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ABSTRACT This paper is concernedwith the exponential stability analysis for time-delay systems. First, two
new weighted integral inequalities are presented based on the auxiliary function-based integral inequalities.
In the new weighted integral inequalities, unlike previous studies, exponentially weighted integral vectors
are used to find the lower bounds of the weighted integral quadratic terms. Then, by utilizing the new
weighted integral inequalities, a new linear matrix inequality (LMI) condition is derived for the exponential
stability of the considered time-delay systems. Finally, the numerical examples are conducted to validate the
effectiveness of the new LMI condition. The example results show that the LMI condition derived in this
paper is less conservative than existing ones in analyzing exponential stability of the considered systems.

INDEX TERMS Time-delay systems, exponential stability analysis, Lyapunov–Krasovskii functional, linear
matrix inequalities.

I. INTRODUCTION
Many practical systems, such as network control systems,
chemical engineering systems, and biological systems, can be
modeled as linear systems with time delay. The appearance of
time delay in these systems may make them unstable. Hence,
for time-delay systems, stability analysis is an important issue
to be considered [1]–[27]. In general, the stability analysis
can be grouped into two classes, namely the asymptotic sta-
bility analysis [1], [7], [18], [21]–[23] and the exponential
stability analysis [2], [3], [5], [6], [19], [25], [28]–[30]. The
goal of the asymptotic stability analysis is just to derive the
sufficient conditions of the asymptotic stability of time-delay
systems, whereas that of the exponential stability analysis is
further to determine the decay rates of these systems.

This paper focuses on the issue of the exponential stabil-
ity analysis of time-delay systems. With the help of linear
matrix inequalities (LMIs), the Lyapunov–Krasovskii func-
tional (LKF) approach has become one of the most effective
ways to address this issue [2], [3], [6], [28]–[34]. In [2],

Liu transformed the exponential stability analysis of a time-
delay system into the asymptotic stability analysis of another
time-delay system by using a state transformation. In [3],
Mondie and Kharitonov introduced an exponential weighted
functional into the LKF to investigate the exponential stability
of time-delay systems. Later, Xu et al. [6] improved the
results of [2] and [3] by using a more complicated LKF func-
tional and the state transformation. Recently, Cao [29] intro-
duced slack matrices for LMIs to obtain a novel exponential
stability criterion. Very recently, based on Jensen’s integral
inequalities, Van Hien and Trinh [30] proposed two weighted
integral inequalities for both single and double exponential
weighted functionals. Then, these two integral inequalities
were successfully applied to the exponential stability analysis
of several kinds of time-delay systems.

In this paper, based on the auxiliary function-based integral
inequalities given by Park et al. [23], we present two new
weighted integral inequalities. Instead of the commonly used
integral vector, exponentially weighted integral vectors are
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used to derive the newweighted integral inequalities.We then
establish a new LMI condition of the exponential stability
of time-delay systems by using the new weighted integral
inequalities. It is also worth mentioning that to our knowl-
edge, we are the first to introduce weighted integral states
into the augmented state vector of LKF functional. Finally,
we provide two numerical examples to demonstrate the effec-
tiveness of the proposed exponential stability condition.

The rest of this paper is organized as follows. In Section II,
we presented two new weighted integral inequalities, which
will be applied to analyze the exponential stability of time-
delay systems in Section III. Section IV reports the compari-
son results for two examples. Finally, the conclusion is given
in Section V.
Notation: Throughout this paper, Rn and Rn×m denote the

n-dimensional Euclidean space and the set of all n × m real
matrices, respectively; I and 0 denote the identity matrix
and zero matrix of appropriate dimensions, respectively; the
superscript ‘‘T ’’ denotes matrix transpose; ‖ · ‖ denotes
the Euclidean vector norm; λmin(·) and λmax(·) denote the
minimum and maximum eigenvalues of a symmetric matrix,
respectively. Note that matrices are assumed to have com-
patible dimensions for algebraic operations, if not otherwise
stated.

II. WEIGHTED INTEGRAL INEQUALITIES
In this section, based on the auxiliary function-based integral
inequalities (AFIIs, for short) established by Park et al. [23],
we presented two newweighted integral inequalities for expo-
nential stability analysis. We first review the AFIIs with the
following two lemmas.
Lemma 1 [23]: For an n × n matrix R > 0 and a vector

function ω ∈ C([a, b],Rn), the following inequality holds:

(b− a)
∫ b

a
ωT (u)Rω(u)du

≥

( ∫ b

a
ωT (u)du

)
R
( ∫ b

a
ω(u)du

)
+ 3�T

1 R�1 + 5�T
2 R�2, (1)

where

�1 =

∫ b

a
ω(u)du−

2
b− a

∫ b

a

∫ b

s
ω(u)duds,

�2 =

∫ b

a
ω(u)du−

6
b− a

∫ b

a

∫ b

s
ω(u)duds

+
12

(b− a)2

∫ b

a

∫ b

v

∫ b

s
ω(u)dudsdv.

