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ABSTRACT It is of enormous significance to detect abnormal brains automatically. This paper develops an
efficient pathological brain detection system based on the artificial intelligence method.We first extract brain
edges by a Canny edge detector. Next, we estimated the fractal dimension using box counting method with
grid sizes of 1, 2, 4, 8, and 16, respectively. Afterward, we employed the single-hidden layer feedforward
neural network. Finally, we proposed an improved particle swarm optimization based on three-segment
particle representation, time-varying acceleration coefficient, and chaos theory. This three-segment particle
representation encodes the weights, biases, and number of hidden neuron. The statistical analysis showed
the proposed method achieves the detection accuracies of 100%, 98.19%, and 98.08% over three benchmark
data sets. Our method costs merely 0.1984 s to predict one image. Our performance is superior to the
11 state-of-the-art approaches.

INDEX TERMS Minkowski Bouligand dimension, genetic algorithm, artificial bee colony, logistic map,
number of hidden neuron, K-fold cross validation.

I. INTRODUCTION
Pathological brain detection system (PBDS) can help
neuroradiologists to detect specific disease for patients. There
are massive of neuroimaging methods [1], such as CT,
PET, SPECT, and MRI. The MRI is radiation free [2] and
can provide better resolution in brain soft tissues [3]; thus,
we chose MRI as the main scanning tool for the brain
image.

There are two techniques to develop preliminary PBDS:
(i) based on single slice [4] and (ii) based on the whole
brain [5]. The former is inexpensive and rapid for scanning,
but it needs to select the slice including the lesion. The latter
is time-consuming, and needs complexed algorithms. In this
study, we center in the former one.

In the last decade, numerous PBDSs are developed. Hachaj
and Ogiela [6] applied self-organizing map (SOM) to detect
perfusion regions in abnormal brains. El-Dahshan et al. [7]
employed the feedback pulse-coupled neural network (PCNN)
to preprocess the brain images. Then they combined discrete
wavelet transform (DWT) and PCA to extract features. They
finally employed back propagation neural network (BPNN).
Feng [8] employed stationary wavelet transform (abbreviated
as SWT) to take place of traditional DWT. Afterwards,
to train the classifier, they introduced a novel algorithm
that is a hybridization of PSO and ABC (shorted as HPA).
Sun [9] combined Hu moment invariants (HMI) with
wavelet entropy. They used generalized eigenvalue proximal
SVM (GEPSVM). Wibmer et al. [10] proposed a novel
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Haralick texture as image feature. Dong et al. [11] proposed a
new image feature as wavelet packet Tsallis entropy (WPTE)
and wavelet packet Shannon entropy (WPSE). They proved
WPTE is the extension of WPSE, i.e., WPSE is a partic-
ular case of WPTE. In this study, we employed WPTE to
extract features. Dong et al. [12] used stationary wavelet
transform (SWT) and PCA.

We aimed to develop a novel PBDS from a different view-
point. In fractal geometry, the fractal dimension (FD) is a
measure to provide how fractal pattern changes within the
scale where it was measured. What is more, the FD is already
proven to be an effective measure for brain morphometry.
Rajagopalan et al. [13] observed brain white matter changes
in amyotrophic lateral sclerosis (ALS) from FD study.
Farahibozorg et al. [14] observed age- and sex-related dif-
ference in the complexity of the global and hemispheric
white matter (WM) through FD. Therefore, it is reasonable to
extend to extract features from the pathological brain images
via FD.

On the other hand, single-hidden layer feedforward
neural-network (SLFN) is commonly used as a classifier,
since it can approximate functions with desired accuracy.
However, training performance of SLFN influences the
classification accuracy. At present, many swarm intel-
ligence based methods have proven excellent results.
Mirjalili et al. [15] proposed to use social spider
algorithm (SSA). Gholizadeh [16] used a modified firefly
algorithm (MFA). Lahmiri [17] applied particle swarm opti-
mization (PSO). Those methods can achieve good results, but
they may be trapped into local minima and their convergence
speed is a bit slow.

