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ABSTRACT Asynchronous network coding has the potential to improve wireless network performance
compared with simple routing. However, to achieve the maximum network coding gain, the encoding node
consumes a few computing and storage resources that may be unaffordable for wireless sensor networks such
as CubeSats. An analogous threshold strategy, called best effort network coding (BENC), which requires
only minimal storage resources and no computing resources, is investigated in this paper as an efficient and
convenient method of network coding. In this strategy, a new packet arrival evicts the head packet when the
queue is full to avoid excessively long waits. Moreover, in contrast to other methods that require a queue for
each flow, the BENC uses only one queue for the two coded flows. In addition, the problem of time interval
distribution for the output flow, which combines two independent flows, is investigated, and the network
coding gain is then analyzed. While the maximum coding gain requires infinite buffer capacity under two
independent Poisson arrivals with the same transmission rates, the calculation results show that the BENC
needs only 4 buffers to achieve 90% of the maximum coding gain and can reach 99% of the maximum coding
gain using 50 buffers. These results are verified by numerical simulations.

INDEX TERMS Network coding, best effort, queueing analysis, queue capacity, wireless sensor networks.

I. INTRODUCTION
Network coding is a new forwarding method that breaks
the established pattern (which regards information flow as a
commodity) by mixing several packets into one coded packet
using algebraic operations. These coded packets can then
deliver the contents of more than one packet in a single
transmission and, thus, reduce transmission times through a
router (or access point), increasing throughput and decreas-
ing power consumption [1]. Based on the maximal flow-
minimal cut theorem in graph theory [2], a sender and receiver
cannot communicate at a rate greater than the maximal
flow (or the minimal cut). In a butterfly network, traditional
‘store–and–forward’ routing cannot achieve maximal flow.
However, in their seminal work, Ahlswede et al. [3] showed
that network coding can theoretically achieve the maximal
flow rate. Subsequently, network coding attracted a great
deal of attention and studies proliferated rapidly. Research
into network coding applications can be divided into intra-
session [4] and inter-session [5] categories based on the
source nodes from which the uncoded packets were gener-
ated. To increase the coding opportunities, these two schemes
have been extended into different protocol layers using
customized strategies. Physical network coding attempted to

turn the ‘‘interference’’ into good use [6]. MAC schedul-
ing schemes, which decide whether and how intermediate
nodes encode packets, were considered in [7]–[9] to optimize
the throughput performance. In the network layer, method-
ologies to optimize the system’s performance under certain
constraints were established taking both synchronous and
asynchronous flows and infinite or finite buffers into account.

One important domain of application is in two-way relay
networks with stochastic arrivals, in which a situation could
occur where no packets are available for the other connection.
The primary problem here is to design a mechanism to termi-
nate excessively long waits, otherwise the system becomes
unstable and the mean wait time grows unboundedly [10].
Several relevant aspects have already been explored in the
literature.

One methodology involves terminating waits using a prob-
ability. Chieochan et al. [11] proposed a queueing model
with a finite buffer at the relay that could be shared by two
independent injected source packets. Whether packets were
transmitted or received depended on a probability pertaining
to each link in every time slot. Abdelrahman et al. [12]
proposed a queuing model with infinite capacity for each
flow. The packet waits for an exponential time-out period
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before forwarding a packet without coding. Ding et al. [13]
considered a two-way relay networkwith Bernoulli asymmet-
ric arrival processes with a finite capacity. The relay node
forwards one uncoded packet with a probability relevant to
the buffer length.

Some strategies have been designed to deal with the long
wait issue. The COSE strategy was proposed in [14], in which
Poisson arrival rates were assumed. A fixed time interval
was configured to maintain a coding opportunity. Packets left
uncoded would be released from the waiting queue and the
process restarted. Paramanathan et al. [15] tried to guarantee
each flow 50% of its buffer by dropping the oldest packets to
manifest a high coding gain under a short-term asymmetric
rate. They implemented this mechanism on their platform.

Several publications have pursued optimization prob-
lems that combine performance and cost objectives.
Yuan et al. [16] provided an optimal trade-off between cod-
ing opportunities and packet-delay with n input flows, but
this method required complex computing to calculate the
probability matrix. The authors in [17] and [18] devised
a mechanism that forwarded uncoded packets based on a
cost threshold such as the energy consumption required for
transmission by the relay. Several relevant policies such
as cost threshold were considered, and the results of opti-
mizing objectives relevant to delay or cost were presented.
Ciftcioglu et al. [19] and Davri et al. [20] moved the buffers
from the relay node to the source nodes to enhance the
throughput of the MAC channel. Zohdy et al. [21] focused
on efficiency gains and took delay-related performance into
account as an optimization constraint rather than as an
objective.

