|(t, p)∈F}, respectively. The
preset and postset of a place p are •p = {t|(t, p)∈F}, and
p• = {t|(p, t)∈F}, respectively.
The state of an ISWN is given by its current marking m:

P→{0, 1, 2, . . .} that assigns to each place of the ISWN a non-
negative number of tokens, represented by black dots, where
m(p) denotes the number of tokens assigned by marking m to
place p. The set of all markings defined on a net ISWN isM. A
service workflow net system 〈ISWN,m0〉 is a net ISWN with
an initial marking m0.
A set of transitions τ⊆T is enabled by a marking m if

∀p∈P,m(p)≥|p•∩τ | (2)

that is, for each place p∈P,m(p) is greater than or equal to the
number of transitions in τ where p∈•τ = ∪

t∈τ
•t .

In words, firing an enabled set of transitions τ⊆T causes
one token to be removed from each place p∈•t , and one token
to be added to each p∈t•, for each t∈τ . Let m[τ 〉 denote that
τ may fire at m, and m[τ 〉m′ denote that τ may fire, resulting

VOLUME 4, 2016 8583

J. Bi et al.: Petri Net Method for Compatibility Enforcement to Support Service Choreography

in m′. In much of the Petri net literature it is assumed that
only a single transition can fire at any instant [22]. A firing
sequence from a marking m0 is a sequence of transition sets
σ = τ1. . .τk such that m0[τ1〉m1[τ2〉m2 . . . [τk 〉mk . We also
write m0[σ 〉 to denote that we may fire the sequence σ at m0,
and m0[σ 〉mk to denote that the firing of σ yields mk .
Given a service workflow net system 〈ISWN,m0〉, the set

of reachable markings is denoted R(ISWN,m0). A transition
t∈T is live if for any marking m∈R(ISWN,m0) there always
exists a markingm′∈R(ISWN,m) such that t is enabled bym′;
a net system is live if all of the transitions are live. A transition
t∈T is in deadlock at a marking m∈R(ISWN,m0) if it cannot
be enabled by any marking in R(ISWN,m).
Deadlock in a Petri net model denotes the classical circular

wait condition. In applications, each activity is occupying a
resource required by one of the other activities, so all of the
activities cannot proceed [26]. This work deals with deadlock
problem in service choreography.We adopt the state feedback
control that has been widely investigated by controlled Petri
nets (CtlPNs) [27]–[30]. CtlPNs denote a class of Petri nets
with external enabling conditions. These conditions are called
controlled places that can enable an external controller to
affect the progression of tokens in the net. The controller-
based interaction service workflow net (C-ISWN) is defined
based on the concept of CtlPNs.
Definition 2 (C-ISWN): A controller-based interaction ser-

vice workflow net is defined as ISWNC
= (ISWN,C), where

1) ISWN= (P,T ,F) is an extended Petri net structure in
Definition 1; and

2) C = (PC,TC,B) is a controller such that:

a) PC = {pcr |r = 1, 2} is a finite set of additional
control places, disjoint from P, T , PC∩P = ∅;

b) B⊆(PC×T) is a set of directed arcs connecting
control places to transitions; and

c) For a transition t∈T we denote the set of input
control places as ∗t = {pc|(pc, t)∈B}, and for a
control place pc∈PC we denote the set of output
transitions as p•c = {t|(pc, t)∈B}. A transition
t is said to be a controlled transition if ∗t is
nonempty. The set of all controlled transitions is
denoted by TC = {tcs|s = 1, 2}.

The state of a C-ISWN is given by itsmarking, which is the
distribution of tokens in the state places. A set of transitions
τ⊆T is state enabled under a marking m if equation (2) is
satisfied.

A control for a C-CSWN is a function u:PC→{0, 1} asso-
ciating a binary value to each controlled place. The set of all
possible control policies is denoted by U . A set of transitions
τ⊆T is said to be control enabled if for all t∈τ , u(pc) = 1
for all pc∈∗t . Given two controls u′, u∈U , a control u∈U is
said to be as permissive as control u′∈U if u(pc)≥u′(pc) for all
pc∈PC. Control u is said to bemore permissive than control u′

if u is as permissive as u′ and u(pc)>u′(pc) for some pc∈PC.
It follows that uzero = 0 is the least permissive control of all
control, while uone = 1 is the most permissive control. Note

that, uzero = 0 and uone = 1 are abbreviated as uzero and uone,
respectively in the later part of this paper.

Similar to the definitions in the work [39], we give the
following description. Each transition is control-enabled by
u∈U and state-enabled by m∈M . Then, the collection of
transition sets is denoted byϒe(u,m). Besides, any transition
set τ∈ϒe(u,m) can fire. The marking changed in the net is
denoted by m′ that is further explained in Definition 1.
Given a marking m∈M and control u∈U , the set of

immediately reachable markings within one state transition,
R1(u,m), is given by

R1(u,m) = {m}∪{m′∈M |m′ is given for some τ } (3)

Similarly, the set of reachable markings from a marking m
for a control u∈U , denoted by R∞(u,m), is defined by
1) m∈R∞(u,m);
2) m′∈R∞(u,m), then R1(u,m′)⊆R∞(u,m); and
3) all m′∈R∞(u,m) are defined by 1) and 2).
We conclude this section by noting that the controlled

service workflow net model defined is similar to the CtlPNs
defined by Krogh [27] and Ichikawa and Hiraishi [28].

B. MODEL SERVICE COMPATIBILITY WITH CONTROLLER
The composition of web services can realize a distributed
business process. There are two major ways to define the
composition. One way is to specify the orchestration of a
whole set of web services [10], [31] by a global model. The
other way is to specify the collaboration with its partners
by each web service [7], [32]. This work mainly follows the
second way.

This section first shows how to model the composition of
services with ISWNs. It is assumed that the message order
and the compatibility at the syntactic level are both satisfied,
i.e., the output and input interfaces have the same operation
sequences and message types. Therefore, ISWN1 and ISWN2
are composable if they can collaborate using a set of common
places. The composition of ISWNs (CSWN) is defined as
follows.
Definition 3 (Composition of ISWNs): Given two ISWNs,

ISWNi = (Pi,Ti,Fi), i ∈ {1, 2} that are syntactically and
semantically compatible workflow nets, their workflow net
CSWN = ISWN1⊕ISWN2 is given by (P,T ,F), where

1) P = PI∪PM , satisfying:
a) PI = PI1∪PI2, PI1∩PI2 = ∅; and
b) PM = PM1∪PM2, PA = PM1∩PM2 6=∅ is a set of

common message places;
2) T = T1∪T2; and
3) F = F1∪F2
The composition of ISWN1 and ISWN2 via common mes-

sage places PA is denoted as CSWN = ISWN1⊕ISWN2 where
⊕ denotes a composition operator. Later, we also use this
operator when we define composition via a controller.

