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ABSTRACT A variety of Web-based applications, mobile apps, and other over the top data services with
affordable 3G/4G enabled smart devices are major factors for enormous increase in heterogeneous data traffic
at enterprise and mobile networks. This creates challenges regarding traffic management and requires traffic-
aware intelligent network management to deliver sustained quality of experience for subscribers. Deep packet
inspection and analysis (DPIA) provides base platform for development of traffic-aware intelligent network
management and security systems. However, computationally complex DPIA-related packet processing for
high speed data traffic makes these systems expensive. Furthermore, conventionally these traffic-aware
network management and security systems are deployed in enterprise networks with independent and
dedicated DPIA-related processing resources and require multiple copies of passively provisioned high speed
data from network, while performing similar DPIA operations over the same data again and again. This
duplicate deployment of expensive software and hardware resources for DPIA processing eventually results
in higher capital expenditures as well as operational expenditures for network operators. We have proposed
a novel service-oriented framework for heterogeneous deep packet inspection and analysis (SoDPI) that
simultaneously provides diversified DPIA services to multiple client applications for network management
and security operations in high-speed networks. Proposed framework provides flexible and comprehensive
API-based service interface for client applications to register required DPIA services. SoDPI framework
implementation is based on commodity hardware and deploys shared set of DPIA-related packet processing
components, requiring only single copy of passive data provisioned from network. Experimental evaluations
show that novel SoDPI framework requires considerably reduced amount of software and hardware resources
to fulfill heterogeneous DPIA packet processing requirements for multiple client applications in comparison
with conventional network management and security applications with dedicated DPIA components. This
results in lower cost impacts for network operators with more network manageability.

INDEX TERMS Deep packet inspection, network monitoring, service oriented, traffic-aware network
management, cost effective.

I. INTRODUCTION

Packet-data services have become dominant in commu-
nication networks with availability of numerous Layer-7
applications for interactive voice, video and data exchange
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along with continuous increase of available bandwidths
for subscribers at cheaper prices. Network management
operations have become progressively more challenging
for service providers due to complexity of continuously
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increased data traffic at network cores with reduced traf-
fic wvisibility. This complexity becomes manifold with
growing expectations of subscribers for higher quality of
experience (QoE) with continuous emergence of new Layer-7
applications and higher network speeds. To meet these evolv-
ing challenges, it requires in-depth inspection of traffic by
deploying traffic-aware systems for effective network man-
agement and to deliver superior end-user experiences [1].
Deep Packet Inspection and Analysis (DPIA) technology pro-
vides base platform for development of traffic-aware network
management and security (T-NMS) systems. Layer-7 security
firewalls, network intrusion detection systems, application-
aware load-balancers and traffic management systems,
data leakage prevention systems, application-aware QoE
measurement systems, copyright enforcement systems and
lawful interception systems are few examples of T-NMS sys-
tems [2]. Deployment of these traffic-aware systems ensure
smooth network operations including security and manage-
ment tasks in high speed enterprise networks for data service
providers and ISPs, producing higher QoE for subscribers.
However DPIA technology is computationally expensive that
requires complex software and hardware components with
high-end specifications to perform respective packet process-
ing tasks resulting in higher capital expenditure (CAPEX) [3].
DPIA implementations also require to cater for continual
increase in data rates at network cores along with addition
of semantic analysis support for new Layer-7 applications
and changes in existing Layer-7 applications. This makes
DPIA technology further expensive due to higher operational
expenditures (OPEX).

Prospective major components of a conventional DPIA
packet processing setup as shown in Fig. 1, includes high
speed packet capturing, protocol classification with pattern
matching, data reassembly of TCP streams and Layer-7
protocol semantic analysis for contextual information extrac-
tion [4]. Each T-NMS system deploys a set of these DPIA
components and features as per requirements to perform
respective system operations.

T-NMS systems that are deployed for multiple
network security operations require comprehensive set of
DPIA components mentioned in Fig. 1. For example,
application-aware Network Intrusion Detection/Prevention
Systems (NIDS/NIPS) perform application-aware pattern
matching at packet payloads after Layer-7 protocol specific
semantic analysis to identify malicious contents and per-
form mitigation of intruders and infected entities in any
network [5]. Data Leakage Prevention Systems (DLPS) [6]
and Copyright Protection Systems [7] also require exten-
sive DPIA processing to extract Layer-7 application specific
fields and spot confidential and copyright contents being
illegally transferred over network by using email, file transfer,
media sharing and Point-2-Point (P2P) applications. Lawful
Interception (LI) systems [8] are deployed as regulatory
and security requirements to monitor malicious activities of
cyber terrorists and other miscreants involved in illegal and
security threating acts. LI systems require DPIA processing
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FIGURE 1. Prospective components for DPIA processing.

components including real-time packet capturing, protocol
classifications, and stream data reassembly with Layer-7
protocol parsing to extract information and details about
cyber activities of miscreants and terrorists.

On the other side, T-NMS systems that are deployed
for traffic-aware network management operations mostly
require a subset of DPIA packet processing components to
perform T-NMS application specific data processing.
For example, network traffic management and planning
applications require high-speed packet capturing and protocol
classification for identification of Layer-7 application types
and compute application-aware traffic statistics including
payload sizes, packet counts and flow counts for traffic
management and planning network expansion [9], [10]. QoE
and network performance measurement applications require
packet protocol classification to collect application-aware
network performance statistics for estimation of QoE metrics.
This helps network administrators to identify low performing
areas and nodes in network and to take necessary correc-
tive measures [11]. Similarly application-aware policy and
charging control (PCC) systems require application types
and respective payload sizes of data packets to perform
application-aware charging for multiple data services [12].

Any enterprise network requires multiple DPIA based
T-NMS systems for respective network operations, secu-
rity and management tasks. Cost impact of expensive DPIA
processing components becomes manifold when multiple
T-NMS systems with dedicated DPIA resources are deployed
in same network as per conventional approach depicted
in Fig. 2.

Each T-NMS system equipped with independent DPIA
related resources results in repeated processing of same
data over and over for similar set of DPIA functions.
It requires more number of complex packet processing soft-
ware and hardware components, associated logistic resources
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FIGURE 2. Conventional deployment approach for T-NMS systems.

(e.g. energy consumption, space etc.) and multiple high speed
passive data provisioning links with respective high speed
traffic replication units for these systems to perform similar
data processing. This ultimately results in increased CAPEX
as well as high OPEX for network operators due to increase
in required network management activities and continuous
system up-gradations.

In light of the issues outlined above, we introduce the
Service- Oriented Heterogeneous Deep Packet Inspection
and Analysis Framework (SoDPI), a passive network mon-
itoring and analysis framework with shared deployment of
DPIA processing resources while simultaneously provid-
ing multiple DPIA services to diversified T-NMS clients.
SoDPI framework provides abstraction for incorporated
DPIA packet processing services via a set of flexible API
functions. Multiple T-NMS client applications can register
for required DPIA services via these API functions. Proposed
deployment of T-NMS systems based on novel SoDPI frame-
work is shown in Fig. 3. The outcomes of the proposed SoDPI
framework are (i) Simultaneous provisioning of
heterogeneous DPIA services for multiple T-NMS client sys-
tems (ii) Reduced amount of required hardware, software and
associated resources for computationally expensive DPIA
processing (iii) Reduced CAPEX and OPEX for service
providers in comparison to conventional approach for deploy-
ment of T-NMS systems.