Few works have concentrated on the statistical character-
istics of the output yielded by network coding. The output
distribution of the time intervals for synchronous network
coding scenarios was presented in [22]. The theoretical
results showed that the distributionwas an asymptotical expo-
nent when the rates of the two independent exponential input
flows were the same. Alsebae et al. [23] investigated the
output distribution of an M/D/1 queueing model under a
synchronous network coding scenario. In their study, only
encoded packets were included in the output flow.

The contributions of the present paper are twofold. First, to
achieve an efficient asynchronous network coding method,
an analogous threshold queueing strategy with finite queu-
ing capacity, called Best Effort Network Coding (BENC), is
investigated. The BENC needs few storage resources and no
computing resources to achieve network coding gains close
to the theoretical maximum, and it is easily deployed on
encoding nodes. Second, network coding output statistical
characteristics, such as time interval distribution, mean wait-
ing queue length and delay, are also investigated.

This study is organized as follows: the queuing model and
the BENC strategy are presented in Section II. Queueing
characteristics such as the time interval distribution of output
for BENC and its expectation, as well as the mean waiting
queue length are studied in Section III. Then, the performance

is investigated using simulated independent exponential input
processes with the same parameters in Section IV. Finally,
conclusions are presented in Section V.

FIGURE 1. Queue model of an encoding node.

II. BEST EFFORT NETWORK CODING MODEL
Fig. 1 shows the queuing model of an encoding node, which
consists of two independent data flows named flow 1 and
flow 2, respectively, one queue model and one output flow.
The data packet from each flow arrives after the time inter-
val T whose distribution is exponential with λ1 and λ2,
respectively. The packets arrive at the encoding node and
are served to generate the output flow. The queue model in
the encoding node is divided into two parts. The first part is
the waiting queue, which has a finite buffer length,N , and the
second is a service queue that stores and forwards packets.
In the second part of this queuing model, the classical queue-
ing theory of GI/GI/1/N is able to analyze the performance
theoretically. The network coding occurs in the first part, for
which there is not yet sufficient theoretical analysis.

Therefore, this study focuses on the first part in Fig. 1.
Packets from flow 1 and flow 2 will be processed in the
waiting queue using the BENC strategy to produce flow 3.
Then, flow 3 becomes the input flow to the second part, where
it is transmitted with the general service distribution to pro-
duce the output flow leaving the encoding node. Therefore,
the prime task here is to obtain the probability distribution
of flow 3.

A. THE BENC STRATEGY
In the BENC strategy, if the buffer is full or a matched packet
arrives, then a packet should leave the waiting queue. The
specific data flow diagram for BENC is shown in Fig. 2. The
relay maintains two virtual, parallel, finite buffers; each vir-
tual buffer accommodates packets received from each source.
By ‘‘virtual’’ we mean that one real buffer is sufficient in
a real system. When a new packet arrives, BENC checks
whether the virtual buffer of the other flow is empty. If the
other buffer is not empty, the newly arrived packet is encoded
with a packet in the other flow and departs the waiting queue
immediately. However, if the other buffer is empty when the
new packet arrives, it will enter its own virtual buffer to wait
for a future encoding opportunity. In addition, if its own buffer
is full, the head packet leaves the waiting queue, opening one
slot for the new arrival. Conversely, when a flow’s virtual
buffer is not full, packets already in the queue remain in the
queue. Based on the BENC strategy, packets will not be lost
from the waiting queue when the queue is full.

When neither of virtual queues are empty, the network
coded packet will be generated and depart the queue imme-
diately, therefore, there is practically only one queue which
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FIGURE 2. The best effort network coding (BENC) strategy.

FIGURE 3. Illustration of the BENC strategy.

stores data of flow 1 or flow 2 at any given time. To clarify
the scheme, Fig. 3 shows an example. The first part of the
figure shows that a new arrival will enter the queue when the
buffer is available. The second part shows that a new arrival
will evict the head of the queue when the buffer is full. The
third part shows that a new arrival of a different type will free
one slot in the queue through network coding. Subsequently,
the two encoded packets depart immediately.