As a quality criterion, the notion of soundness [33] is
used to characterize workflow nets. Soundness needs every
initiated process to reach a proper final state. In addition, each

8584 VOLUME 4, 2016

J. Bi et al.: Petri Net Method for Compatibility Enforcement to Support Service Choreography

transition needs to be relevant. Therefore, there must be at
least one behavior of process where this transition fires. In
our method, a business process is established based on the
composition of web services. Therefore, it is reasonable to
require a system to be sound. This paper adopts the notion of
weak soundness that is slightly different from the soundness
in [33].
Definition 4 (Weak Soundness): A composable workflow

net CSWN = ISWN1⊕ISWN2 is weakly sound if:
1) For each reachable marking (starting at m0) the final

marking me is reachable; and
2) For each reachable marking m such that m≥me holds

m = me.
Note that the requirements in this definition are a sub-

set of the requirements in the soundness definition. There-
fore, every sound service workflow net is weakly sound.
Due to the interaction protocol incompatibility, two or more
ISWNs with complementary functions cannot interact with
each other. Then, a controller can be proposed as a middlebox
and eliminate the incompatibility between them. Then, based
on the former definition of CSWN, this sections presents
the controller-based composition of service workflows net
(C-CSWN).
Definition 5 (Controller-Based Compatibility): Given two

ISWN1, ISWN2 and a controller C, if an existing CSWN has
protocol incompatibility, the corresponding controller should
be appended on exceptional message places in CSWN. That
is, the composition of ISWN1 and ISWN2 is compatible with
controller C if ISWN1⊕C⊕ISWN2 is weakly sound.
Definitions 3–5 concern only the composition of two

ISWNs. Our method can easily be extended to a multi-service
composition scenario by stepwise composition and analysis.

Then, we first model service choreography for the prior
scenario. We assume that the interfaces of services are com-
pletely matched. Later we show that this is not sufficient
to ensure a successful service choreography. The CSWN is
shown in Fig. 4, i.e., Messages Product, Approve, Cancel,
Payment, Visa andMaster are modeled with p16−p21, respec-
tively. PI1 = {p1−5}, PI2 = {p6−10} and PI3 = {p11−15}
describe those of ISWN1(C), ISWN2(S) and ISWN3(T),
respectively. The operations are modeled by transitions,
namely T = {t1−19} inCSWN. For example, Product Booking
service initiates the communication by sending a Product and
waits for payment, i.e., either Visa or Master, from client.
By receiving the Payment from the Third Party Checkout
service, the client solves an internal conflict and fixes the kind
of payment. It can be easily proven: The composed service
ISWN1⊕ISWN2⊕ISWN3 is weakly sound. Thus, we call it is
compatible.

Fig 5(a) shows two service workflow nets ISWN1 and
ISWN3. The Third Party Checkout service solves an internal
conflict and sends Payment. Thereafter, ISWN3 is either in
state p13 waiting for Visa or in state p14 waiting for Master.
The client receives Payment and has the choice between the
two kinds of payment. But, he does not know the inter-
nal state of the Third Party Checkout service. Thus, he

FIGURE 4. Illustration of an incompatible CSWN.

FIGURE 5. Controller-based service orchestration.

might choose the ‘‘wrong’’ alternative. The composed service
ISWN1⊕ISWN3 may end in a deadlock, thus it is not weakly
sound. The two service workflow nets are not compatible, and
a non-local choice mismatch issue arises.

VOLUME 4, 2016 8585

J. Bi et al.: Petri Net Method for Compatibility Enforcement to Support Service Choreography

For example, if ISWN3 decides to proceed Master (t18)
operation but ISWN1 decides to proceed Visa (t11) operation,
then there is a deadlock after t7, t8, t10, t11 and t14, t16,
t18 fire (paths of fire are represented with bold arrows), as
shown in Fig. 5(a). Then, in order to avoid a non-local choice
mismatch, we append controlled places pc3 and pc4 to Visa
(t11) and Master (t12) of service workflows ISWN1 respec-
tively when Third Party Checkout service is ready. If t18
fires in ISWN3, we assure corresponding controls u(pc3)=0
and u(pc4)=1, respectively. So MasterInfo (p21) is received
by Master (t18) operation of ISWN3 after Master (t12) fires
in ISWN1, as shown in Fig. 5(b). Therefore, by appending
controller C to CSWN, we obtain a compatible service chore-
ography. That is, C-CSWN is weakly sound.

IV. COMPATIBILITY ANALYSIS AND CONTROL POLICY
In this section we first present the compatibility analysis of
service choreography. Then, a solution based on an optimal
control policy is proposed to prevent protocol incompatibility
in CSWN.

A. COMPATIBILITY ANALYSIS
In order to check the compatibility in service choreography,
a set of states are now marked to denote the initial status of
CSWN in Fig. 4. A naive method requires the construction
of a reachability graph. However, the conventional reacha-
bility graph approach is inefficient or intractable, even for a
bounded Petri net, due to state explosion in many practical
applications. To alleviate the state explosion problem in the
reachability graph of CSWN, the related definitions about
reduced state space [34], [36] are presented. In our experi-
ments, we have followed Valmaris heuristic [36] of selecting
a stubborn set with a minimal number of transitions to build
a reduced state space of the system.

Reduced state space is divided into deadlock-free
states and deadlocks, as shown in Fig. 6. From Fig. 6,
the set of forbidden (deadlock) states can be obtained,
that is, MF={m6,m7,m15,m18} which are represented
by grey circles; the admissible (deadlock-free) states
AF={m1−5,m8−14,m16,m17,m19,m20} are represented by
hollow circles; the set of deadlock transition domain
(DTD) DTD={t8, t9, t11, t12} is shown via dashed directed
arcs; the set of deadlock-free transition domain (DFTD)
DFTD={t2−7, t10, t13, t15−19} is denoted by solid directed
arcs.