We have evaluated SoDPI framework in a 10GE network
environment with a large data set of real packets traf-
fic. Evaluations are performed with two example moni-
toring applications, each with different DPIA processing
requirements (i) Protocol-Aware traffic statistics collector
application to collect and display Layer-7 protocol based
traffic statistics (ii) Data transfer monitoring application to
identify data transferred via SMTP [34] and POP3 [35] pro-
tocols. Both example applications are evaluated with SoDPI
framework based approach and conventional approach.
Evaluation results show that with same accuracy performance,
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Network Access Layer

proposed SoDPI framework requires considerably reduced
data processing and logistical resources for heterogeneous
DPIA packet processing in comparison to conventional DPTA
based monitoring applications.

The rest of this paper is organized as follows. We start
by reviewing existing related work in section 2. Before
describing detailed architecture, we discuss design consider-
ations of proposed SoDPI framework with respective features
in section 3. Section 4 explains architecture of proposed
framework. Section 5 provides estimation and comparison of
required processing resources for conventional approach and
SoDPI framework based monitoring applications. Section 6
contains implementation details for two example applica-
tions based on SoDPI framework. Experimental evaluation
of proposed framework along with comparisons of results is
discussed in section 7, while section 8 concludes the paper.

Il. RELATED WORK

Extensive research work has been done related
to complex packet processing for DPIA operations in
high speed networks. Major areas focused include high-
speed packet capturing implementations with zero packet
drops [15]-[19], improvements in throughputs of pattern
matching algorithms [2], accurate packet classifications algo-
rithms [21]-[25], optimal stream reassembly implementa-
tions [26]-[28] and extensive Layer-7 protocol semantic
analysis [5], [29], [30]. Another key area for DPIA related
research consists of DPIA implementations based on com-
modity hardware based platforms instead of dedicated FPGA
and network processor units to reduce cost impacts [13], [14].
However there has been very little work done related to shared
deployment of DPIA processing components to reduce cost
impacts due to duplicate deployment of packet processing
resources except few primitive implementations as suggested
in [32] and [33].

Moreno in [32] has proposed a monitoring platform termed
as multi-granular, multipurpose and multi-Gb/s monitor-
ing (M30Omon) that acts as an intermediate packet capturing
layer and serves client applications for packet data along with
basic packet level statistics. However, it does not address
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common key features of DPIA processing including pattern
matching, application protocol classification and semantic
analysis for extraction of Layer-7 application specific
features as required for traffic-aware network operations,
security and management systems.

Similarly Bremler in [33] has proposed an inline DPIA
framework to provide centralized pattern matching service
for different network elements. It proposes a single DPIA
controller module with multiple distributed DPIA modules
deployed in different network segments. It only operates in
chained inline mode with focus on raw pattern matching of
packet contents. It does not address DPIA requirements for
application-aware network management and security tasks
that include protocol classification, stream data reassembly
and semantic analysis for Layer-7 protocols. It does not
provide aggregated packet-level and application-level flow
statistics that are basic requirements for traffic-aware network
management systems. Another important feature required
to deploy DPIA as shared service is extensive and flexible
communication framework that enables smooth access of
heterogeneous DPIA services by multiple client applications.
This important feature is also not addressed in proposed
implementation.

Our studies in related works found that no study exists
for a shared and cost-effective DPIA based network traffic
monitoring and analysis framework that can fulfill diversified
DPIA processing requirements of multiple T-NMS systems
related to traffic-aware network operations, management and
security functions in high-speed networks.

Ill. DESIGN CONSIDERATIONS FOR PROPOSED

SODPI FRAMEWORK

Key design considerations for proposed SoDPI framework
with respective benefits are as following:

o Service Oriented architecture based DPIA processing
approach ensures simultaneous provisioning of DPIA
services to multiple clients while performing single time
DPIA related packet processing of high speed data in
comparison to conventional deployment approach. This
results in reduced CAPEX for service providers. DPIA
processing components also require frequent updates
in terms of hardware and software to keep monitoring
functions equally effective. Enterprise networks keep
on adding new high-speed data links at backbones to
cater high bandwidth demands. Similarly new Layer-7
applications and smartphone apps keep on being
introduced that require addition packet classification
and information extraction functions for of respective
Layer-7 protocols. With conventional design approach,
required hardware and software updates are performed
at all deployed T-NMS applications separately. However
with SoDPI framework, required updates and addition
of software and hardware components are performed
at single SoDPI framework instance. This simplified
network management results in reduced operational and
maintenance costs as well for network operators.
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o Heterogeneous DPIA services are simultaneously pro-
vided to multiple client applications from single DPTA
setup deployment. DPIA services offered by proposed
framework include:

o

General packet traffic statistics

Traffic statistics based on Layer-7 protocols.

Reassembled data access of TCP streams

Access of extracted protocol fields and contents

after semantic analysis of L-7 protocols.

o Abstraction for all DPIA related complex packet pro-
cessing enables researchers and application developers
to focus on development of application specific fea-
tures of T-NMS systems. They don’t require in-depth
knowledge of complex DPIA processing functions and
algorithms, ultimately resulting in rapid development of
different T-NMS system applications.

o Use of existing implementations for core DPIA pro-
cessing saves efforts that are required to design and
develop core DPIA components and enables to focus
on improvements and feature additions of T-NMS
applications.

o Commodity off-the-shelf Hardware based approach for
SoDPI architecture provides flexibility and scalability as
well as lower costs in comparison to legacy FPGA and
ASIC based expensive DPIA systems that are not easy
to scale [13], [14].

O O O

IV. ARCHITECTURE

As per given architecture for the proposed SoDPI framework
in Fig. 4, client applications avail required DPIA services
by making service requests via defined API functions calls.
SoDPI framework performs DPIA related packet process-
ing of high speed network data according to client requests
and forwards DPIA processing results to respective clients
in the form of pre-defined metadata formats along with
contents.

Architecture of proposed framework is stratified into three
layers with each layer encapsulating different functionali-
ties. Functions for service management, client interfacing
and dispatching of DPIA processing results are performed
by Service Management and Data Dispatching (SMD) layer
while DPIA based packet processing and related service
abstraction functions required for DPIA services are provided
by Core DPIA Processing (CDP) layer and DPIA Services
Abstraction (DSA) layer respectively.

To elaborate details of proposed SoDPI framework, firstly
we discuss service management and client interfacing func-
tions at SMD layer. Thereafter we elaborate composition and
respective data processing flows for DPIA services at CDP
and DSA layers respectively. In the last part of this section,
we discuss data dispatching of DPIA processing results to
respective client applications.