Lemma 2 [23]: For an n × n matrix R > 0 and a vector
function ω ∈ C([a, b],Rn), the following inequality holds:

(b− a)2

2

∫ b

a

∫ b

s
ωT (u)Rω(u)duds

≥

( ∫ b

a

∫ b

s
ωT (u)duds

)
R
( ∫ b

a

∫ b

s
ω(u)duds

)
+ 8�T

3 R�3, (2)

where

�3 =

∫ b

a

∫ b

s
ω(u)duds−

3
b− a

∫ b

a

∫ b

s

∫ b

u
ω(v)dvduds.

The above AFIIs were developed originally for the asymp-
totic stability analysis of time-delay systems. Next, we extend
them for exponential stability analysis. To do so, two new
weighted integral inequalities are established as follows:
Lemma 3: For an n×n matrix R > 0, a scalar β ≥ 0, and

a vector function ω ∈ C([a, b],Rn), the following inequality
holds:

(b− a)
∫ b

a
eβ(u−a)ωT (u)Rω(u)du

≥

( ∫ b

a
e
β
2 (u−a)ωT (u)du

)
R
( ∫ b

a
e
β
2 (u−a)ω(u)du

)
+ 3�T

4 R�4 + 5�T
5 R�5, (3)

where

�4 =

∫ b

a
e
β
2 (u−a)ω(u)du

−
2

b− a

∫ b

a

∫ b

s
e
β
2 (u−a)ω(u)duds,

�5 =

∫ b

a
e
β
2 (u−a)ω(u)du

−
6

b− a

∫ b

a

∫ b

s
e
β
2 (u−a)ω(u)duds

+
12

(b− a)2

∫ b

a

∫ b

v

∫ b

s
e
β
2 (u−a)ω(u)dudsdv.

Proof: Let ω̃(u) = e
β
2 (u−a)ω(u), it follows that

ω(u) = e−
β
2 (u−a)ω̃(u). (4)

Then, substituting e−
β
2 (u−a)ω̃(u) for ω(u) in the left side of

inequality (3), we obtain

(b− a)
∫ b

a
eβ(u−a)ωT (u)Rω(u)du

= (b− a)
∫ b

a
ω̃T (u)Rω̃(u)du. (5)

By Lemma 1, we can rewrite Eq. (5) as

(b− a)
∫ b

a
eβ(u−a)ωT (u)Rω(u)du

= (b− a)
∫ b

a
ω̃T (u)Rω̃(u)du

≥

( ∫ b

a
ω̃T (u)du

)
R
( ∫ b

a
ω̃(u)du

)
+ 3�̃T

1 R�̃1 + 5�̃T
2 R�̃2, (6)

where

�̃1 =

∫ b

a
ω̃(u)du−

2
b− a

∫ b

a

∫ b

s
ω̃(u)duds,

�̃2 =

∫ b

a
ω̃(u)du−

6
b− a

∫ b

a

∫ b

s
ω̃(u)duds

+
12

(b− a)2

∫ b

a

∫ b

v

∫ b

s
ω̃(u)dudsdv.
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Finally, inequality (3) can be obtained directly by replacing

ω̃(u) with e
β
2 (u−a)ω(u) in (6). �

Lemma 4: For an n×n matrix R > 0, a scalar β ≥ 0, and
a vector function ω ∈ C([a, b],Rn), the following inequality
holds:

(b− a)2

2

∫ b

a

∫ b

s
eβ(u−a)ωT (u)Rω(u)duds

≥ �T
6 R�6 + 8�T

7 R�7, (7)

where

�6 =

∫ b

a

∫ b

s
e
β
2 (u−a)ω(u)duds

�7 =

∫ b

a

∫ b

s
e
β
2 (u−a)ω(u)duds

−
3

b− a

∫ b

a

∫ b

s

∫ b

u
e
β
2 (u−a)ω(v)dvduds.