To further improve the training efficiency, we proposed an
improved PSO. The remainder of this paper is organized as
follows: Section II provides the materials. Section III intro-
duces the fractal dimension estimation. Section IV introduces
the basic fundamentals of SLFN. Section V proposes an
improved PSO algorithm. Section VI gives the implementa-
tion pseudocodes. Section VII offers the experimental results
and discussions. Section VIII concludes the paper.

II. MATERIALS AND STATISTICAL ANALYSIS
Three open access dataset were commonly used in PBD
systems comparison. The slices were selected by neuro-
radiologists with experiences over ten years. They are of
different slices of brain magnetic resonance (MR) images.
The first dataset (D_1) contains 66 brain images, the second
dataset (D_2) contains 160 images, and the third dataset (D_3)
contains 255 images. Their descriptions can be found in
reference [18].

The brain images from the three datasets are all
T2-weighted and have a size of 256×256. Several samples
of pathological brains were illustrated in Figure 1. We did
not use the brain extraction tool (BET) to remove the skulls,
since some diseases may involve the meninges, such as sub-
arachnoid stroke. Therefore, our PBDS can detect deforms in
skulls compared to traditional PBDS.

FIGURE 1. Sample of pathological brains.

Besides, we did not center the brain in the image, since
it is also unnecessary for recent advanced face recognition
methods to center the faces.

The stratified cross validation (SCV) was used [19].
Following common convention and the stratification, a 6-fold
SCVwas employed for D_1, and a 5-fold SCVwas employed
for D_2 and D_3. In this way, each fold can get similar class
distribution. Table 1 presents the statistical setting of three
datasets.

TABLE 1. Statistical setting.

5938 VOLUME 4, 2016



Y.-D. Zhang et al.: Fractal Dimension Estimation for Developing PBDS Based on Minkowski–Bouligand Method

FIGURE 2. Relationship among scaling and dimension: (a) N = 1;
(b) N = 1; (c) N = 1; (d) N = 2; (e) N = 4; (f) N = 8. In the figure,
e represents the scaling factor, D the fractal dimension.

III. FRACTAL DIMENSION ESTIMATION
A. MODEL
In the field of fractal geometry, the fractal dimen-
sion (FD) [20] offers a statistical index of complexity, mea-
suring the pattern detail changes with the scale [21]. We will
try to use simple illustrations to show the concept of FD.
Suppose N represents the number of sticks for measuring,
e the scaling factor, D the fractal dimension, then we have
Figure 2, and then can summarize as

N =
(
1
e

)D
(1)

This scaling rule validates conventional observations about
geometry and dimension. Then, equation (1) can be extended
to fractal field by the simple transformation as

D = − loge N (2)

For example, the Koch curve [22] is generated by dividing
a line segment into three equal-length segments, drawing an
equilateral triangle over the middle segment as its base, and
removing the base. The Koch curve has an N = 4 when
e = 1/3, thus its fractal dimension is D = 1.2619. Figure 3
shows the one to four iterations of Koch curve, generated by
our developed computer programs.

B. BRAIN EDGE DETECTION
Image preprocessing is necessary, since the fractal dimen-
sion works better for binary image than grayscale image.
Lahmiri and Boukadoum [23] proposed an edge fractal
dimension, and spectral energy signature. Du et al. [24]
generated leaf edge using multiple threshold technique, and
utilized fractal dimension feature to recognize plant leaf.
Yarlagadda et al. [25] used the fractal dimension value
of facial edge to classify subjects to different age groups.
Amarasinghe et al. [26] employed edge detection algorithm
to obtain fractal dimension of long electrical discharge.
Zhong et al. [27] used edge detection technique in CT images.

FIGURE 3. Koch curve: (a) one iteration; (b) two iterations; (c) three
iterations; (d) four iterations.

From above methods, we see that edge detection is an
effective preprocessing method for fractal dimension calcula-
tion. It can transform the natural image to binary image, and
meanwhile it can preserve the key features. In this study, we
shall test fiver different edge detection algorithms: Laplacian
of Gaussian (LOG), Prewitt, Roberts, Sobel, and Canny.