A. SERVICE MANAGEMENT AND CLIENT INTERFACING
Functions for the management of DPIA service requests from
clients are primarily provided by the Service Management
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FIGURE 4. SoDPI framework based deployment of T-NMS systems.

and Client Interfacing component at SMD layer that acts
as immediate interface for client applications to avail DPTA
services offered by proposed framework. Service manage-
ment functions include establishment of service sessions
with multiple clients, receiving requests for DPIA services
from clients, interpreting service requests, forwarding to core
DPIA packet processing and service abstraction components
of respective DPIA services and transmission of responses to
client applications against respective service requests.

Key functional units of Service Management and Client
Interfacing component are depicted in Fig. 5.

To Clients via SoDPI
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s £ Component
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v
To DSA/CDP
Layers

FIGURE 5. Functional blocks of service management and client
interfacing component.

All requests from clients related to DPIA services are
received and processed by Service Request Manager that
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segregates the requests based on respective types and perform
further processing accordingly. Proposed SoDPI framework
offers comprehensive set of API functions as listed in Table 1,
for clients to avail required DPIA services.

List of SoDPI framework APIs consist of function calls
for initialization, configuration, registration and termination
of DPIA service sessions. To elaborate service access pro-
cedures and respective request management and processing
details, we present a scenario with an example client applica-
tion that registers for general packet traffic statistics service.
Sequence of API function calls made by client application
and respective request processing by Service Management
and Client Interfacing component is depicted in Fig. 6.

As per given service access procedure, new service
session requests from clients are processed by SoDPI Session
manager that assigns unique Session Ids to respective clients
along with maintaining client details. After session initial-
ization, client applications make configuration API function
calls to specify storage location for dispatching of DPIA
processing results to respective clients.

Clients make requests for DPIA services via respective
service registration APIs after successful service config-
uration. All service requests from connected clients are
assigned unique Request Ids within the scope of assigned
Session Ids for respective clients. Assigned Session Ids and
Request Ids are key identification elements for all subsequent
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TABLE 1. Main functions of SoDPI APIs.

Session Initialization, Configuration and Termination APIs

int32 sodpi_create_session(unit32 SoDPI server IP ,uint16
SoDPI _server port)

Creates a DPIA session with SoDPI Server network address
details and returns with SoDPI Session Id.

int32 sodpi_start(const int32 sodpi)

Starts DPIA processing for registered service for respective
client with given SoDPI Session configuration and returns with
respective status as success or failure.

int32 sodpi_stop(cont int32 sodpi)

Stops DPIA processing for registered service operation of
respective SoDPI Session

int32 sodpi_close_session(const int32 sodpi)

Terminates client session and deallocates all resources
allocated for respective SoDPI Session.

int32 set_transfer _location_for DPIA_results(const int32 sodpi,
uint32 serverlP, char * meta_dir_path, char * username,
char * password)

Sets client side FTP service credentials for transfer of DPIA
results from SoDPI service instance to client.

General Packet Statistics

Service API

int32 register_pkt stats_access_for IPs(const int32 sodpi,
uint32 start_ip,uint32 end_ip, uintl6 capture_interval)

Provides packet level traffic statistics for given IP range
periodically after set time interval value in seconds. Returns
with respective Request Id in case of success or with error code
in case of failures. Same valid for all other DPIA service
registrations APIS.

Layer-7 Protocol Traffic Statistics Service API

int32 register_aggregated_stats_access_for_Protocols(const int32 sodpi,
uint32 start_ip,uint32 end_ip,uint capture_interval,
struct list_of protocols * protos )

Provides aggregated traffic statistics for given list of protocols
with specified IP range periodically after set time interval
value

Service API for Stream Reassembled Data Access

int32 register_stream_reassembled_data_access(const int32 sodpi,
uint32 start_ip, uint32 end_ip, uint capture_interval,

ePortType port_type, eLevelOfAccess access_level)

struct list_of protocols * protos, eDirection dir, int cuttoff stream_size,

Provides stream re-assembled data for given list of protocols
with specified IP range and payload cutoff size for
reassembled at given time intervals with required level of
services access

Service APIs for Layer-7 Protocols Extracted Information Access API

int32 register_layer7 _parsed_data_access (const int32 sodpi,
uint32 start_ip,uint32 end_ip, struct list of protocols * protos,
eLevelOfAccess access_level)

Provides layer 7 parsed data with extracted metadata and
contents for respective protocol list and specified IP range with
required level of services access

communication and DPIA processing during service
sessions with clients. DPIA service requests along with
Session Ids, Request Ids and input filtering parameters are
then forwarded to packet processing and abstraction compo-
nents of respective DPIA services at CDP and DSA layers
via DPIA Processing and Abstraction control interface.
Filtering parameters are utilized by DPIA services to process
and filter packets accordingly. Service Response Manager
manages all responses against initialization, configurations
and DPIA service API functions calls. It forwards these
responses to client applications as status of respective DPIA
service requests. Responses consist of information regarding
success or failure against service requests with respective
error details.

B. DATA PROCESSING ARCHITECTURE

FOR DPIA SERVICES

Once DPIA service sessions are successfully established with
respective clients , packet processing of high speed input data
starts at at CDP and DSA layers. Overall data processing
flow for DPIA services with inter-service and intra-service
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data exchange details are illustrated in Fig. 7. As per given
sequence, each DPIA service provide respective packet
processing functionalities to client applications as well as
to successor DPIA services. For example, data packets
collected by Packet Capturing component are required for
protocol classification, L-7 protocol identified data from
Protocol Classification component is required for protocol-
level stream data reassembly and stream reassembled data
from Stream Data Reassembly component is required for
L-7 semantic analysis and extraction of protocols fields and
contents.

To elaborate compositions and functions of multiple
DPIA services, we first discuss generic composition and data
processing architecture of a DPIA service. Later we discuss
specific details of all DPIA services with respective compo-
nents specifications, data processing flows and results.

1) GENERIC ARCHITECTURE AND COMPOSITION

OF DPIA SERVICES

Each DPIA service consists of two components as shown in
Fig. 8, with a core DPIA packet processing component at
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CDP layer and a corresponding service abstraction compo-
nent at DSA layer.

Core DPIA Packet Processing component of a
DPIA service at CDP layer receives input packet data from
its predecessor components or NICs as per given data
processing sequence in Fig. 7. Data processing flow for
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Core DPIA Packet Processing component with functional
details is depicted in Fig. 8. It performs two major functions
i.e. (i) Service specific core DPIA processing and (ii) Coarse
filtering of processed data. As per SoDPI framework design,
existing state of the art implementations are proposed for core
DPIA related processing functions, with details discussed
in coming sub-sections for respective DPIA services. After
completion of component specific core DPIA processing,
it becomes processing intensive and resource consuming
to pass all processed data to respective service abstraction
components at DSA layer and to core DPIA components of
successor DPIA services. To optimize resource consumption,
processed data is passed to coarse filtering block that main-
tains filters for its corresponding abstraction component at
DSA layer and for its successor DPIA services. With coarse
filtering, only required traffic data is forwarded to these com-
ponents, while rest of traffic data is discarded. Coarse filtering
for successor DPIA service helps to reduce amount of data
processing by these DPIA services, while coarse filtering for
corresponding service abstraction component at DSA layer
ensures forwarding of only required DPIA processed data for
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FIGURE 8. Generic architecture and data processing flow for DPIA
services.

respective shaping and forwarding to clients. Coarse Filters
consist of IP addresses, list of L-7 protocols and TCP/UDP
ports.