Proof: Based on Lemma 2, we can obtain inequality (7)
in a similar way as we did in the proof of Lemma 3. �
Remark 1: By setting β = 0, the new weighted integral

inequalities (3) and (7) reduce to the AFIIs (1) and (2),
respectively. That is to say, the AFIIs (1) and (2) are special
cases of the new inequalities (3) and (7), respectively.
Remark 2: It is noted that in the weighted inte-

gral inequalities of [30], the integral vectors, such as∫ b
a ω(u)du and

∫ b
a

∫ b
s ω(u)duds, were used to bound the

weighted integral quadratic terms
∫ b
a e

β(u−a)ωT (u)Rω(u)du
and

∫ b
a

∫ b
s e

β(u−a)ωT (u)Rω(u)duds; whereas, in the new
weighted integral inequalities (3) and (7), the exponentially
weighted integral vectors, such as

∫ b
a e

β
2 (u−a)ω(u)du and∫ b

a

∫ b
s e

β
2 (u−a)ω(u)duds, are used instead. To our knowledge,

this is the first time that such exponentially weighted integral
vectors have been used in integral inequalities to find the
lower bounds for the weighted integral quadratic terms.

III. EXPONENTIAL STABILITY ANALYSIS
OF TIME-DELAY SYSTEMS
Consider a time-delay system of the following form:{

ẋ(t) = Ax(t)+ Adx(t − d), t ≥ 0,
x(t) = φ(t), t ∈ [−d, 0],

(8)

where x(t) ∈ Rn is the system state; φ(t) ∈ C([−d, 0],Rn) is
a continuous function called the initial function of x; d is the
time delay that takes a positive value; A and Ad ∈ Rn×n are
constant matrices.

Let x(t, φ) denote the solution of system (8) with the initial
condition φ, and let

‖φ‖d = sup−d≤θ≤0‖φ(θ )‖. (9)

Now we give the definition of exponential stability for sys-
tem (8) as below.
Definition 1: System (8) is said to be exponentially stable

with a decay rate σ if there exist scalars σ > 0 and γ ≥ 0

such that for every solution x(t, φ) of system (8), the following
inequality holds:

‖x(t, φ)‖ ≤ γ e−σ t‖φ‖d , t ≥ 0. (10)

Note that the above definition is adapted from [3] and [6].
With the help of the proposed integral inequalities given by

Lemmas 3 and 4, we obtain the following theorem.
Theorem 1: For a given β > 0, system (8) is exponentially

stable with a decay rate σ = β/2 if there exist symmetric
positive definite matrices P ∈ R4n×4n and Ri ∈ Rn×n,
i = 0, 1, 2, such that the following LMI holds:

2 =
(
6T

1 P62 +6
T
2 P61 + β6

T
1 P61

)
+

[
eT1
(
eβdR0 + eβddR1 + eβd

d2

2
R2
)
e1 − eT2 R0e2

]
−

[
1
d
eT3 R1e3 +

3
d

(
e3 −

2
d
e4
)T
R1
(
e3 −

2
d
e4
)]

−

[
5
d

(
e3 −

6
d
e4 +

12
d2
e5
)T
R1
(
e3 −

6
d
e4 +

12
d2
e5
)]

−

[
2
d2
eT4 R2e4 +

16
d2

(
e4 −

3
d
e5
)T
R2
(
e4 −

3
d
e5
)]

< 0, (11)

where

ei = [0n×(i−1)n In 0n×(5−i)n], i = 1, 2, ..., 5,

δi = e
βd
2

d i−1

(i− 1)!
e1 − ei+1 −

β

2
ei+2, i = 1, 2, 3,

4 = Ae1 + Ade2,

61 = [eT1 , e
T
3 , e

T
4 , e

T
5 ]
T ,

62 = [4T , δT1 , δ
T
2 , δ

T
3 ]

T .

Proof: Let

η(t) =



x(t)∫ t

t−d
e
β
2 (s−t+d)x(s)ds∫ 0

−d

∫ t

t+θ
e
β
2 (s−t+d)x(s)dsdθ∫ 0

−d

∫ 0

β

∫ t

t+θ
e
β
2 (s−t+d)x(s)dsdθdβ


, (12)

and

ϕ(t) =



x(t)

x(t − d)∫ t

t−d
e
β
2 (s−t+d)x(s)ds∫ 0

−d

∫ t

t+θ
e
β
2 (s−t+d)x(s)dsdθ∫ 0

−d

∫ 0

β

∫ t

t+θ
e
β
2 (s−t+d)x(s)dsdθdβ


. (13)