Our control policy is to prevent any forbidden states from
entering DTD, while ensuring that all other states within
DFTD can still be reached. To do this we add some new
places with an initial marking into CSWN such that the bad
transitions can no longer occur from the critical good states
of DFTD.

B. OPTIMAL CONTROL POLICY
State feedback policies for CtlPNs have been investigated by
a number of researchers [37]–[39]. In this section we first
consider state specifications, i.e., specifications given as a set

FIGURE 6. The reduced reachability graph (RRG) of the CSWN.

of legal markings for CSWN to be controlled. In this setting
the aim of the controller is that of restricting the behavior
of a CSWN such that only legal markings can be reached.
The corresponding control policy is called state feedback
control policy. We show here how it can be computed for the
C-CSWN model presented in Section III-B.
Given a C-CSWN with initial marking m0, let MF denote

the set of forbidden markings (states). The main objective is
to find a state feedback control policy UF for which:
1) R∞(UF ,m0)∩MF = ∅; and
2) for any policy U ′ such that U ′≥UF , if U ′ satisfies

1) above, then U ′ = UF .
We call a state feedback policy satisfying condi-

tions 1) and 2) a maximally permissive state feedback control
policy for the given forbidden state specification MF .

A necessary and sufficient condition for the existence
of a maximally permissive state feedback control policy is
determined by an analysis of the C-CSWN behavior under
the control uzero. Specifically, define the set of admissible
markings [27] for aC-CSWNwith respect to a set of forbidden
markings MF as

AF = {m∈M |R∞(uzero,m)∩MF = ∅} (4)

An existing state feedback control policy can ensure that a
C-CSWN is kept out of the given forbidden markings. Then,
sufficient and necessary conditions are further presented [39]
as follows.
Theorem 1 [39, Th. 2]: For a C-CSWN with a forbidden

specification of marking MF and initial marking m0, a single
state feedback policy that is maximally permissive exists if
and only if m0∈AF .
In C-CSWN, multiple transitions are allowed to simul-

taneously fire. Thus, the single state feedback policy that
is maximally permissive in Theorem 1 is nondeterministic.

8586 VOLUME 4, 2016

J. Bi et al.: Petri Net Method for Compatibility Enforcement to Support Service Choreography

In the state feedback policy that is maximally permissive,
any state transitions to markings that are not in AF are not
allowed when the initial marking meets the conditionm0∈AF
in Theorem 1. Besides, the control set is changed at every
state transition, and therefore only immediately reachable
markings should be considered in specifying the admissible
control set from a given marking. This leads to the following
Theorem 2 that is similar to an extension of the supervisory
control proposed by Ramadge and Wonham [35] in the C-
CSWN.
Theorem 2 [39, Th. 3]: for a C-CSWN with an initial

condition m0∈AF and a forbidden specification of marking,
if m∈R∞(UF ,m0), then

UF (m) = {u∈U |R1(u,m)− AF = ∅} (5)

Then, state feedback policies that are maximally permissive
for state specifications that are forbidden have been charac-
terized. Next, for a givenmarking, how to calculate the admis-
sible control set becomes the key problem. In this work, the
first control objective is to prevent any forbidden markings
MF from being reached. Given an initial markingm0∈AF , we
know that uzero will prevent any forbidden conditions from
being satisfied. However, uzero is often more restrictive than
necessary. Our second control objective is to find the set of
maximally permissive state feedback controls u∈UF for each
markingm∈AF to guarantee that the state of the system under
it will remain within the set AF .

C. CONTROLLER EXISTENCE CHECKING
In order to check whether there exists a controller to compose
partially compatible services into a weakly sound service,
we introduce the method of controlled reduced reachability
graph (CRRG). Its basic idea is to construct the CRRG of
multiple service choreography, using a controller mechanism.
A controlled place, transition and edge are constructed into
the mechanism among multiple services choreography. The
construction method of a CRRG is given in Algorithms 1
and 2.

1) STRATEGY OF CRRG
Firstly, derive a reduction state reachability graph, RRG
according to CSWN. Secondly, decide if there exists a dead-
lock state in RRG; and if so, provide control-enabled state
for each deadlock. Thirdly, derive a maximally permissive
state feedback control policy UF . Finally, derive the CRRG
of multiple services choreography.

For each ISWN, the set of markings contains the reachable
one within k state transitions from marking m under control
u (k must be large enough). If a whole CSWN is composed
of n ISWNs where each ISWN includes at most k execution
steps, then its execution state space can roughly be kn given
a limited number of execution steps in each ISWN. This work
adopts the method of a stubborn set, where the unrelated part
is reduced via usability examination. The state space can be
reduced to nk . Thus, the complexity of Algorithms 1 and 2
becomes O ((|V |+|E|)×nk).

Algorithm 1 Method to Construct CRRG-Part 1
Input:
ISWNi = (Pi,Ti,Fi), i = 1, 2; the stubborn set S

Output: CRRG(m,UF) = (VC,EC) where VC is a set of
system states in C-CSWN, and EC is a set of controlled
transitions
1: Construct RRG(CSWN) = (V ,E) where V is a set of
system states, and E is a set of transitions that change
system states.
1.1 Initialize (V ,E) = ({m0 = m01×m02},∅); m0 is an

untagged node;
1.2 If there are no untagged nodes in V , go to 2, and else

go to 1.3;
1.3 While there are untagged nodes in V , do
1.3.1 Select an untagged node m∈V , and tag it ‘‘true’’

(m = m1×m2);
1.3.2 For each enabled transition t∈S at m,

a) Compute m′ : m
t
−→m′;

b) If ∃m′∈V , E = E∪{(m, t,m′)}, go to 1.4;

c) If ∃m′′∈V , such that ∀p∈P, m′′
δ
−→m′,(m′′≤ m′)∧

(m′′ 6=m′) and ∃p∈P∧p/∈PM , s.t.m
′′

<m then an unbounded
reachability graph is detected;

d) Else if ∃m
′′

/∈V , such thatm
′′

= m′, then V =V∪{m′},
E=E∪{(m, t,m′)}, tag m′ is ‘‘false’’ (m′ is untagged);
1.4 According to the three preconditions of a stubborn set
in [36], construct RRG, and go to 1.2;