Service abstraction component of a DPIA service receives
DPIA processed data from corresponding core DPIA pro-
cessing component and performs three major functions
i.e. (i) Data-to-client identification (ii) Statistics collection
and data shaping (iii) Metadata generation.

As shown in Fig. 8, after receiving ingress packets from
core DPIA processing component, first function performed
is Data-to-client identification to identify clients that have
requested for respective DPIA processed data. This pro-
cessing block maintains record sets with respective Session
Ids, Requests Ids and filtering parameters that are received
from respective clients as input parameters of SoDPI API
function calls. Filtering parameters vary for different DPTA
services and can include IP addresses, port addresses and list
of Layer-7 protocols as requested by T-NMS clients. Data-
to-client identification process finds Session Ids along with
Request Ids for DPIA processed data based on these filtering
parameters. After Data-to-client identification process, data
is labeled with respective Session Ids and Request Ids for
identification during further data processing and dispatching
of results to clients.

Next function is statistics collection and data shaping
as per functional requirements of each DPIA service. For
abstraction components of DPIA services including general
packet traffic statistics and Layer-7 protocol based traffic
statistics, only respective traffic statistics are maintained
while for other DPIA services, statistics along with original
packet payload data is also maintained if required by clients
in service specific forms. After statistics collections and data
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shaping, metadata generation block performs generation of
service specific metadata objects. Pre-defined metadata for-
mats are proposed for results of each DPIA service that are
elaborated in coming sub-sections with respective details for
these services. Metadata objects for SODPI clients are identi-
fied by assigned Session Ids and Request Ids and Transaction
Ids. Transaction Ids are used for identification of multiple
metadata objects generated against same Requests Ids and
Session Ids. Metadata generation takes place either at pre-
defined time intervals or at captured L-7 protocol specific
events. Pre-defined time intervals with time resolution in
seconds, can be configured by client applications at DPTA
service registration time via respective APIs. Generated
metadata objects by each DPIA service are passed to Data
Dispatching component at SMD layer that forwards these
metadata objects to respective clients.

2) GENERAL PACKET TRAFFIC STATISTICS SERVIC

Multiple traffic engineering applications require general
traffic  statistics including aggregated as well as
direction-wise packet statistics for up-streams and down-
streams to perform network performance measurements. This
helps administrators to identify exhaustion of high speed data
links, frequency of connection terminations, fluctuations in
core network bandwidth, events of traffic bursts and monitor-
ing of respective effects along with preparation of daily traffic
graphs.

T-NMS client applications make access requests for
general packet traffic statistics service via register_pkt_stats_
access_for_IPs () APl call as given in Table 1, with respective
input filtering parameters.

As per SoDPI architecture in Fig. 4, this service deploys
Packet Capturing as core DPIA processing component at
CPD layer and General Packet traffic statistics access as
service abstraction component at DSA layer.

Packet Capturing is the first CDP layer component as
per DPIA processing sequence given in Fig. 7. It per-
forms real-time capturing of high-speed packets from NICs.
Key requirements for any packet capturing implementa-
tion are real-time packet access capabilities at high speed
data rates without packet drops. Conventionally, it required
the use of specialized hardware based on ASICs, repro-
grammable FPGAs or network processors to ensure high-
speed zero-drop packet capturing. These solutions offer
high-throughputs with real-time performance but lack flex-
ibility and scalability. As an alternative, Rizzo et al. [13] and
Garcia-Dorado et al. [14] have proposed the utilization of
commodity hardware based packet capturing solutions that
provide flexibility and scalability with reduced capital and
operational expenditures. Multiple state of the are packet
capturing implementations including PF_RING DNA [15],
PF_RING ZC [16], netmap [17], PFQ [18] and Intel
DPDK [19] exist that are developed by incorporating NUMA
based multi-processor architecture with customized NIC
drivers to achieve capturing throughput data rates up to
multi-10Gb/s. We have interfaced PF_RING DNA [15]
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implementation as core packet capturing unit for proposed
SoDPI framework. It offers extensive set of APIs and pro-
vides capturing speeds ranging from 1Gb/s to 40Gb/s.

As per DPIA service architecture shown in Fig. 8,
packet capturing component also performs coarse filtering of
captured data and forwards packets with payloads to suc-
cessor DPIA service component of protocol classification as
complete packet data is required for protocol classification of
most Layer-7 protocols. It also performs coarse filtering and
forwarding of only packet headers to its corresponding ser-
vice abstraction component of general packet traffic statistics
access at DSA layer to save memory resources by avoiding
unnecessary copying of complete packet data as only packet
headers are required for calculation of general packet traffic
statistics.

General packet traffic statistics access component at
DSA Ilayer provides service abstraction for packet captur-
ing component at CDP layer. It computes required packet
level statistics including byte counts and packet counts
against given input filtering parameters provided by respec-
tive clients. Separate statistics counters are maintained for
outbound and inbound data traffic. Packet traffic statistics
are periodically forwarded to metadata generation block at
requested time intervals that generates metadata objects as
per struct PktStatsMeta and forwards to data dispatching
component at SMD layer. Format for metadata fields with
respective details for General Packet traffic statistics service
are given in Table 2. Separate metadata objects are generated
in case of statistics with similar filtering criteria requested by
multiple clients.

3) LAYER-7 PROTOCOLS BASED TRAFFIC

STATISTICS SERVICE

Traffic management systems with Layer-7 application-
awareness enable network administrators to manage
application-level QoS with guarantees as per service agree-
ments and reduce the chances of traffic congestions for
bandwidth hungry and delay sensitive applications for
voice and video communication. Similarly application-aware
traffic statistics identify bursts in traffic loads at network
cores caused by rogue applications that exploit network
misconfigurations and results in overall network degrada-
tions. Application-awareness in traffic measurements tools
provides capability to rate limit or drop traffic of these rogue
applications.

Layer-7 Protocols based Traffic Statistics Service
at SoDPI framework provides Layer-7 protocol based
traffic statistics to T-NMS applications for traffic-aware
network management, application-based QoS management
and application-aware charging systems. T-NMS clients
request for Layer-7 protocol based traffic statistics service via
register_aggregated_stats_access_for_Protocols () API calls
as per Table 1.

Implementation of this service incorporates Protocol
Classification component as core DPIA processing compo-
nent at CPD layer and Layer-7 Protocol based
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TABLE 2. Metadata fields for general packet traffic statistics service.