Note that from (12) and (13), we have

η(t) = 61ϕ(t). (14)
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η̇(t) =



Ax(t)+ Adx(t − d)

e
βd
2 x(t)− x(t − d)−

β

2

∫ t

t−d
e
β
2 (s−t+d)x(s)ds

de
βd
2 x(t)−

∫ t
t−d e

β
2 (s−t+d)x(s)ds− β

2

∫ 0

−d

∫ t

t+θ
e
β
2 (s−t+d)x(s)dsdθ

d2

2
e
βd
2 x(t)−

∫ 0

−d

∫ t

t+θ
e
β
2 (s−t+d)x(s)dsdθ −

β

2

∫ 0

−d

∫ 0

β

∫ t

t+θ
e
β
2 (s−t+d)x(s)dsdθdβ


= 62ϕ(t). (16)

To prove the theorem, we first construct an LKF as follows:

V = V0 +W0 +W1 +W2, (15)

where

V0 = ηT (t)Pη(t),

W0 =

∫ t

t−d
eβ(s−t+d)xT (s)R0x(s)ds,

W1 =

∫ 0

−d

∫ t

t+θ
eβ(s−t+d)xT (s)R1x(s)dsdθ,

W2 =

∫ 0

−d

∫ 0

θ2

∫ t

t+θ1
eβ(s−t+d)xT (s)R2x(s)dsdθ1dθ2.

Then, to obtain V̇ + βV , in the following we calculate
V̇0 + βV0 and Ẇi + βWi, i = 0, 1, 2, separately. Considering
that η(t) = 61ϕ(t) (see Eq. (14)) and η̇(t) = 62ϕ(t)
(see Eq. (16), which is on the top of this page), we have

V̇0 = ϕT (t)
(
6T

1 P62 +6
T
2 P61

)
ϕ(t). (17)

From Eq. (17), it follows that

V̇0 + βV0 = ϕT (t)
(
6T

1 P62 +6
T
2 P61 + β6

T
1 P61

)
ϕ(t).

(18)

For W0, we get its derivative by

Ẇ0 = eβ(s−t+d)xT (s)R0x(s)
∣∣∣t
t−d

−β

∫ t

t−d
eβ(s−t+d)xT (s)R0x(s)ds

= eβ(s−t+d)xT (s)R0x(s)
∣∣∣t
t−d
− βW0.

Further, we have

Ẇ0 + βW0 = eβ(s−t+d)x(s)TR0x(s)
∣∣∣t
t−d

= eβdx(t)TR0x(t)− x(t − d)TR0x(t − d)

= ϕT (t)
(
eβdeT1 R0e1 − e

T
2 R0e2

)
ϕ(t). (19)

Next, the derivative of W1 is calculated as follows:

Ẇ1 =

∫ 0

−d

[
eβ(s−t+d)xT (s)R1x(s)

∣∣∣∣t
t+θ

−β

∫ t

t+θ
eβ(s−t+d)xT (s)R1x(s)ds

]
dθ

=

∫ 0

−d

[
eβ(s−t+d)xT (s)R1x(s)

∣∣∣∣t
t+θ

]
dθ

−β

∫ 0

−d

∫ t

t+θ
eβ(s−t+d)xT (s)R1x(s)dsdθ

=

∫ 0

−d
eβdxT (t)R1x(t)dθ

−

∫ 0

−d
eβ(θ+d)xT (t + θ )R1x(t + θ )dθ − βW1

= deβdxT (t)R1x(t)

−

∫ t

t−d
eβ(s−t+d)xT (s)R1x(s)ds− βW1. (20)

Based on (20), we have

Ẇ1 + βW1 = ϕ
T (t)

(
deβdeT1 R1e1

)
ϕ(t)

−

∫ t

t−d
eβ(s−t+d)xT (s)R1x(s)ds. (21)

Similarly, the derivative of W2 is given by

Ẇ2 =

∫ 0

−d

∫ 0

θ2

[
eβ(s−t+d)xT (s)R2x(s)

∣∣∣∣t
t+θ1

−β

∫ t

t+θ1
eβ(s−t+d)xT (s)R2x(s)ds

]
dθ1dθ2

=

∫ 0

−d

∫ 0

θ2

[
eβ(s−t+d)xT (s)R2x(s)

∣∣∣∣t
t+θ1

]
dθ1dθ2

−β

∫ 0

−d

∫ 0

θ2

∫ t

t+θ1
eβ(s−t+d)xT (s)R2x(s)dsdθ1dθ2

=

∫ 0

−d

∫ 0

θ2

eβdxT (t)R2x(t)dθ1dθ2

−

∫ 0

−d

∫ 0

θ2

eβ(θ1+d)xT (t + θ1)R2x(t + θ1)dθ1dθ2

−βW2

= ϕT (t)
(
eβd

d2

2
eT1 R2e1

)
ϕ(t)