According to Algorithms 1 and 2,CRRG of aC-CSWN can
be obtained. The following theorem shows thatUF as defined
above is the maximally permissive state feedback controller
for the set of forbidden markings MF .
Theorem 3: Given a live C-CSWN with a specification

of forbidden markings set MF , UF as defined in Algo-
rithms 1 and 2 is a maximally permissive state feedback
control policy for the forbidden states avoidance problem of
the C-CSWN with the forbidden state specification.
Proof: Algorithms 1 and 2 eliminate no good markings at

each iteration when a new controller is added based on the
optimal control policy. Thus, all goodmarkings are preserved,
leading to the optimally controller-based CSWN that is
live. �
From Theorem 1, the following theorem can be obtained, if

controller C exists, the ISWNs with protocol incompatibility
may be composed. According to Algorithms 1 and 2, we give
the method to derive the state space of ISWN1⊕C⊕ISWN2.
We will prove that if ISWN1⊕C⊕ISWN2 is weakly sound,
there exists an optimal controller C. We have the following
theorem.
Theorem 4: Given ISWNi, i ∈ {1,2}, and maximally per-

missive state feedback control u∈UF , there exists an optimal
controller C with respect to UF , such that CSWN via C is
compatible, iff ISWN1⊕C⊕ISWN2 is weakly sound, i.e.,
Theorem 2 can be easily proven. We therefore omit the

proof here, it is similar to that in [24]. It claims that the

VOLUME 4, 2016 8587

J. Bi et al.: Petri Net Method for Compatibility Enforcement to Support Service Choreography

Algorithm 2 Method to Construct CRRG-Part 2
2: If RRG contains any deadlock state, continue the fol-
lowing steps, and else no controller C exists, such that
u(pc) = uzero, i.e., namely, RRG(CSWN) = (V ,E) =
(VC,EC), go to 3;
2.1 According to RRG, and the set of forbidden markings,
MF , compute TC = {tcs|s = 1, 2}, for pc is the controlled
place of tc, thus PC = {pcr |r = 1, 2};
2.2 The length of a marking vector for any node m∈V is

increased from |PI | + |PM | to |PI | + |PM | + |PC |;
2.3 Fill in RRG(CSWN) = (V ,E) with the subvector value
corresponding to |PC|. ∀m′,m′′∈V , VC

= V∪0pc∈PC (m),
where 0pc∈PC (m) is the mapped subvector in PC from m;
2.4 ∀m′,m′′, if (m′,m′′)∈E , and each enabled

controlled transition tc∈TC for m, m′
tc
−→m′′, then

EC
=E∪{(0pc∈PC)(m

′),TC, (0pc∈PC)(m
′′)};

3: Derive a maximally permissive state feedback control
policy UF ,
3.1 Compute the set of all controlled transitions TC, which
are marked with m in C-CSWN.
3.1.1 If TC = ∅, compute the set of transitions T ;
3.1.2 If ∀tc∈TC ⊂ T , then there exists m[tc〉mf ;
3.1.3 If mf ∈MF , then there exists tc∈TC;

3.2 If TC = ∅, u(pc)=1. Otherwise, the control u∈UF can
be obtained a maximally permissive state feedback control
policy according to a state feedback policy satisfying con-
ditions 1 and 2;
4: Return CRRG(m,UF).

method to generate CRRG is equivalent to the one that gen-
erates a reduced state space of the service choreography by
using stubborn sets. Since we are only interested in terminal
states in a state-space, the reduced state space eliminates
some intermediate states, and preserves all the relevant prop-
erties.

V. CONTROLLER GENERATION APPROACH
A. OPTIMAL CONTROLLER GENERATION
In Section IV-C, we use CRRG to check the existence of a
controller among the multiple ISWNs. This section gives the
method to build it if existing.

According to Theorem 2, it can be concluded that CSWN
is compatible, i.e., controller C exists. To address the above
protocol incompatibility issue, this work proposes an Algo-
rithm 3 based on the modification by appending additional
controllers to CSWN as follows:
Continue with the prior example. By using the proposed

method, we conclude that CSWN, the interaction of ISWN1,
ISWN2 and ISWN3, is compatible via controller C, as shown
in Fig. 7. Two or more incompatible ISWNs can be com-
posable by appending an additional controller, which avoids
other complicated methods. For example, substitution service
environment-based methods [18] explore an entire reacha-
bility state space of service interaction, which encounters

Algorithm 3 Generation of the Optimal Controller
Input:
ISWNi = (Pi,Ti,Fi), i = 1, 2, and the maximally
permissive state feedback control policy UF

Output: Optimal controller C = (PC,TC,B)
1: If the interaction among ISWNi, i = 1,2, leads to a
deadlock, namely there exists a forbidden state mf , then
set PC = {pcr |r = 1, 2}, TC = {tcs|s = 1, 2}, B←∅, tag
and push u(pc)=0 into the ST (ST is stack);
2: If stack 6=∅, go to 3, else go to 6;
3: If there exists an adjacent node from ST(top), and
untagged u, and go to 4. Otherwise, go to 5;
4: Define1u = u−ST (top). If there is ST(top)

tcs
−→ u, then

go to 4.1;
4.1 Define γ = 1u, ∀pcr∈PC, if γ>0
4.1.1 Add controlled transitions {tc1, tc2} to C, namely

TC←T∪{tc1, tc2}; and controlled places {pc1, pc2} to C,
namely PC←P∪{pc1, pc2}; and
4.1.2 B←B∪{(pc1, tc1), (pc2, tc2)}
4.2 Tag and push u into ST, and go to 3;
5: Pop ST, and then go to 2;
6: According to Algorithms 1 and 2, construct optimal
controller C;
7: Return C = (PC,TC,B)

the state space explosion problem. This method can only be
adaptive to numerous services with the same interfaces but
different interaction protocols, as more optional services can
lead to more services with different interaction protocols,
which means more likely to achieve CSWN with completely
matched interaction patterns. Along with the increase of the
above kind of services, it is more difficult to find a completely
fit service, as one faulty behavior of a single ISWN can
make the whole CSWN with many other ISWNs incompati-
ble. For example, in a CSWN composed of n ISWNs, there
are m optional services with same interfaces but different
interaction protocols for each ISWN. It is unimaginably com-
plex since with this method has mn time complexity. The
proposed strategy by appending an additional controller to
CSWN is convenient, as it can modify incompatible parts in
ISWN rather than replace the whole ISWN to meet the com-
posibility requirement. Therefore, the policy of appending an
optimal controller can be realized in linear time complexity.