Fields Description

struct Base_Metadata {

int32 SoDPI_session_id; Session Id assigned by SoDPI
framework

int32 request_id; Request 1d for registered DPIA
service

uint64 transaction_id;}; ID for each metadata
transaction with in scope of
respective request_id and
sodpi_session_id

struct PktStatsMeta( General Packet Traffic Statistics

struct Base_Metadata Set of IDs against registered

base_parent_ids; Service as per struct
Base Metadata

struct timeval Start and end time of capture
start_time,
end_time;

uint64 in_Bytes_count, Byte level statistics for up and
out_Bytes_count; down streams

uint64 in_PktCount, Packet level statistics for up

out_PktCount; and down streams

traffic statistics access as service abstraction component at
DSA layer.

Protocol classification component performs identifica-
tion of Layer-7 protocols for high speed input packet
data received from packet capturing component as per
Fig. 7. Commonly used protocol classification method-
ologies include port numbers, payload inspection, packet
statistics and machine learning algorithms (MLAs) based
techniques with respective accuracy performance [20].
Protocol classification implementations require continual
updating due to frequent changes of Layer-7 applica-
tion protocols and arrival of new Layer-7 applications.
Many protocol classification implementations including
PACE [21], nDPI [22], Libprotoident [23] and L7filter [24]
are developed with respective features and shortcom-
ings [25]. For SoDPI framework, nDPI [22] is incor-
porated for core packet classification functions that
provide classification support for a large set of Layer-7
applications with frequently available updates.

Protocol classified data is forwarded to corresponding ser-
vice abstraction component of Layer-7 protocol based traffic
statistics access at DSA layer and to Stream Reassembly
component at successor DPIA service after respective coarse
filtering as shown in generic architecture and data processing
flow for DPIA services in Fig. 8.

Layer-7 protocol based traffic statistics access component
computes traffic statistics including L-7 protocol based flow
counts, packet counts and bytes counts for both outbound
and inbound traffic as per filtering criteria from connected
clients. These statistics are forwarded to metadata generation
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block at requested time intervals. Metadata generation for
protocol classified statistics is performed as per struct
ProtoLevelStatsMeta with respective data fields and details
given in Table 3.

TABLE 3. Metadata fields for Layer-7 protocol based traffic statistics
service.

Fields

struct ProtoLevelStatsMeta({

Description

struct Base_Metadata

base_parent_ids;

Set of IDs against registered
Service as per struct
Base Metadata

struct timeval Start and end time of
start_time, capture
end_time;

struct proto_stats { Protocol wise statistics

eProtocols proto; L-7 protocol id

uint64 in_Bytes,  Byte level statistics for up
out_Bytes, anddown streams
uint64 in_Packets Packet level statistics for up

out_Packets; and down streams

uint64 FlowCount; Total flows for given
protocol

proto_stats *mext; Next protocol Statistics

}proto_stats_obj; };

4) SERVICE FOR STREAMS REASSEMBLED DATA ACCESS
Stream reassembly is another feature of DPIA technology
required for applications like lawful interception systems,
network intrusion detection and prevention systems and other
network security centric monitoring systems that require
stream reassembles data to perform comprehensive protocol
semantic analysis and respective monitoring functions.

Service for Streams Reassembled Data access provides
reassembled data of TCP streams to client applications as per
requirements. Clients make requests for stream reassembled
data via register_stream_reassembled_data_access () API
call with respective input parameters.

Service consists of Stream Reassembly as core DPIA pro-
cessing component at CDP layer and Streams Reassembled
Data access as service abstraction component at DSA layer.

Key challenge for Stream Reassembly implementations
is optimal memory management to handle large num-
ber of streams with variable size of reassembled data.
Multiple stream reassembly implementations exist including
SCAP [26], Snort [27] and Libnids [28] that provide reassem-
bled data for TCP streams of passively provisioned data.
We have incorporated Libnids [28] for stream data reassem-
bly functions for evaluation of proposed SoDPI framework.
After data reassembly of required TCP streams, coarse
filtering functions are performed and filtered data is
forwarded to corresponding abstraction component of
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Stream Reassembled Data access at DSA layer and to
L-7 protocol semantic analysis component of successor DPIA
service with respective coarse filtering criteria.

After receiving reassembled data from Stream Data
reassembly component, Streams Reassembled data access
component provides stream statistics along with reassembled
data, depending upon type of access requested from respec-
tive clients. Clients requiring metadata access are provided
only required stream statistics while client requesting meta-
data with contents access are provided reassembled data as
well. Statistics along with reassembled data are passed to
metadata generation block either on configured time inter-
vals by clients or on occurring of termination events for TCP
connections including FIN and RST events. struct Stream-
ReassemblyMeta is used as format for generation of metadata
objects for DPIA results of this service. Respective data
fields and details of struct StreamReassemblyMeta are given
in Table 4.

TABLE 4. Metadata fields for streams reassembled data access service.

Fields
Struct StreamReassemblyMeta{

Description

struct Base_Metadata Set of IDs against

base_parent_ids; registered Service as per
struct Base Metadata

struct timeval Start and end time of
start_time, capture
end_time;

uint32 client_ip, Client and server IP of
server_ip; stream

uintl6é source_port, Source and destination
dest_port; port

uint32 stream_byte_count, Data statistics counters

stream_pkt_count;

of a stream data

eDirection dir; Direction of stream

eProtocols proto; L-7 application protocol
for stream

uint32 len_of_contents; Length of contents buffer

char * contents;}; L-7 protocol data

contents

5) SERVICE FOR L-7 PROTOCOLS EXTRACTED
INFORMATION ACCESS

Reverse engineering of Layer-7 protocol and extraction of
respective protocol fields along with contents are essential
for multiple network monitoring and security applications
including Lawful Interception (LI) systems and many other
network forensics applications.

Access of L-7 protocol fields and contents after seman-
tic analysis is provided by Service for L-7 protocols
extracted information access. Clients requiring L-7 protocol
extracted information make service requests via register_
layer7_parsed_data_access () APl calls with specified
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list of L-7 protocols and other input parameters. This ser-
vice consists of L-7 Semantic Analysis component as core
DPIA processing component at CDP layer and L-7 protocols
extracted information access as service abstraction compo-
nent at DSA layer.

L-7 Protocol Semantic Analysis performs regular
expression based extensive pattern matching to parse
reassembled data for multiple L-7 protocols. L-7 proto-
col semantic analysis component can consist of multiple
protocol analyzers that perform extraction of information
including data fields, content types and transferred contents
from data of respective L-7 protocols. FlowSifter [29] and
ultra-PAC [30] are few examples of parsing and semantic
analysis platforms to develop Layer-7 protocol analyzers.
There is a large set of Layer-7 applications including voice,
video and data applications that require development of
respective protocol analyzers for semantic analysis. We have
implemented custom L-7 parsing and semantic analyzers for
email protocols including SMTP [34] and POP3 [35] for
evaluation of SoDPI framework. Protocol analyzers parse
packets according to semantics of SMTP and POP3 protocols
to extract details of data fields and details of protocol specific
events.