The edge detection may incur spurious points on the edge,
hence, the ‘‘edge thinning’’ [28] technique is necessary to
remove them. In ideal condition, it can provide one-pixel
thick edge. Besides, thin edges can give better efficiency in
object detection [29].

C. MINKOWSKI-BOULIGAND DIMENSION
Minkowski-Bouligand dimension (MBD) [30], is a way of
estimating the fractal dimension, by imaging the pattern lying
over an equally-spaced grid and counting howmany boxes are
required to cover [31]. The box counting method can get the
curve of required boxes with the grid scale [32]. This curves
are the brain edges in our study.

Figure 4 shows an illustration of using box counting
method to calculating the required box at grid size of 64,
32, and 16, respectively. The results showed that the required
box numbers are 11, 37, and 116, respectively. Therefore,
the required box numbers are chosen as the image features,
which reflects the fractal dimension at different grid size.
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FIGURE 4. box counting algorithm on the Jiangsu map with size
of 256×256.

IV. SINGLE-HIDDEN LAYER FEEDFORWARD
NEURAL-NETWORK
The single-hidden layer feedforward neural-network (SLFN)
maps input feature to target class [33], by constructing a fully
connected [34] feedforward neural network with only one

FIGURE 5. Structure of SLFN (x represents the input data, y the output
data, n the index of sample, d the number of input neurons, M the
number of hidden neurons, c the number of output neurons, i the index
of input neuron, j the index of hidden neuron, k the index of output
neuron).

hidden layer [35]. It is reported to have better performances
than decision tree and support vector machine. Figure 5 gives
the structure of SLFN pictorially.

Suppose [x(n), t(n)], (n = 1, 2, . . . ,N ) denotes the n-th
training data, we have:

x (n) = [x1 (n) , x2 (n) , . . . , xd (n)]T (3)

t (n) = [t1 (n) , t2 (n) , . . . , tc (n)]T (4)

where d represents the dimension of input features, c the
number of classes, and ()T the transpose operator. The train-
ing of SLFN will generate realistic output y(n) as

y (n) = [y1 (n) , y2 (n) , . . . , yc (n)]T (5)

All training algorithms are to minimize the sum of mean-
squared error (MSE) between the target vector t(n) and real-
istic output vector y(n) as

min
N∑
n=1

(y(n)− t(n))2 = min
N∑
n=1

c∑
k=1

(yk (n)− tk (n))2 (6)

For each neuron in hidden layer and output layer, the
model is depicted in Figure 6. The inputs are weighted by
multiplying with weights w, and the results are added with a

FIGURE 6. Structure of a neuron.
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bias matrix b. After the summed results are passed through
an activation function A, the final output is generated.

V. OPTIMIZATION
In the last decade, swarm intelligence methods were
employed to train the SLFN. For instance, Hu et al. [36]
used genetic algorithm (GA). Han and Zhu [37] employed the
particle swarm optimization (PSO). Hassim and Ghazali [38]
used artificial bee colony (ABC) algorithm. Yang et al. [39]
utilized the biogeography-based optimization (BBO).

Those algorithms achieve better results than traditional
gradient-descent related algorithms, since the optimization
is ill-conditioning and contains many local minimal points.
Nevertheless, they still suffer from following other aspects:
(i) The training algorithms are not robust; and (ii) They can
only optimize the weights, but cannot optimize the number of
hidden neuron (NHN) in the same time.

A. THEORY OF PSO
In this study, we chose PSO .[40] as the main algorithm and
proposed three improvements. In canonical PSO, each parti-
cle represents a candidate solution. Both the position P and
the velocity V are associated with each particle. ‘‘Velocity
clamping’’ [41] was used to limit particles flying out of the
search space.