B. HYBRID OPTIMAL CONTROLLER-BASED
PROTOCOL COMPATIBILITY
In this section, our optimal control policy is constructed for
CSWN. The focuses are on how to analyze a CSWN model
and to provide a new policy when CSWN is incompatible,
namely, an optimal control policy to avoid deadlock. Our
work aims to obtain live, and thus deadlock-free, CtlPN
models of CSWN, and at the same time to ensure the optimal
use of the system resources. A control policy is defined as the
addition of new constraints to the system such that its initial

8588 VOLUME 4, 2016

J. Bi et al.: Petri Net Method for Compatibility Enforcement to Support Service Choreography

FIGURE 7. CSWN based on Controller, which is live, i.e. deadlock-free,
and optimal, i.e. maximally permissive.

behavior is restricted to a set of states considered as good
states, which allow the system to evolve without reaching
a deadlock. At the same time, it should be ensured that all
possible good states of the systems can still be reached.

The example of incompatible web services is as shown in
Fig. 3. The collaboration business processes can be described
in WS-CDL. It is deadlock-prone and the ISWNs are incom-
patible. According to the aforementioned method, the opti-
mal controller C is constructed among multiple interaction
services, as shown in Fig. 7 (controlled transition use black
rectangle). In Section 4.3, the weak sound C-CSWN is con-
structed. That is, optimal controller-based service choreogra-
phy is compatible.

According to Fig. 6, four deadlocks states are obtained
in blue circles, namely M6(p3,[0,0,1],p10,[0,0,0],p12),
M7(p4, [0,1,0],p8,[0,0,0],p12),M18(p2, [0, 0, 0],p10, [0, 0, 1],
p13), and M19(p2, [0, 0, 0], p10, [0, 1, 0], p14) within DTD,
that is, the four deadlocks states of RRG, namely
{p3, p18, p10, p12}, {p4, p17, p8, p12}, {p2, p10, p21, p13}, and
{p2, p10, p20, p14}. The other states are within DFTD.
According to the proposed method, controller C among
ISWN1-ISWN3 is constructed, as shown in Fig. 7. Corre-
sponding controlled places are PC = {pc1−c4}, which are
denoted by light blue circles; controlled transitions are TC =
{t8, t9, t11, t12}, which are denoted by black rectangles. Con-
trolled places and transitions can be connected by controlled
arcs with dashed arcs, namely B = {(t2, pc1), (pc1, t8),
(t3, pc2), (pc2, t9), (t15, pc3), (pc3, t11), (t16, pc4), (pc4, t12)}.
Then, it is obtained that the set of maximally permissive
state feedback control policies for forbidden markingsMF =

{m6,m7,m18,m19} respectively is:

UF (m) = {uf , f = 1, 2, 3, 4, 5}

where

u1 : u1(pc1) = 1, u1(pc2) = 0, u1(pc3) = 0, u1(pc4) = 0

u2 : u2(pc1) = 1, u2(pc2) = 0, u2(pc3) = 1, u2(pc4) = 0

u3 : u3(pc1) = 1, u3(pc2) = 0, u3(pc3) = 0, u3(pc4) = 1

u4 : u4(pc1) = 0, u4(pc2) = 1, u4(pc3) = 0, u4(pc4) = 0

u5 : u5(pc1) = 0, u5(pc2) = 0, u5(pc3) = 0, u5(pc4) = 0

Through the set of maximally permissive state feedback
control policies UF , the controlled places, transitions and
arcs, and an optimal controller C are constructed where
C = {pc1−c4,TC,B}. Therefore, the compatible CSWN based
on the controller is obtained.
Finally, we transform four additional controlled channels

to collaboration business processes. For example, controller
pc1 means that ISWN2 is informed to Approve booking opera-
tion by ISWN1. Controller pc2 means that ISWN2 is informed
toCancel booking operation by ISWN1. Controller pc3 means
that ISWN3 is informed to use Visa payment by ISWN11.
Controller pc4 means that ISWN3 is informed to use Master
payment by ISWN1. According to Theorem 2, the new col-
laboration business processes are compatible.

VI. RELATED WORK
In order to analyze the compatibility of service choreogra-
phy, several formal semantics have been adopted, such as
graphs [40], message sequence charts (MSC) [41],
ontology [3], finite state machines (FSM) [43], process alge-
bra (PA) [47], martin type theory (MTT) [49] and Petri nets
(PN) [50]–[52]. In particular, Petri net models have been
widely adopted to describe service choreography, from lan-
guages likeWS-CDL to interaction Petri nets [25]. Therefore,
it is appropriate for modeling and analyzing compatibility
and equivalence of web services. In our work, we use the
analysis methods of CtlPN. This section gives an overview of
the relatedworks in this research area andmakes comparisons
among them.

A. COMPATIBILITY VERIFICATION
The existing work can be divided into two categories, i.e.,
syntactic and protocol compatibility verification. For the syn-
tactic consideration, Nezhad et al. [15] identify the split/
merge interface mismatch and construct an adaptor for these
services. Zhou et al. [40] gain abstract protocols from service
protocols by definingmany rules. Then, to adapt two services,
they establish an adaptation matrix through a depth-first
search with back tracking methods. Foster et al. [41] propose
a model-based approach to verify web service composition
by using MSC. The work only deals with compatibility in
the message interface level. To establish a mapping between
the interfaces from the automated synthesis of mediators,
Bennaceur and Issarny [42] present a method to combine
constraint programming and ontology reasoning. Based on
FSM, Bachir and Fauvet [43] check whether two services are
incompatible syntactically, and locate interfaces of services
where incompatibilities happen.
Even if service interfaces match perfectly, interaction pro-

tocol mismatch may occur. Most researchers work on chore-
ography modeling using Petri nets and a stitched interaction
protocols approach [44], [45]. Interaction protocols can be
represented using workflow nets, which are a subclass of
Petri nets where a distinction is made between internal, input
and output places [46]. Input and output places represent
inbound and outbound message queues for communication

VOLUME 4, 2016 8589

J. Bi et al.: Petri Net Method for Compatibility Enforcement to Support Service Choreography

with the environment. Different workflow nets are stitched
together for carrying out compatibility checking. π -calculus
is a popular process algebra especially suited for describing
interacting processes [47]. In [48], the interaction model-
ing based on process algebra (PA) has been driven by the
WS-CDL. Martens [18] transforms the correctness check of
the composed processes into the usability and compatibility
check, and presents algorithms to verify these properties
locally. Their approach yields a concrete example how to use
a given Web services. In [49], Yin et al. model Web service
behaviors with martin type theory (MTT), and then propose a
consistency and compatible judgment method ofWeb service
behaviors.