B. THE BUFFER CAPACITY OF BENC
This study does not consider the time required to gen-
erate an encoding packet (which will depart the queue
immediately) in the following analysis. Furthermore, only
two independent input flows are considered. The capacity
of both virtual buffers is N . The elements (k , l) represent
the system state, which consists of the lengths of the virtual
buffers. Here, k and l stand for the buffer lengths of flow 1

and flow 2, respectively. Based on the strategy described in
Section II-A, the transition diagram is illustrated in Fig. 4. For
the BENC strategy, we have k∗l = 0, which means at least
one buffer is empty. To save storage resources, a real system
requires only one buffer to accommodate packets from two
input flows.

FIGURE 4. State transition diagram for the Markov chain.

III. PROBLEM FORMULATION
The probability distribution for the inter-arrival time of input
flows is exponential with λ1 and λ2, respectively. The random
variable T̂ represents the time interval of flow 3.

A. STEADY STATE PROBABILITY
The column for the steady state probability,W, is defined as:

W =
[
P ω1

N , . . . ,P ω
1
1,P ω0,P ω1

1, . . . ,P ω
2
N

]T
Although the capacity of the relay buffer is N , the state

of this system is 2N + 1. Let ω1
i , ω

2
i and ω0 denote the

state (i, 0), (0, i), and (0, 0), respectively, where
i = 1, 2, . . . ,N .
�1 and �2 represent sets of ω1

i and ω2
i . Hence,

� = �1, ω0, �
2 is the state set of this model. The steady

state probability, W, can be calculated as follows:

WT3 =WT , (1)

where3 is the one-step transition probabilitymatrix as shown
at the top of the next page.

The result of the steady state probability is expressed as:

P
{
ω
j
i

}
=

λN+ij λN−i3−j

2N∑
k=0

λ2N−k1 λk2

, j = 1, 2 (2)

P {ω0} =
λN1 λ

N
2

2N∑
k=0

λ2N−k1 λk2

, (3)

where i ranges from 1 to N .

B. THE EXPECTATION OF TIME INTERVAL
The distribution of the time interval for flow 3 can be
written as:

P
{
T̂ > t

}
=

∑
ω∈�

P
{
T̂ > t

∣∣∣ω}P {ω} . (4)
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3 =



λ1

λ1 + λ2

λ2

λ1 + λ2
λ1

λ1 + λ2
0

λ2

λ1 + λ2
0

λ1

λ1 + λ2
0

λ2

λ1 + λ2
. . .

. . .
. . .

0
λ1

λ1 + λ2
0

λ2

λ1 + λ2
λ1

λ1 + λ2

λ2

λ1 + λ2



The conditional probability where the time interval T̂ is
greater than t can be calculated as follows:

P
{
T̂ > t

∣∣∣ωji} = e−(λ1+λ2)t
N−i∑
k=0

(
λjt
)k

k!
, j = 1, 2 (5)

P
{
T̂ > t

∣∣∣ω0

}
= e−(λ1+λ2)t

(
N∑
k=0

(λ1t)k + (λ2t)k

k!
− 1

)
,

(6)

where i ranges from 1 to N .
The conditional probability can be expressed in vector

form as follows:

8

=

P
{
T̂ > t

∣∣∣ω1
N

}
, . . . ,P

{
T̂ > t

∣∣∣ω1
1

}
,P
{
T̂ > t

∣∣∣ω0

}
,

P
{
T̂ > t

∣∣∣ω2
1

}
, . . . ,P

{
T̂ > t

∣∣∣ω2
N

}
T .
(7)

Then, Eqn. (4) can be simplified to

P
{
T̂ > t

}
=

∑
ω∈�

P
{
T̂ > t

∣∣∣ω}P {ω} =WT8. (8)

The probability distribution of the random variable T̂ is
denoted by FT̂ (t), which is defined as follows:

FT̂ (t) = P
{
T̂ < t

}
= 1−WT8. (9)

Then the expectation of the random variable T̂ can be
obtained as shown below:

E
[
T̂
]

=

∫
∞

t=0
t ·

d
dt

[
1−WT8

]
dt

= WT
·

∫
∞

t=0
t ·
(
−
d
dt

8

)
dt

=
λ1 − λ2

λ2N+11 − λ2N+12

·



λN−11 λ2N2

(λ1+λ2)N
+λN+12

λN−11 −λN−12

λ1 − λ2

+λN−11 λN−12

(
λ21+λ

2
2+λ1λ2

)
(λ1+λ2)N−λ

N+2
1 −λN+22

(λ1+λ2)N+1

+
λN−12 λ2N1

(λ1+λ2)N
+λN+11

λN−11 −λN−12

λ1−λ2


.