The fitness function f is evaluated for all the particles at
each iteration. Then, two kinds of best particles are selected.
One is the previous best (bp) position a particle has traversed
so far [42], with definition as

bp(i, t) = argmin
k=1,...,t

[f (Pi(k))] (7)

where f the fitness function, N the total number of particles,
i denotes the particle index, k the iteration index, t the current
iteration number, Pi(k) the position of i-th particle at k-th
iteration. The other is the global best (bg) position that all
particles have traversed so far [43], defined as

bg(t) = argmin
i=1,...,N

[
bp(i, t)

]
(8)

Hence, the two properties of every particle are updated as
follows

Vi(t + 1) = ωVi(t)

+ rpcp
(
bp(i, t)− Pi(t)

)
+ rgcg

(
bg(t)− Pi(t)

)
(9)

Pi(t + 1) = Pi(t)+ Vi(t + 1) (10)

Here ω represents the inertia weight, with purpose to bal-
ance the global exploration and local exploitation [44].
rp and rg are uniformly distributed random variables within
range [0, 1]. Two positive constant parameters cp and cg
are called ‘‘acceleration coefficients’’ to modify the distance
towards previous best and global best, respectively [45].

B. PROPOSED IMPROVED PSO
To further enhance the performance of PSO and to solve
the three shortcomings of swarm intelligence in classifier
training, we thus propose an improved PSO method in this
paper based on a novel representation method, the time-
varying acceleration coefficient (TVAC) strategy, and chaos
theory.

A three-segment particle representation (TSPR) was pro-
posed, which divides the particle into three segments.
Figure 7 shows that the first segment was encoded as the
weights of SLFN, the second segment was encoded as
the bias, and the third segment as the number of hidden
neurons (NHN).

FIGURE 7. Technique of three-segment particle representation. (NHN
represents the number of hidden neurons).

From Figure 7 and Figure 8, the position Pi(t) and velocity
Vi(t) of i-th particle at t-th iteration can be rewritten as

Pi(t) =
[
P1i (t) P2i (t) P3i (t)

]
(11)

Vi(t) =
[
V 1
i (t) V 2

i (t) V 3
i (t)

]
(12)

Accordingly, the previous best bp of i-th particle at t-th
iteration can be expressed as

bp(i, t) ,
[
b1p(i, t) b2p(i, t) b3p(i, t)

]
(13)

and the global best bg at t-th iteration can be expressed as

bg(t) =
[
b1g(t) b2g(t) b3g(t)

]
(14)

Based on above definitions, the update rules (9)(10) should
be adjusted to be coherent with the TSPR as

Vi(t + 1) =
[
V 1
i (t + 1) V 2

i (t + 1) V 3
i (t + 1)

]
(15)

The three segments of Vi(t+1) are defined as

V 1
i (t + 1) = ω1V 1

i (t)

+ dp,1(t)cp(t)
(
b1p(i, t)− P

1
i (t)

)
+ dg,1(t)cg(t)

(
b1g(t)− P

1
i (t)

)
(16)

V 2
i (t + 1) = ω2V 2

i (t)

+ dp,2(t)cp(t)
(
b2p(i, t)− P

2
i (t)

)
+ dg,2(t)cg(t)

(
b2g(t)− P

2
i (t)

)
(17)

V 3
i (t + 1) = ω3V 2

i (t)

+ dp,3(t)cp(t)
(
b3p(i, t)− P

3
i (t)

)
+ dg,3(t)cg(t)

(
b3g(t)− P

3
i (t)

)
(18)
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FIGURE 8. New Update Rules.

where the other two improves are also imbedded: On one
hand, the two factors cp and cg are modified as adaptive based
on the time-varying acceleration coefficient (TVAC) [46]
strategy as

cp(t) = (cp,f − cp,i)×
t
tf
+ cp,i (19)

cg(t) = (cg,f − cg,i)×
t
tf
+ cg,i (20)

where tf was a predefined maximum iteration number. cp,i
and cp,f are initial and final values of cp. The same setting
was applied to cg. TVAC can enhance the global search ability
in the initial stage, and augment the local search ability in
the end stage [47]. In common, TVAC offers more weight on
cognitive component in the initial, and more weight on social
component in the end [48].

On the other hand, the two random variable rp and rg were
replaced by six chaotic map series dp,1(t), dp,2(t), dp,3(t),
dp,4(t), dp,5(t), dp,6(t). The chaos theory features in the but-
terfly effect [49], and it can bring more versatility into the
population. The famous logistic map is employed, which is
also a discrete time demographic model analogous to the
logistic equation [50]. The model is written as:

d(t + 1) = r × d(t)× [1− d(t)] (21)

where r represents the logistic parameter [51]. This equation
will produce a chaotic series when r equals to 4 [52]. In all, we
name this proposed method by particle swarm optimization
with TSPR, TVAC, and chaos (PSO-TTC).