−

∫ 0

−d

∫ t

t+θ
eβ(s−t+d)xT (s)R2x(s)dsdθ − βW2. (22)

Then, we obtain from (22) that

Ẇ2 + βW2 = ϕ
T (t)

(
eβd

d2

2
eT1 R2e1

)
ϕ(t)

−

∫ 0

−d

∫ t

t+θ
eβ(s−t+d)xT (s)R2x(s)dsdθ. (23)
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Combining (15), (18), (19), (21), and (23) yields
V̇ + βV

= ϕT (t)
(
6T

1 P62 +6
T
2 P61 + β6

T
1 P61

)
ϕ(t)

+ϕT (t)
[
eT1
(
eβdR0 + eβddR1 + eβd

d2

2
R2
)
e1

]
ϕ(t)

−ϕT (t)
(
eT2 R0e2

)
ϕ(t)

−

∫ t

t−d
eβ(s−t+d)xT (s)R1x(s)ds

−

∫ 0

−d

∫ t

t+θ
eβ(s−t+d)xT (s)R2x(s)dsdθ. (24)

Furthermore, by Lemma 3, we have∫ t

t−d
eβ(s−t+d)xT (s)R1x(s)ds ≥ ϕT (t)0ϕ(t), (25)

where

0 =
1
d
eT3 R1e3 +

3
d

(
e3 −

2
d
e4

)T
R1

(
e3 −

2
d
e4

)
+
5
d

(
e3 −

6
d
e4 +

12
d2
e5

)T
R1

(
e3 −

6
d
e4 +

12
d2
e5

)
,

and by Lemma 4, we also have∫ 0

−d

∫ t

t+θ
eβ(s−t+d)xT (s)R2x(s)dsdθ

=

∫ 0

−d

∫ 0

θ

eβ(u+d)xT (t + u)R2x(t + u)dudθ

≥ ϕT (t)
(

2
d2
eT4 R2e4

)
ϕ(t)

+ϕT (t)
[
16
d2

(
e4 −

3
d
e5
)T
R2
(
e4 −

3
d
e5
)]
ϕ(t). (26)

Substituting (25) and (26) into (24), we obtain the following
inequality

V̇ (t)+ βV (t) ≤ ϕT (t)2ϕ(t), (27)

where 2 is defined in (11).
Let
α1 = λmin(P),

α2 =
[
1+ (d2 + d4 + d6)eβd

]
λmax(P)+ deβdλmax(R0)

+ d2eβdλmax(R1)+ d3eβdλmax(R2).

If inequality (11) holds, then we obtain from (27) that
V̇ (t)+ βV (t) ≤ 0, which yields

V (t) ≤ e−βtV (φ) ≤ α2e−βt‖φ‖2d , t ≥ 0. (28)

At the same time, it follows from (15) that
V (t) ≥ α1‖η(t)‖2 ≥ α1‖x(t, φ)‖2, t ≥ 0. (29)

Then, the combination of (28) and (29) leads to

‖x(t, φ)‖ ≤
√
α2

α1
e−

β
2 t‖φ‖d , t ≥ 0. (30)

Finally, by Definition 1 and inequality (30), we have that
system (8) is exponentially stable with a decay rate σ = β/2.
This completes the proof. �

Remark 3: As discussed in Remark 2, unlike previous stud-
ies, the new weighted integral inequalities (3) and (7) use
the exponentially weighted integral vectors instead of the
commonly used integral vectors. We find that the use of the
exponentially weighted integral vectors poses a challenging
problem in establishing the exponential stability condition.
Fortunately, this problem is successfully solved by the intro-
duction of the quadratic form V0 = ηT (t)Pη(t), in which
the augmented state vector η(t) consists of not only the sys-
tem state x(t) but also the weighted integral states, such as∫ 0
−d

∫ t
t+θ e

β
2 (s−t+d)x(s)dsdθ . Note that the use of the weighted

integral states in V0 is also different from previous studies, but
is consistent with the new inequalities (3) and (7) that utilize
the exponentially weighted integral vectors.
Remark 4: It is worth mentioning that the way to derive

Theorem 1 is clearly different from the state transformation
approach applied in [2] and [6]. To establish an exponen-
tial stability condition, in [2] and [6], the authors first set
z(t) = eβtx(t), and then transformed system (8) into a new
system as follows:

ż(t) = (A+ βIn)z(t)+ eβdAd z(t − d). (31)

As stated in [30], the state transformation approach usually
introduces conservatism in exponential stability conditions.
This is because that the state transformation approach can
only obtain the asymptotic stability condition of (31), which
is more restrictive than the boundedness condition of (31),
i.e., the exponential stability condition of (8). The derivation
of Theorem 1 is based on system (8), not on (31), thus can
avoid introducing such extra conservatism.