(10)

C. THE EXPECTATION OF NETWORK
CODING TIME INTERVAL
The output of flow 3 consists of both network coded packets
and uncoded packets. The time interval between network
coded packets is defined as TNC . The cardinality of the state
set � is 2N + 1 when the buffer length is N for each flow.
The buffer length state changes when a new arrival packet is
processed. It is only when the state is ω1

N orω2
N that departing

packets could be uncoded. Otherwise, departing packets will
always be encoded. The conditional probability that TNC is
greater than t is calculated as follows:

P
{
TNC > t|ωji

}
= e−λ3−jt , j = 1, 2 (11)

P {TNC > t|ω0} = e−λ1t + e−λ2t − e−λ1te−λ2t , (12)

where i ranges from 1 to N − 1.
The probability that TNC is greater than t is the sum of

the conditional probability multiplied by the steady state
probability, as expressed in Eqn. (13).

P {TNC > t} =
N−1∑
i=1

(
P
{
TNC > t|ω1

i

}
PNC

{
ω1
i

}
+ P

{
TNC > t|ω2

i

}
PNC

{
ω2
i

})
+P {TNC > t|ω0}PNC {ω0} . (13)

However, the steady state probability (PNC ) is no
longer the system steady state probability presented
in Eqns. (2 and 3). PNC can be easily calculated by steady
state probability using the following equations:

PNC
{
ω
j
i

}
=

P
{
ω
j
i

}
N−1∑
k=1

(
P
{
ω1
k

}
+ P

{
ω2
k

})
+ P {ω0}

, j = 1, 2

(14)

PNC {ω0} =
P {ω0}

N−1∑
k=1

(
P
{
ω1
k

}
+ P

{
ω2
k

})
+ P {ω0}

, (15)

where i ranges from 1 to N − 1.
The conditional probability and the steady state probability

can be expressed in vector form as follows:

WNC =

[
PNC

{
ω1
N−1

}
, · · · ,PNC

{
ω1
1

}
,PNC {ω0} ,

PNC
{
ω2
1

}
, · · · ,PNC

{
ω2
N−1

} ]T
,

GNC=

[
e−λ2t , · · · , e−λ2t , e−λ1t+e−λ2t−e−λ1te−λ2t ,
e−λ1t , · · · , e−λ1t

]T
.

VOLUME 4, 2016 5993



X. Li et al.: Queueing Characteristics of the BENC Strategy

Then, Eqn. (13) can be simplified to

P {TNC > t} =WT
NCGNC, (16)

and the expectation of the random variable TNCcan be
obtained as follows:

E[TNC ]

=

∫
∞

t=0
t ·

d
dt

[
1−WT

NCGNC

]
dt

= WT
NC ·

∫
∞

t=0
t ·
(
−
d
dt
GNC

)
dt

=
−λ2N+11 −λ2N1 λ2+λ

N+1
1 λN2 +λ1λ

2N
2 −λ

N
1 λ

N+1
2 +λ2N+12

(λ1+λ2)
(
−λ2N1 λ2+λ1λ

2N
2

)
=

(λ1 + λ2)
2N−1∑
i=0

λ2N−1−i1 λi2 − λ
N
1 λ

N
2

(λ1 + λ2) λ1λ2
2N−2∑
i=0

λ2N−2−i1 λi2

. (17)

Assuming λ2 if greater than λ1, according to Eqn. (17),
with the increase of λ2 or buffer capacity N , the expectation
of time interval of encoded packets tends toward 1/λ1, due to
the rate of encoded fraction of total output flow is determined
by the rate of slower input flow, which is λ1.

D. MEAN WAITING QUEUE LENGTH
The mean waiting queue lengths, L1Q and L2Q, for
flows 1 and 2, respectively, can be obtained by using the
system steady state probability as follows:

L jQ = 0× P {ω0} +

N∑
i=1

i× P
{
ω
j
i

}

=

λN+1j

[
NλN+1j − (N + 1) λNj λ3−j + λ

N+1
3−j

]
(λ1 − λ2)

(
λ2N+11 − λ2N+12

) ,

j = 1, 2.