VI. IMPLEMENTATION
This proposed PBDS used MBD as features, used SLFN
as classifiers, and proposed a novel PSO-TTC algorithm
for optimization. The optimal parameters in PSO-TTC were
obtained by grid-searching algorithm. Figure 9 lists the dia-
gram of this proposed PBDS. Here we implement our method
by following steps shown in Algorithm 1.

FIGURE 9. Diagram of this proposed PBDS (This will be repeated
ten times).

Algorithm 1 Our proposed MBD + SLFN + PSO-TTC
algorithm
Step 1: Extract edges from every labelled brain image;
Step 2: Extract MBD features from brain images with box
sizes of 1, 2, 4, 8, and 16;
Step 3: Use stratified cross validation to divide the datasets
into K -folds at random;
Step 4: Fold i was used for validation, and the other folds
for training:

Step 4.1: i = 1, 2, 3, . . . ,K ;
Step 4.2: The learning model was SLFN trained by

PSO-TTC. Parameters were obtained by grid search;
Step 4.3: The measure was recorded on the valida-

tion set of fold i;
Step 5: We average the measures and output the final
performance.
Step 6: We repeat from Step 2 to Step 4 ten times, and
output the averaged performance.

VII. RESULTS AND DISCUSSIONS
A. EDGE DETECTION
Figure 10(a) shows an original brain image, which indi-
cates the patient suffers from metastatic adenocarcinoma.
Figure 10(b-f) shows the edge detection result via five dif-
ferent techniques: LOG, Prewitt, Roberts, Sobel, and Canny.
Those edge detectors are built-in functions in the Matlab
software.

The comparison shows Canny algorithm can extract edge
more efficiently while not removing important textures.
The results in Figure 10 fall in line with other researches:
Di and Gao [53] found Canny algorithm is the most
suitable for 3D seismic discontinuity enhancement.
Singh and Datar [54] showed Canny algorithm performed
the best for secure color image steganography. Yasmin
and Sathik [55] proved Canny algorithm give better per-
formance in skin lesion border detector than other algo-
rithms. All those confirmed the effectiveness of Canny
algorithm.
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FIGURE 10. Comparison of brain edge detection. (a) Original Image.
(b) LOG. (c) Prewitt. (d) Roberts. (e) Sobel. (f) Canny.

B. FRACTAL DIMENSION OF BRAIN IMAGE
Next, Minkowski-Bouligand dimension (MBD) method was
used to estimate the fractal dimension of brain images.
Figure 11 shows the required boxes for this brain image is
5619, 3028, 1436, 496, and 156, for the boxes of size of 1. 2,
4, 8, and 16, respectively. Therefore, the vector [5619, 3028,
1436, 496, 156] are assumed as a global image feature for this
brain image.

C. RESULT OF OUR METHOD
The accuracy results of our proposed method (PSO-TTC)
over three datasets are 100%, 98.19%, and 98.08%, respec-
tively. We list the detailed result over each run and each fold
in Table 2 and Table 3. In the tables, a(b) represents a brain
images were successfully recognized among b brain images.

D. COMPARISON TO OPTIMIZATION METHODS
In the fourth experiment, we compared the proposed
PSO-TTC with standard genetic algorithm (GA), particle
swarm optimization (PSO), artificial bee colony (ABC), and
firefly algorithm (FA). Their parameters were obtained by
trial and error method. The results are listed in Table 4.

FIGURE 11. Fractal dimension estimation of brain MR images. (a) Original
image. (b) grid size = 1. (c) grid size = 2. (d) grid size = 4. (e) grid
size = 8. (f) grid size = 16.

TABLE 2. Accuracy of our method over D_2.