The above methods can address the issue of compatibility
verification for a small number of services. However, existing
methods only identify a deadlock if any, but do not offer
anything to resolve it. We go a step further in terms of avoid-
ing the occurrence of deadlocks, by appending an optimal
controller to any deadlock prone states for behaviours incom-
patibility. We also adopt a reduced state space method to
overcome the state space explosion problem when verifying
the composition of complex services.

B. DEADLOCK PREVENTION OF PETRI NETS
Deadlock avoidance can be achieved by characterizing the
compatibility in terms of structural Petri net objects, e.g.,
siphons. Our previous work [19] presents a technique to
hold tokens in siphons according to additional information
channels, such that each siphon is always marked. In this
case, by adding new net elements to the initial Petri net of
service choreography, the control policy can be implemented.
The addition of new net elements causes that in order not
to generate a deadlock state, some enabled transitions are
stopped. Though the online computation of structural analysis
technology of Petri net is quick, to achieve its deadlock-free
state, it may eliminate several good states of a system. Thus,
the controlled model of the system may not be maximally
permissive.

By checking the reachability graph, it is also possible
to obtain a deadlock-free system. For example,
Li and Wonham [50] establish relationships between the
language of the CtlPN (sequences of transitions) and pred-
icates on the state space for a CtlPN (i.e., sets of allowable
markings) in state feedback control. They show balanced
controllers that are maximally permissive from the given
initial marking to the set of reachable markings. In [51],
a Petri net-based state reachability graph is presented to
prevent deadlocks in the application of web services to
distributed business processes. Besides, though the problem
of compatibility in interaction of web services is similar to
the traditional deadlock problem in flexible manufacturing
systems (FMS) [52], it is not totally the same. Therefore,
these approaches cannot well solve the protocol incompat-
ibility problem in service choreography. In addition, these
approaches may face the problem of state explosion for a
sizable Petri net.

TABLE 1. Related works on web service composition compatibility.

Compared with these researches, the structural analysis
is combined with the state analysis of reachability in this
work. An optimally controlled C-CSWNmodel is established
for service choreography, and this can guarantee the high
performance of the resulting service choreography. Thus, the
approach in this paper is both efficient and effective in this
sense.

A summary of service composition compatibility is shown
in Table 1. The columns of the table correspond to the follow-
ing criteria, where (-) means not at all and (+) means fully.

• FM denotes the formalization methods used: CtlPN for
Controlled Petri Nets and PN for plain (i.e. low-level)
Petri Nets, MSC for Message Sequence Charts, FSM for
Finite State Machines.

• CM denotes whether the formalization considers the
composition of several business processes.

• SE denotes whether there is the state space explosion
problem in the service composition.

• MP denotes whether the modification policies of incom-
patibility conditions are given.

• CP denotes whether the control policies of incompati-
bility conditions are proposed.

• CTP denotes whether the correctness proof of a method
is proposed.

• OM denotes whether the optimal approach is proposed
in the incompatibility of service choreography.

VII. CONCLUSIONS
When multiple web services provide complementary func-
tionality and can be linked together in principle, but their
interaction patterns do not fit each other exactly, they cannot
be directly composed in the Internet-scale service ecosys-
tems. The challenge is to analyze the compatibility of ser-
vices and automatically compose them with the minimum
engineering cost.

To tackle this challenge we first model a service chore-
ography as a controlled Petri net. Based on this model,
the incompatibility of multiple services is analyzed with a
reduced reachability analysis technique. Afterward a con-
trolled reduced reachability graph is constructed by combin-
ing structural and reachability analyses, obtaining deadlock
and deadlock-free states, and developing amaximally permis-
sive state feedback control policy to resolve deadlocks. As a
result the required compatibility in service choreography is
enforced.

Our future work aims at designing an effective controller
under distributed service choreography.We also plan to apply

8590 VOLUME 4, 2016

J. Bi et al.: Petri Net Method for Compatibility Enforcement to Support Service Choreography

other methods of avoiding the state explosion problem, e.g.,
partial orders and unfoldings methods, to simplify the state
space while preserving the concerned properties such as
boundedness and liveness.

REFERENCES

[1] H. Mei, G. Huang, and T. Xie, ‘‘Internetware: A software paradigm
for internet computing,’’ Computer, vol. 45, no. 6, pp. 26–31,
Jun. 2012.

[2] A. Bertolino, M. B. Blake, P. Mehra, H. Mei, and T. Xie, ‘‘Software engi-
neering for internet computing: Internetware and beyond [guest editors’
introduction],’’ IEEE Softw., vol. 32, no. 1, pp. 35–37, Jan./Feb. 2015.

[3] A. Bennaceur andV. Issarny, ‘‘Automated synthesis ofmediators to support
component interoperability,’’ IEEE Trans. Softw. Eng., vol. 41, no. 3,
pp. 221–240, Mar. 2015.

[4] W. Tan, J. Zhang, and I. Foster, ‘‘Network analysis of scientific workflows:
A gateway to reuse,’’ IEEE Comput., vol. 43, no. 9, pp. 54–61, Sep. 2010.

[5] OASIS. Web Services Business Process Execution Language Version 2.0.
[Online]. Available: http://docs.oasis-open.org/wsbpel/2.0/CS01/wsbpel-
v2.0-CS01.html

[6] M. Trainotti et al., ‘‘Astro: Supporting composition and execution of
Web services,’’ in Proc. Int. Conf. Service-Oriented Comput. (ICSOC),
vol. 3826. 2005, pp. 495–501.

[7] W3C. Web Services Choreography Description Language Version
1.0. [Online]. Available: http://www.w3.org/TR/ 2004/WD-wscdl-10-
20041217

[8] W3C. Web Service Choreography Interface (WSCI) 1.0. [Online]. Avail-
able: http://www.w3.org/TR/wsci/

[9] M. Autili, P. Inverardi, and M. Tivoli, ‘‘Automated synthesis of service
choreographies,’’ IEEE Softw., vol. 32, no. 1, pp. 50–57, Jan. 2015.

[10] M. B. Blake, W. Tan, and F. Rosenberg, ‘‘Composition as a service,’’ IEEE
Internet Comput., vol. 14, no. 1, pp. 78–82, Jan./Feb. 2010.