= λN+1j

N−1∑
k=0

λN−1−kj

k∑
i=0
λk−ij λi3−j

2N∑
k=0

λ2N−k1 λk2

(18)

Themean waiting queue length varies with the rate of input
flow and the capacity of queue. Assuming the capacity of
queue is fixed, according to Eqn. (18), the queue length of
flow j decreases with the increase of rate of flow 3 – j, when
the rate of the flow 3−j is higher than the rate of flow j, where j
has a value of 1 or 2. The reason is as follows. The packets
from flow 3 − j arrives faster than the packets from flow j,
therefore, the packets from flow j stay in the waiting queue
for a short time, and then encoded packets are generated
and depart the queue, as a result, the queue length of flow j
decreases. On the contrary, the queue length of flow 3 − j
increases.

E. MEAN PACKET WAIT TIME
Little’s Law holds if a queueing process is regenerative
[24]. The BENC process is regenerative, thus, the mean wait
time, WQ, for each flow can be calculated by L jQ = λjW

j
Q,

where j is 1, 2.

W j
Q = λ

N
j

N−1∑
k=0

λN−1−kj

k∑
i=0
λk−ij λi3−j

2N∑
k=0

λ2N−k1 λk2

, j = 1, 2. (19)

IV. PERFORMANCE ANALYSIS AND SIMULATION
A. THE NETWORK CODING GAIN
The expectation rate, λ̂, of flow 3 is λ̂ = 1/

(
E
[
T̂
])

. The
result is presented in Eqn. (20) when λ1 and λ2 are equal to λ
in Eqn. (10):

λ̂ = λ
2N + 1

1
2N + 2N − 1

2

. (20)

1) WHEN THE BUFFER IS ABSENT
The rate of flow 3 is λ̂ = 2λ when N is 0. Because λ1
equals λ2, the rate of flow 3 is equal to λ1 + λ2. In this
case, the process of flow 3 is the sum of the two independent
exponential distributed processes with parameters λ1 and λ2.
The result of λ̂ can then be verified.

2) WHEN THE CAPACITY OF THE BUFFER IS INFINITE
The asynchronous network coding process of flow 3 will
degenerate to the synchronous network coding. The rate
of the asynchronous network coding asymptotically tends
toward λ as the capacity of the buffer increases to infinity,
which can be calculated as follows:

λ̂ = lim
N→∞

λ
2N + 1

1
2N + 2N − 1

2

= λ. (21)

In this case, the encoding node reaches the maximum
coding gain, which is 2. Meanwhile, the result also implies
that the output flow rate of a synchronous network coding is λ
when the two independent Poisson processes have the same
rate, λ. The same result is shown in [14] as well.

3) WHEN THE CAPACITY OF BUFFER IS N
From the preceding analysis, the maximum network coding
gain is 2 when two independent processes have the same rate.
The BENC strategy will achieve the maximum gain when
the buffer capacity is infinite. However, in real networks,
this theoretical maximum is obviously unreasonable. A better
question is: How large a buffer is required to achieve 99% of
the maximum coding gain? The answer is shown below.

The network coding gain is the ratio of the number of
forwarding transmissions required to the number of transmis-
sions required by the network coding strategy to deliver the
packets with the same size. The output of flow 3 consists of
both encoded and uncoded packets. The output rate of flow 3
is the sum of the network coding rate, λNC , and the uncoded
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flow rate. The network coding gain can then be calculated by
(2λNC + λ̂ − λNC )/λ̂ = 1 + λNC/λ̂. The expectation rate
is defined as λNC = 1/(E[TNC ]). The result is presented
in Eqn. (22) when the parameters λ1 and λ2 are equal to λ
in Eqn. (17):

λNC =
4N − 2
4N − 1

λ. (22)

The buffer size N is the smallest integer that is no less than
the result from solving Eqn. (23) to achieve x percent of the
maximum coding gain. Therefore, buffer sizes of 50, 10 and 4
can reach 99%, 95% and 90% of the maximum coding gain,
respectively.

1+
(4N − 2)

(
1
2N + 2N − 1

2

)
(4N − 1) (2N + 1)

= 2× x%. (23)

B. SIMULATION
The theoretical results discussed in Section 3 such as the
expectation time interval of flow 3, the waiting queue length
for each flow and the network coding gain are investigated
in this section. In particular, the situation when λ1 equals λ2
is analyzed here. The distribution of these two input flows is
exponential. Without loss of generality, λ1 = λ2 = λ = 1 is
assumed, which can be easily achieved by properly choosing
a time scale. The duration of every simulation is at minimum
100,000 time units.