L-7 protocol parsed data is forwarded to corresponding
abstraction component of L-7 protocols extracted informa-
tion access for further processing and metadata generation.
Service abstraction component provides DPIA results in
the form of metadata only or metadata with contents. For
this specific service, metadata generation takes place solely
based on L-7 protocol specific events instead of interval
timer. Example of protocol specific events includes ses-
sion start, message transfer, file transfer, session termination
and other L-7 protocol specific events. Metadata genera-
tion format used by this abstraction component is as per
struct L 7_Proto_Parsed_Meta with respective fields and
details given in Table 5.

C. DISPATCHING OF DPIA PROCESSED DATA

After core DPIA processing, data shaping and metadata
generation functions for all DPIA services at CDP layer
and DSA layer respectively, generated metadata objects are
forwarded to Data Dispatching component at SMD layer
that dispatches these results to respective client applications
based on Session Ids. DPIA processing results of each service
consists of respective pre-defined metadata and contents.
Metadata with contents are stored in the form of data files
temporarily and dispatched to respective clients via FTP
service. In order to have near real-time and parallel delivery
of metadata objects, Data Dispatching component consists
of dedicated dispatching threads for each connected T-NMS
client.

V. ESTIMATION OF REQUIRED RESOURCES FOR

SODPI FRAMEWORK

For estimation and comparison of required resources
for SoDPI framework and conventional approach based
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TABLE 5. Metadata fields for Layer-7 protocol based traffic statistics
service.

Fields Description

struct
L7_Proto_Parsed_Meta({

struct Base_Metadata Set of IDs against registered
base_parent_ids; Service as per struct
Base Metadata
uint32 client_ip, Client and Server IP of
server_ip; stream
uintlé source_port, Source and Destination port
dest_port;
eProtocols proto; L-7 application protocol
struct timeval event_time; Time of respective L-7
application event
struct L7_proto_fields { L-7 protocol specific field

values in TLV form
uint8 field_type; L-7 protocol extracted field
type
Length of field value
L-7 field value

L7_proto_fields *next; Next protocol field details

uintl6é 1len;

uchar * wvalue;

}objL7_proto_fields;
uint32 len_of_contents; Length of contents
extracted for L-7 protocol

events

char * contents;}; L-7 protocol data contents

DPIA systems, required data processing resources can be
grouped into two categories (i) General set of resources
required for base data processing system setup (ii) Cus-
tom set of resources required for DPIA packet processing.
General set of resources include hardware components con-
sisting of processing server chassis with CPU, memory and
storage, arrangements for space, cooling, power and other
auxiliary items along with licenses for operating system (OS)
as software components. Custom data processing resources
for DPIA processing consist of hardware components for high
speed data provisioning along with high speed NICs for data
access while software resources include licenses for DPIA
related packet processing components.

For conventional approach, total processing resources
Rgonv_Tmal that are required for DPIA processing functions
at N number of standalone T-NMS systems for a given input
data rate, can be expressed in terms of respective unitary
component costs as follows:

N
RConv_Total = Z (RZS + R;Jrv + R;JC + 8}chl’c + géervr

i=1
+ 8£7leL7sa) ( 1 )

where Ry is unified unitary cost for general base system setup
components, Ry, as unitary cost of resources required for
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high speed data provisioning setup while Ry, Ry, Ry and
Rj75q are unitary costs of DPIA components for packet
capturing, protocol classification, stream reassembly and
Layer-7 parsing and semantic analysis respectively. &z, &5
and €175, are boolean value based requirement control vari-
ables for protocol classification, stream reassembly and
Layer-7 semantic analysis DPIA services respectively. For
conventional approach as shown in equation (1) required
DPIA processing resources increase linearly with increase in
the number of DPIA basedT-NMS systems.

For proposed SoDPI framework based approach, total
required resources RISVO DPI_Torat fOT same N client systems can
be expressed as follows:

RgloDPI_Total = Rps + Rprv + Rpc + (8fc lesr| 8L7sa) Ry
+ (&sr1€L75a) Rsr + €L75aR175a @)

For equation (2), Rps, Ry and Ry, are mandatory compo-
nents for a SoDPI framework based DPIA data processing
setup. Similarly DPIA processing for L-7 semantic analysis
requires protocol classified and stream reassembled data that
shows Ry 7, is always accompanied with Ry, and Ry, while
Ry, is always accompanied with Ry.. To estimate maximum
resources required for scenario where we need all DPIA
services, we set values as true for &y, &5 and &174,. With this
assumption, RISVDD Pl Totql 10T @ given input data rate limit, can
be expressed as follows:

RgoDPlfTotal = Rps + Ryry + Rye + Rfe + Ry + Rp75a 3)

As all components of SoDPI framework perform single time
data processing for N number of T-NMS clients and deploys
single instance of DPIA processing components, while for
conventional standalone approach, N independent instances
of same components are required that shows significant
reduction in CAPEX with SoDPI framework. This is further
evaluated and verified in section 7 showing comparison for
both approaches.

VI. IMPLEMENTATION DETAILS OF SoDPI BASED
EXAMPLE CLIENT APPLICATIONS FOR

FRAMEWORK EVALUATION

For evaluation of proposed SoDPI framework, two DPIA
based example monitoring applications are developed that
avail different DPIA services. Example applications include
(i) Protocol-aware statistics collector application and (ii) Data
transfer monitoring application for SMTP and POP3 pro-
tocols. Each example application incorporates SoDPI API
client stub for sending DPIA processing requests to SoDPI
framework. SoDPI API client stub transforms SoDPI APIs
based management, configuration and service requests into
binary messages and transmits to SoDPI framework for pro-
cessing of respective DPIA requests. Implementation details
for each example application along with control and data
processing flows are described in coming sub-sections. For
evaluation of SoDPI framework capabilities to simultane-
ously serve multiple client applications, both example appli-
cations avail required different DPIA services concurrently
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as per setup given in Fig. 9. Performance results for both
SoDPI framework based example applications are analyzed
and compared in section 7.

Protocol-aware
traffic statistics
Collector
<~>| SoDPI API’s Client Stub

SoDPI I

F k
TAMEWOrK | SoDPI APIs
Instance
" Data Transfer
3 Monitor for
SMTP/POP3
SoDPI API’s Client Stub
| —
\_ 7. J

[ High-Speed Traftic Replay Application ]

FIGURE 9. SoDPI framework setup with both example applications.

A. PROTOCOL-AWARE TRAFFIC STATISTICS

COLLECTOR APPLICATION

Protocol-aware traffic statistics collector application avails
Layer-7 Protocol based traffic statistics service of DPIA
framework. It collects and displays protocol based flow
statistics after required DPIA packet processing at SoDPI
framework instance. It can be extended to develop mul-
tiple T-NMS applications including application-aware data
usage calculation and charging systems for network service
providers [12], [37] and application-aware traffic load bal-
ancing systems [9], [37]. Source code listing for part of
this example application that interacts with SoDPI frame-
work is given in Code Listing 1 in Appendix. As per given
code listing, client establishes DPIA session with SoDPI
instance at specified server address and listening port. After
required configuration of client side storage location for
results, client registers for classification statistics via reg-
ister_aggregated_stats_access_for_Protocols API function
call for all supported protocols specified as ALL_PROTOS
with specified time interval for periodic transmission of
statistics results. Service access flow depicting sequence of
SoDPI API calls along with respective responses from SoDPI
framework is shown in Fig. 10.