[11] S. Basu, T. Bultan, and M. Ouederni, ‘‘Deciding choreography realiz-
ability,’’ in Proc. 39th Annu. ACM SIGPLAN-SIGACT Symp. Principles
Program. Lang., Jan. 2012, pp. 191–202.

[12] M. B. Blake, ‘‘Decomposing composition: Service-oriented software engi-
neers,’’ IEEE Softw., vol. 24, no. 6, pp. 68–77, Nov. 2007.

[13] D. Garlan, R. Allen, and J. Ockerbloom, ‘‘Architectural mismatch: Why
reuse is still so hard,’’ IEEE Softw., vol. 26, no. 4, pp. 66–69, Jul. 2009.

[14] W. Kongdenfha, H. R. Motahari-Nezhad, B. Benatallah, F. Casati, and
R. Saint-Paul, ‘‘Mismatch patterns and adaptation aspects: A foundation
for rapid development of Web service adapters,’’ IEEE Trans. Services
Comput., vol. 2, no. 2, pp. 94–107, Apr. 2009.

[15] H. R. M. Nezhad, B. Benatallah, A. Martens, F. Curbera, and F. Casati,
‘‘Semi-automated adaptation of service interactions,’’ in Proc. 16th Int.
Conf. World Wide Web, 2007, pp. 993–1002.

[16] D. M. Yellin and R. E. Strom, ‘‘Protocol specifications and component
adaptors,’’ J. ACM Trans. Prog. Lang. Syst., vol. 19, no. 2, pp. 292–333,
1997.

[17] H. Ben-Abdallah and S. Leue, ‘‘Syntactic detection of process divergence
and non-local choice in message sequence charts,’’ in Proc. 3rd Int. Work-
shop Tools Algorithms Construct. Anal. Syst., 1997, pp. 259–274.

[18] A. Martens, ‘‘Usability of Web services,’’ in Proc. 4th Int. Conf. Web Inf.
Syst. Eng. Workshops, 2003, pp. 182–190.

[19] P. C. Xiong, Y. S. Fan, and M. C. Zhou, ‘‘A Petri net approach to analysis
and composition of Web services,’’ IEEE Trans. Syst., Man, Cybern. A,
Syst., Humans, vol. 40, no. 2, pp. 376–387, Mar. 2010.

[20] P. C. Xiong, C. Pu, and M. C. Zhou, ‘‘Protocol-level service composition
mismatches: A Petri net siphon based solution,’’ Int. J. Web Services Res.,
vol. 7, no. 4, pp. 1–20, 2010.

[21] W. V. D. van der Aalst and K. V. van Hee,WorkflowManagement: Models,
Methods, and Systems. Cambridge, MA, USA: MIT Press, 2002.

[22] M. P. Fanti and M. Zhou, ‘‘Deadlock control methods in automated man-
ufacturing systems,’’ IEEE Trans. Syst., Man, Cybern. A, Syst., Humans,
vol. 34, no. 1, pp. 5–22, Jan. 2004.

[23] P. Xiong, Y. Fan, and M. Zhou, ‘‘QoS-Aware Web service configura-
tion,’’ IEEE Trans. Syst., Man, Cybern. A, Syst., Humans, vol. 38, no. 4,
pp. 888–895, Jul. 2008.

[24] W. Tan, Y. S. Fan, and M. C. Zhou, ‘‘A Petri net-based method for
compatibility analysis and composition of Web services in business pro-
cess execution language,’’ IEEE Trans. Autom. Sci. Eng., vol. 6, no. 1,
pp. 94–106, Jan. 2009.

[25] G. Decker and M. Weske, ‘‘Local enforceability in interaction Petri nets,’’
in Proc. 5th Int. Conf. Brisbane, Bus. Process Manage. (BPM), Berlin,
Germany, 2007, pp. 305–319.

[26] E. G. Coffman, M. J. Elphick, and A. Shoshani, ‘‘System deadlocks,’’
Comput. Surv., vol. 3, no. 2, pp. 67–78, 1971.

[27] B. H. Krogh, ‘‘Controlled Petri nets and maximally permissive feedback
logic,’’ in Proc. 25th Allerton Conf. Commun. Control Comput., 1987,
pp. 317–326.

[28] A. Ichikawa and K. Hiraishi, ‘‘Analysis and control of discrete event
systems represented by Petri nets,’’ in Proc. Discrete Event Syst. Models
Appl. IIASA Conf. Sopron, Hungary, Berlin, Germany, 1988, pp. 115–134.

[29] G. Stremersch and R. K. Boel, ‘‘Reduction of the supervisory control
problem for Petri nets,’’ IEEE Trans. Autom. Control, vol. 45, no. 12,
pp. 2358–2363, Dec. 2000.

[30] A. Ghaffari, N. Rezg, and X. L. Xie, ‘‘Design of a live and maximally
permissive Petri net controller using the theory of regions,’’ IEEE Trans.
Robot. Autom., vol. 19, no. 1, pp. 137–141, Feb. 2003.

[31] W. T. Tsai, P. Zhong, X. Bai, and J. Elston, ‘‘Dependence-guided ser-
vice composition for user-centric SOA,’’ IEEE Syst. J., vol. 8, no. 3,
pp. 889–899, Sep. 2014.

[32] J. Zhang, D. Kuc, and S. Lu, ‘‘Confucius: A tool supporting collaborative
scientificworkflow composition,’’ IEEE Trans. Serv. Comput., vol. 7, no. 1,
pp. 2–17, Jan./Mar. 2014.

[33] W. M. P. van der Aalst, ‘‘Structural characterizations of sound workflow
nets,’’ Comput. Sci. Rep., vol. 96, no. 23, pp. 18–22, 1996.

[34] P. Godefroid and P. Wolper, ‘‘Using partial orders for the efficient verifica-
tion of deadlock freedom and safety properties,’’ inProc. 3rd Int. Workshop
Comput. Aided Verification, Jul. 1991, pp. 332–342.

[35] P. J. Ramadge and W. M. Wonham, ‘‘Supervisory control of a class
of discrete event processes,’’ SIAM J. Control Optim., vol. 25, no. 1,
pp. 206–230, 1987.

[36] A. Valmari, ‘‘Stubborn sets for reduced state space generation,’’ Adv. Petri
Nets, vol. 483, pp. 491–515, 1990.