IV. EXAMPLES
In this section, we present two numerical examples to show
the effectiveness of the new exponential stability condition
given by Theorem 1. In both examples, the proposed stability
condition is compared with those obtained in [2], [3], [6],
[29], and [30] in terms of the decay rate for various time
delays. The solutions of the examples are achieved by using
the YALMIP toolbox of MATLAB.
Example 1: Consider the system (8) with

A =
[
−3 −2
1 0

]
, Ad =

[
−0.5 0.1
0.3 0

]
.

This example was used in [6] and [29]. As done in
[6] and [29], the time delay d investigated here ranges from
0.8 to 2.0. The compared results of this example are listed in
Table 1. It is shown from Table 1 that among the six compared
conditions, Theorem 1 achieves the largest decay rate in all
cases except for d = 0.8 and d = 1.0. Note that when
d = 0.8 and d = 1.0, only the decay rate of [29] is slightly
larger than that obtained by Theorem 1.
Example 2: Consider the system (8) with

A =
[

0 1
−2 0.1

]
, Ad =

[
0 0
1 0

]
.
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TABLE 1. Decay rate σ for various d for Example 1.

TABLE 2. Decay rate σ for various d for Example 2.

This example was used in [30]. Also, as done in [30],
the time delay d investigated in this example ranges from
0.3 to 1.6. The results are reported in Table 2. It is surprising to
see that the stability conditions of [2], [3], [6], and [29] cannot
obtain any result when solving their LMIs for each time delay.
Note that while in Example 1, the condition of [6] obtain the
best results for d = 0.8 and d = 1.0. The significantly differ-
ent performance of the condition [6] in these two examples
indicates that it is, in fact, sensitive to different examples.
However, both the stability conditions of Theorem 1 and [30]
still work well in the example. Furthermore, the decay rate
of Theorem 1 is not smaller than that of [30] in all cases.
Especially, the decay rate of Theorem 1 is 4.66% and 12.09%
larger than that of [30] for d = 1.0 and d = 1.6, respectively.

To sum up, the above two examples show that the condition
of Theorem 1 is, on the whole, less conservative than those
of [2], [3], [6], [29], and [30].

V. CONCLUSION
In this paper, we have studied the exponential stability of
time-delay systems. The main contributions of this paper are
as follows:

(1) Based on the AFIIs (1) and (2) [23], two new
weighted integral inequalities have been derived for
exponential stability analysis. To improve the lower
bounds of the weighted integral quadratic terms,
the exponentially weighted integral vectors (such
as
∫ b
a e

β
2 (u−a)ω(u)du and

∫ b
a

∫ b
s e

β
2 (u−a)ω(u)duds),

instead of the integral vectors (such as
∫ b
a ω(u)du

and
∫ b
a

∫ b
s ω(u)duds), are used in the new inequali-

ties (3) and (7). As far as we know, this is the fist
time that such exponentially weighted integral vec-
tors have been used in integral inequalities. Besides,
note that the AFIIs were originally presented for
asymptotic stability analysis, and can be regarded
as special cases of the new weighted integral
inequalities.

(2) With the help of the inequalities (3) and (7), a new
LMI condition has been established for the expo-
nential stability of time-delay systems. To solve

the problem raised by the use of the exponen-
tially weighted integral vectors in (3) and (7), a
new quadratic form given by V0 = ηT (t)Pη(t)
is introduced into our Lyapunov–Krasovskii func-
tional. It is worth noting that in the augmented
state vector η(t), the weighted integral states (such
as
∫ 0
−d

∫ t
t+θ e

β
2 (s−t+d)x(s)dsdθ ) are used. To our

knowledge, this has not been done before. Two
examples have also been provided to show that
the new stability condition is less conservative than
existing ones in determining the decay rate for the
considered systems.

In this paper, the new weighted integral inequalities have
only been applied to the exponential stability analysis of the
constant time-delay systems. Our future work is to extend
the application of these inequalities to varying time-delay
systems.
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