FIGURE 5. Time interval distribution with N = 1.

1) THE TIME INTERVAL DISTRIBUTION OF FLOW 3
The time interval distribution of flow 3 depends on λ1, λ2
and the waiting queue length N in Eqn. (10). In addition,
the hazard function of the time interval for flow 3 is no
longer a constant; therefore, flow 3 is no longer a Poisson
process [24]. The exponential distribution curves in Fig. 5,
Fig. 6, and Fig. 7 are obtained by curve fitting method based
on the simulation data. Fig. 5 shows that when the queue
capacity is 1, the time interval frequency histogram does not
match the exponential distribution. However, as the capacity
of waiting queue increases, the distribution is asymptotically

FIGURE 6. Time interval distribution with N = 4.

FIGURE 7. Time interval distribution with N = 10.

FIGURE 8. The output flow rate with two asymmetric flow rates.

exponential, as shown in Fig. 6 and Fig. 7. When the capacity
is greater than 4, the distribution is almost exponential.

Fig. 8 shows the output flow rate with asymmetric source
rates. The rate ratio of the two flows ranges from 1 to 10.
The output rate is almost equal to the rate of the fastest flow,
which means that the packets from the slower flow are nearly
entirely encoded.
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FIGURE 9. Mean waiting queue lengths.

2) MEAN WAITING QUEUE LENGTHS
OF FLOW 1 AND FLOW 2
When λ1 = λ2 = λ, Eqn. (18), which calculates the mean
waiting queue lengths of flow 1 and flow 2, can be simplified
to L1Q = L2Q = N (N + 1)/2 (2N + 1). The theoretical result
shows that the mean waiting queue lengths of flow 1 and
flow 2 are equal and are related only to the queue capacity.
Fig. 9 shows the mean waiting queue length plotted as a
function of the queue capacity. The solid theoretical line lies
between the two simulation lines; however, the simulation
results are extremely close to the theoretical result.

FIGURE 10. Mean waiting queue length with N = 4.

Fig. 10 and Fig. 11 show the mean waiting queue lengths
plotted as functions of the simulation time. The queue capac-
ities in Fig. 10 and Fig. 11 are 4 and 10, respectively. The
solid lines present the theoretical results. The dashed lines
show the results for queue 1, while the dotted lines show
the results for queue 2. The theoretical mean waiting queue
lengths are L1Q = L2Q = 4 (4+ 1)/2 (2× 4+ 1) ≈ 1.1111
and L1Q = L2Q = 10 (10+ 1)/2 (2× 10+ 1) ≈ 2.6190
when the queue capacities are 4 and 10, respectively. The
simulation results show that the mean queue length oscillates
between 0 and the queue capacity at the beginning, but tends
to stabilize quickly. Hence, the system will be stable.

FIGURE 11. Mean waiting queue length with N = 10.

FIGURE 12. Simulation of network coding gain.

3) NETWORK CODING GAIN
The network coding gain is illustrated in Fig. 12. The dia-
mond and circle lines respectively represent the simulated
and theoretical results of the network coding gain. The
simulation results show that the network coding gains are
1.798 and 1.908 when N equals 4 and 10, respectively. This
simulation verifies the theoretical result for network coding
gain. That is to say, if 90% of the maximum coding gain
is sufficient for a communication system, the length of the
waiting queue for each flow needs to be only 4. The output
flow rate, λ̂, is 1.19λ when the network coding gain is 1.8.

The mean result of the network coding gain from simu-
lation is consistent with the theoretical analysis. Therefore,
the BENC strategy is an efficient and succinct way to obtain
sufficient network coding gain at the encoding node.

V. CONCLUSION
In this study, the queueing characteristics of network coding
have been investigated. A novel strategy called Best Effort
Network Coding (BENC) was designed and formulated using
a Markov chain. The problem of the distribution of the time
interval for the output flow has been solved. In addition,
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the expectations were presented in analytical form, including
the time interval for the output flow, the network coding
time interval and the mean waiting queue length. Moreover,
the performance of this strategy in one particular case has
been analyzed and validated through simulation. As shown
by the simulation, the waiting queue system is stable using
the BENC strategy. The distribution of the output flow is
asymptotically exponential as the queue capacity increases.
Furthermore, network coding gain is achieved efficiently by
the BENC strategy without requiring complex encoding cal-
culations at the encoding node.
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