[37] L. E. Holloway and B. H. Krogh, ‘‘Synthesis of feedback control logic for a
class of controlled Petri nets,’’ IEEE Trans. Autom. Control, vol. 35, no. 5,
pp. 514–523, May 1990.

[38] Y. Li and W. M. Wonham, ‘‘Control of vector discrete-event systems.
II. Controller synthesis,’’ IEEE Trans. Autom. Control, vol. 39, no. 3,
pp. 512–531, Mar. 1994.

[39] L. E. Holloway, B. H. Krogh, and A. Giua, ‘‘A survey of Petri net methods
for controlled discrete event systems,’’ Discrete Event Dyn. Syst., vol. 7,
no. 2, pp. 151–190, 1997.

[40] Z. Zhou, S. Bhiri, H. Zhuge, and M. Hauswirth, ‘‘Assessing service pro-
tocol adaptability based on protocol reduction and graph search,’’ Concur-
rency Comput. Pract. Exper., vol. 23, no. 9, pp. 880–904, 2011.

[41] H. Foster, S. Uchitel, J. Magee, and J. Kramer, ‘‘Tool support for model-
based engineering of Web service compositions,’’ in Proc. IEEE Int. Conf.
Web Services, Jul. 2005, pp. 95–102.

[42] A. Bennaceur andV. Issarny, ‘‘Automated synthesis ofmediators to support
component interoperability,’’ IEEE Trans. Softw. Eng., vol. 41, no. 3,
pp. 221–240, Mar. 2015.

[43] A. A. Bachir and M. C. Fauvet, ‘‘Diagnosing and measuring incompati-
bilities between pairs of services,’’ in Proc. 20th Int. Conf. DEXA, 2009,
pp. 229–243.

[44] R. Dijkman and M. Dumas, ‘‘Service-oriented design: A multi-viewpoint
approach,’’ Int. J. Cooperat. Inf. Syst., vol. 13, no. 4, pp. 337–368, 2004.

[45] W. M. P. van der Aalst and M. Weske, ‘‘The P2P approach to interor-
ganizational workflows,’’ in Proc. 13th Conf. Adv. Inf. Syst. Eng., 2001,
pp. 140–156.

[46] A. Martens, ‘‘Analyzing Web service based business processes,’’ in Proc.
8th Int. Conf. Fundam. Approaches Softw. Eng., 2005, pp. 19–33.

[47] R. Milner, J. Parrow, and D.Walker, ‘‘A calculus of mobile processes,’’ Inf.
Comput., vol. 100, no. 1, pp. 1–40, 1992.

[48] M. Carbone, K. Honda, and N. Yoshida, ‘‘Structured communication-
centred programming for Web services,’’ in Proc. 16th Eur. Symp. Pro-
gram., 2007, pp. 2–17.

VOLUME 4, 2016 8591

J. Bi et al.: Petri Net Method for Compatibility Enforcement to Support Service Choreography

[49] Y. Y. Yin, Y. Li, S. G. Deng, and J. W. Yin, ‘‘Determining on consistency
and compatibility of Web service behavior,’’ Acta Electron. Sin., vol. 37,
no. 3, pp. 433–438, 2009.

[50] Y. Li andW.M.Wonham, ‘‘Control of vector discrete-event systems. I. The
base model,’’ IEEE Trans. Autom. Control, vol. 38, no. 8, pp. 1214–1227,
Aug. 1993.

[51] S. Narayanan and S. A.Mcllraith, ‘‘Simulation, verification and automated
composition of Web services,’’ in Proc. 11th Int. Conf. World Wide Web,
2002, pp. 77–88.

[52] Y. Chen, Z. Li, and M. Zhou, ‘‘Optimal supervisory control of flexible
manufacturing systems by Petri nets: A set classification approach,’’ IEEE
Trans. Autom. Sci. Eng., vol. 11, no. 2, pp. 549–563, Apr. 2014.

JING BI (M’13–SM’16) received the Ph.D. degree
from Northeastern University, Shenyang, China,
in 2011. From 2009 to 2010, she was involved in
cloud computing with the IBM China Research
Laboratory. From 2013 to 2015, she was a
Post-Doctral Researcher with the Department of
Automation, Tsinghua University, China. She is
currently an Associate Professor with the School
of Software Engineering, Beijing University of
Technology, China. Her research interests include

service computing, cloud computing, large-scale data analytics, and resource
optimization. Hewas a recipient of the IBMPh.D. FellowshipAward in 2009.

HAITAO YUAN (S’15–M’16) received the B.S.
and M.S. degrees in software engineering from
NortheasternUniversity, Shenyang, China, in 2010
and 2012, respectively, and the Ph.D. degree in
control science and engineering from Beihang
University, Beijing, China, in 2016. Hewas aVisit-
ing Scholar with the New Jersey Institute of Tech-
nology, Newark, NJ, USA, in 2015. He is currently
an Assistant Professor with the School of Software
Engineering, Beijing Jiaotong University, Beijing,

China. His research interests include cloud computing, resource allocation,
software-defined networking, and energy efficiency. He was a recipient of
the Google Excellence Scholarship in 2011.

MENGCHU ZHOU (S’88–M’90–SM’93–F’03)
received the B.S. degree in control engineering
from the Nanjing University of Science and Tech-
nology, Nanjing, China, in 1983, the M.S. degree
in automatic control from the Beijing Institute of
Technology, Beijing, China, in 1986, and the Ph.D.
degree in computer and systems engineering from
the Rensselaer Polytechnic Institute, Troy, NY,
USA, in 1990. He joined the New Jersey Institute
of Technology, Newark, NJ, USA, in 1990. He is

currently a Distinguished Professor of Electrical and Computer Engineering.
He has authored over 680 publications, including 12 books, over 360 journal
papers (over 260 in IEEE Transactions), and 28 book chapters. His research
interests are in Petri nets, Internet of Things, big data, web services, manu-
facturing, transportation, and energy systems He is the Founding Editor of
the IEEE Press Book Series on Systems Science and Engineering. He is a
recipient of the Humboldt Research Award for U.S. Senior Scientists, the
Franklin V. Taylor Memorial Award, and the Norbert Wiener Award from
the IEEE Systems, Man, and Cybernetics Society. He is a Life Member of
Chinese Association for Science and Technology, USA, where he served
as the President in 1999. He is a fellow of the International Federation of
Automatic Control and the American Association for the Advancement of
Science.

8592 VOLUME 4, 2016