B. DATA TRANSFER MONITORING APPLICATION

FOR SMTP AND POP3

Data transfer monitoring application is the second example
application developed for evaluation of proposed framework
that avails Service for L-7 protocols extracted information
accessfor fields and contents of SMTP and POP3 proto-
cols. After receiving DPIA processing results from SoDPI
framework, it displays details for data messages and files
exchanged via SMTP and POP3 protocols after required
DPIA packet processing at SoDPI framework instance. This
example application can be extended to develop Data leakage
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FIGURE 10. Services access flow with API function calls for both SoDPI
based example applications.

Prevention Systems (DLPS) [6], Copyright Protection
Systems [7] and Lawful interception (LI) systems [8]. Service
access flow for data transfer application is given in Fig. 10
along with flow for first example application for application-
aware flow statistics collector example application.

Source code listing for part of data transfer monitoring
application that interacts with SoDPI framework is given
in Code Listing 2 in Appendix. As per given code listing,
after session setup and configuration , Layer-7 parsed data is
requested viaregister_layer7_parsed_data_access API func-
tion call for SMTP and POP3 protocols with option of
MetadataWithContentsAccess.

VII. EXPERIMENTAL EVALUATION

For evaluation and performance comparison of
SoDPI framework with example monitoring applications
mentioned in section 6, we have also implemented conven-
tional approach based versions for both example monitor-
ing applications. Experimental evaluations are performed
for example application setups for both approaches with
varying input data rates. System experimental evaluations
firstly include comparisons of accuracy performance and
consumed data processing resources in terms of peak CPU
utilizations and peak memory utilizations. Later, detailed
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comparison is performed for required logistical resources
including software, hardware and associated components
for both approaches. Details for designs of conventional
approach based example monitoring applications, evaluation
environment, packet traffic trace, packets replay and compar-
ison of results are given in following sub-sections.

A. IMPLEMENTATION DETAILS FOR CONVENTIONAL
APPROACH BASED EXAMPLE MONITORING
APPLICATIONS

Conventional approach based version of both example
applications discussed in section 6, are developed with incor-
poration of independent DPIA processing components with
respective application.

4 N\
Conventional approach based Protocol-aware
traffic statistics collector application

| Results Display |
T nDPI APIs

Protocol Classification engine (nDPI)

T PF RING DNA APIs

Packet Capture Engine
(PF-RING DNA )

A

10Gbps.
Link

High-Speed Traffic Replay Application

FIGURE 11. Conventional approach based design of protocol-aware
statistics collector application with evaluation setup.

Setup for version of application-aware statistics collec-
tor example application implemented based on conventional
approach is shown Fig. 11. This implementation incorporates
dedicated DPIA related processing components including
PF_RING DNA [15] for high-speed packet capturing and
nDPI [22] for packet classification, in contrast to SoDPI
framework based implementation where DPIA processing
components incorporated in SODPI framework, are shared by
all client applications.

Version of data transfer monitoring example application
based on conventional approach with setup detail is shown
in Fig. 12. Implementation consists of dedicated integrated
DPIA processing components including PF_RING DNA [15]
for high-speed packet capturing, nDPI [22] for packet flow
classification, Libnids [28] for stream re-assembly and cus-
tom SMTP/POP3 protocol analyzers for Layer-7 semantic
analysis.

B. EVALUATION ENVIRONMENT

Experimental setup consists of two server machines. Server 1
is based on Intel SS500HCV chassis with Intel® Xeon(R)
E5620 2.40 GHz 8-core dual processors, while Server 2 is
based on Intel S5520HC chassis with Intel Xeon E52630

VOLUME 4, 2016



Ashraf et al.: Traffic-Aware Network Management and Security Systems

IEEE Access

Conventional approach based Data Transfer |
Monitor application

| Results Display I
1 Custom APIs

| Layer-7 Semantic Analyzer for SMTP/POP3 |

1 Libnids APIs
| Stream-Reassembly Engine (Libnids ) |
t  nDPIAPIs

| Protocol Classification engine (nDPI) |
¥ PF_RING DN4 4PIs
I Packet Capture Engine (PF-RING DNA ) |

L

% 10Gbps Link
[ High-Speed Traffic Replay Application

FIGURE 12. Conventional approach based design of data transfer
monitoring application with evaluation setup.

2.27 GHz 8-core dual processors. Both servers are based on
Ubuntu 14.04 LTS 64-bit OS while each server equipped with
16 GB DDR3 1333MHz, 1 TB SATA storage and Intel
Dual-10GE X520-SR NIC adapter.

First server machine is used for performance evaluation of
proposed SoDPI framework implementation with respective
example applications and conventional standalone approach
based example applications. Second server machine is used
as traffic replay machine to play data packets for system
evaluations.

C. PACKET TRAFFIC TRACE

Packet traffic trace is collected from backbone link of campus
network and used for system evaluation. Aggregated data
size of packet files is ~5.0 GB with details of packets and
flows mentioned in Table 6. Distribution of packet counts
with respect to packet size is depicted in Fig. 13.

TABLE 6. PACKET traffic trace specifications.

Attribute Value
Total Packet count 9,570,371
TCP Flows count 141,121
UDP Flows count 31,038
Average Packet Size (Bytes) 524

D. PACKETS REPLAY AND RECEPTION

To replay packets at multiple data rates for evaluation of
SoDPI framework and conventional approach based example
applications, we have used pfsend [36] utility. Transmission
of packet trace files are performed for by varying data input
rate from 2Gb/s to 8Gb/s for setups of SoDPI framework and
conventional approach based example applications. Recep-
tion of packet data capturing is observed without any packet
drops for multiple input data rates as PF_RING DNA [15]
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FIGURE 13. Packet-Length based distribution of packets.

is used by all test setups as high speed packet capturing
implementation.

E. EVALUATION DETAILS WITH COMPARISON OF RESULTS
We first evaluate standalone conventional approach based
example applications with integrated DPIA stacks. Later
we evaluate SoDPI framework based example applications
in similar evaluation environment. Comparisons of evalua-
tion results include accuracy performance, consumed data
processing resources along with overall logistical resources
required for respective implementations.

1) ACCURACY PERFORMANCE

Results for both versions of application-aware statistics col-
lector application are given in Fig. 14 as distribution of
packet flow counts for respective Layer-7 protocols. Results
show that HTTP and SSL protocols are major part of packet
traffic samples with 30,705 packet flows for HTTP protocol,
28,809 packet flows for SSL protocol without available SSL
certificate information while 19,820 packet flows for SSL
protocol traffic with SSL certificate information available.
Protocols with less than 250 flows are collectively displayed
as ‘Others’ category with 1,486 packet flows.