The accuracies in Table 4 show that the GA achieves
96.52%, 89.31%, and 88.78% for the three datasets,
respectively. PSO achieves 98.33%, 96.56%, and 96.20%,
respectively. ABC achieves 97.73%, 93.94%, and 92.75%,
respectively. FA achieves 97.42%, 94.50%, and 94.04%,
respectively. Our proposedmethod achieves the best accuracy
as 100.00%, 98.19%, and 98.08%.

Why the PSO-TTC performs better than other four
global optimization methods? The reasons are apparent:
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TABLE 3. Accuracy of our method over D_3.

TABLE 4. PSO-TTC versus state-of-the-art optimization methods.

(1) The proposed three-segment particle representa-
tion (TSPR) encode not only the weights and biases, but
also the number of hidden neurons. Hence, PSO-TTC has
the unique ability to optimize the number of hidden neurons.
(2) We embed the time-varying acceleration coeffi-
cient (TVAC), which enhances the global search ability in
the initial stage, and augment the local search ability in the
end stage. (3) The logistical map in chaos theory brings
more versatility into the particle swarm. Those three methods
guarantee the effectiveness of our method.

E. COMPARISON TO STATE-OF-THE-ART APPROACHES
In the fifth experiment, we compared WPTE + FNN +
RCBBO, with 11 state-of-the-art approaches. Table 5 showed
the comparison results based on five or ten runs of SCV.

The comparison results in Table 5 demonstrated that this
proposed ‘‘MBD+SLFN+PSO-TTC’’ yields the best detec-
tion accuracy among all approaches. It even gives perfect
detection over the D_1 dataset. This indicates the artificial
intelligence makes a progress in this PBDS, and our devel-
oped PBDS is better result than 11 state-of-the-art methods.
Another advantage of our method is that we used the least
of features with number of 5, which indicates our extracted
features are efficient than others.

F. COMPUTATION TIME
In the finale, we run ten times and record the average
computation time (ACT) in training and prediction stages.
The hardware platform is Dell desktop with 3.20 GHz Intel
i5-3470 CPU and 4GB RAM. The software platform is 64bit
Win10 Operating System and Matlab R2015a.

Table 6 shows that the ACT over D_3 dataset cost
53.41 seconds on MBD calculation, and the ACT of MBD

TABLE 5. Classification comparison (Bold means the best).

TABLE 6. Computation time (Unit: Second).

calculation over one brain image only costs 0.1960 second.
The reason is the D_3 contains 255 images. Next, the training
of SLFN using PSO-TTC costs 32.11 seconds, while output
of a trained SLFN only uses 0.0024 seconds. This result
suggests our method may be time-consuming in training, but
it is rather quick in prediction. For one-image prediction,
it only costs 0.1984 seconds.

VIII. CONCLUSIONS
In this study, we proposed a novel PBDS for detecting abnor-
mal MR brain images. The experiments showed our method
was superior to 11 state-of-the-art PBDSs.

The main contribution lies in the use of fractal dimension
that is an important branch of fractional calculus, which is a
new field studying the possibility of taking real number pow-
ers or complex numbers of the differential operator and the
integration operator [64]. We believe fractional calculus will
be applied into brain science extensively, since the fractional
operators can describe the brain structures in both macro-
level and micro-level.

In the future, we will begin following tentative medical-
related researches: (i) Brain segmentation [65] will be
included, and the MBD will be extracted from gray matter,
white matter, and cerebrospinal fluid regions, respectively.
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(ii) Try other advanced learning models, such as extreme
learning machine [66]. (ii) Apply our method to CT
images [67] and PET images [68].

We shall test computing-related techniques: (i) Test other
advanced optimization methods, such as biogeography-based
optimization [69]. (ii) Wearable computing [70] based on
wireless body area network [71] or wireless sensor net-
work [72] can help detect abnormal brains in real time.
(iii) Recommendation system [73] can be used to suggest
treatment. (iv) New computer science related techniques,
such as cloud computing [74], internet of things [75], and big
data [76] will be included.

We shall try to extend our method to following
mathematical-related areas: (i) Extend our method to
volumetric image and apply fractal dimension on
3D surfaces [77]. (ii) The fractional calculus [78] will be
tested on extract new features.
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