Others: 0.9 % (1486)

Twitter: 0.1% (191) —

NTP: 0.1 % (206)
TeamViewer: 0.1 % (243)
NetBIOS: 0.2 % (304)

HTTP: 17.8 % (30705)

ICMP: 0.2 % (356)

MSN: 0.2 % (360)

YouTube: 0.2 % (409) -
WindowsUpdate: 0.2 % (426) ~

'Yahoo: 0.4 % (639)

Skype: 0.4 % (695)  / /

SMTP: 0.5 % (861) /

Microsoft: 0.5 % (896)
Facebook: 0.6 % (963)
POP3: 0.8 % (1321)

SSL_No_Cert:
16.7 % (28809)

Google: 1.0 % (1792)

HTTP_Proxy: 1.1 % (1966) I
Apple: 1.2 % (2138)

BitTorrent: 5.0 % (8654)

Unknown: 6.3 % (10813) '

DCE_RPC: 8.0 % (13810)
MsSQL: 8.0 % (13836)
SMB: 8.3 % (14276)

SSL: 11.5 % (19821)
DNS: 9.4 % (16183)
FIGURE 14. Protocol-wise distribution of packet flow counts.
Results for both versions of data transfer monitor appli-
cations for SMTP and POP3 protocols are shown in Fig. 15

with respective scaling down factors and measuring units for
displayed parameters.
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FIGURE 15. Collected statistics for POP3/SMTP based data transfer
monitoring applications.

L-7 protocol extracted information statistics show total
messages counts, average recipients count per message, total
attachments files exchanged, average attachment size in kilo
Bytes (kB) and average attachment counts per message for
both SMTP and POP3 protocols. Displayed results show
2,370 messages and 172 data file transfers extracted for POP3
protocols with average attachment size of 159kB, while there
are 2,190 messages and 176 total attached data file transfers
extracted for SMTP protocols with average attachment size
of 128kB.

Accuracy performance evaluation produced same results
for conventional approach based example applications and
SoDPI framework based example applications that shows
proposed framework did not affect accuracy performance for
SoDPI based example applications.

2) COMPARISON OF CPU UTILIZATION AND

MEMORY FOOTPRINTS

Another performance measurement of SoDPI framework is
based on comparison of CPU and memory utilizations along
with respective savings. For different input data rates, CPU
utilizations for respective evaluation setups are shown in
Fig. 16, while Fig. 17 highlights CPU savings with SoDPI
framework. Comparison of system memory utilizations for
respective evaluation setups is shown in Fig. 18 while mem-
ory savings with SoDPI framework is summarized in Fig. 19
for multiple input data rates.

Firstly, we compare both conventional standalone
approach based applications to identify difference of CPU
utilization and consumed system memory. As per Fig. 16 and
Fig. 18, resource comparison for both conventional approach
based example applications shows that peak memory and
CPU consumptions by conventional approach based data
transfer monitoring application are 2.65 GB and 7.25 %
respectively at input data rate of 8 Gb/s, while conventional
approach based protocol-aware traffic statistics collector
application consumed only 0.898 GB memory and
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FIGURE 16. Comparison of CPU Utilizations.
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FIGURE 17. CPU Utilization savings with SoDPI framework.
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FIGURE 18. Comparison of memory utilizations.

4.57% CPU for same input data rate. Data transfer monitor-
ing application consumes higher resources due to computa-
tionally expensive processing for stream data reassembly and
Layer-7 semantic analysis of TCP flows for SMTP and POP3
protocols.
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FIGURE 19. Memory utilization savings with SoDPI framework.

Secondly we compare SoDPI framework when simul-
taneously serving both SoDPI based example monitoring
applications, with version of similar example applications
based on conventional standalone approach. Results com-
parison shows that SoDPI framework consumed consid-
erably less memory and CPU resources. With input data
rate of 8Gb/s, SODPI framework consumed 0.648 GB less
memory and 2.39 % less CPU utilization than aggregated
respective resources consumed by both conventional stan-
dalone approach based example applications. We also ana-
lyze savings with SoDPI framework in terms of percentage,
with figure 17 depicting savings for CPU Utilizations and
Fig. 19 showing savings for memory utilizations. Results
show 18.3% saving in memory and 20.2% saving in CPU
utilization with SoDPI framework for input data input rate
of 8Gb/s. SoDPI framework utilized lower amount of CPU
and memory resources because of single time DPIA process-
ing for both SoDPI based example applications.

3) OVERALL LOGISTICAL RESOURCE REQUIREMENTS
Comparison of logistical resources is summarized in Table 7.
Results show that SoDPI framework based approach requires
single instance of each data processing component in compar-
ison to conventional standalone approach that requires inde-
pendent DPIA processing components, hardware/software
components and data provisioning links for each example
application.

As per Table 7, for conventional approach based standalone
example applications, equation (1) specified in section 5 for
two example applications with N = 2 becomes as follows:

R%’onvﬁTotal = 2RhS + 2Rprv + 2Rpc + 2Rfc + Rsr + RL7sa
4)
As Ry and Ry 75, are considerably small in comparison to sum

of rest of four elements in (4), hence with considerably fair

; 2 : .
assumption, R¢,, 7,,,, can be approximated as follows:

R%Onv_Total = 2(Rbs + Rprv + Rpc + Rfc + Ry + RL7sa)
Q)
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TABLE 7. Comparison of logistical resource utilization.

SoDPI
framework

Conventional

Data Processing Components
approach

General H/w and S/w Components (Number of Units)

Base system Hardware 5 1
along with OS  (Ry,)
Data Provisioning Links (R,) 2 1

Software licenses for DPI components (Number of Units)

Packet Capturing (R,.) 2
Packet Classification (Ry.)

Stream reassembly (R,

—_ | = | o
—_ = | =] =

Layer-7 Semantic Analysis (R;7s.)

While for SoDPI framework based example applications,
RgloDPI_TOmI in equation (2) specified in section 5 becomes
as follows for N = 2:

RgoDPI,Tozal = Rps + Rpry + Rpe + Rie + Ryr + R750 (6)
Comparison of equation (5) and equation (6) based on Table 3
shows that:

12

R for N =2
2 Conv_Total

~

2
RS(JDPI _Total

Above comparison of logistical resources for both approaches
verifies that SoDPI framework requires reduced number of
DPIA processing resources along with respective hardware
and software components included in base system setup.
This directly results in significant reduction of CAPEX
in comparison to conventional approach for DPIA based
T-NMS systems. Reduced number of hardware and software
components also results in less maintenance and management
that reduces OPEX as well for service providers.

VIil. CONCLUSION

This research work identifies duplicate packet processing of
high speed data for required DPIA operations by multiple
independent T-NMS systems once they are deployed in same
enterprise network. This results in higher CAPEX and OPEX
for network operators due to deployment of resources for
duplicate DPIA processing. In this research work, a novel
approach is described as ‘Heterogeneous Service-oriented
Deep Packet Inspection and Analysis (SoDPI)’ framework
along with its architecture, implementation and evaluation
details. Proposed SoDPI framework exploits shared
deployment of computationally expensive DPIA processing
components, incorporates abstractions for diversified DPTA
processing via SoDPI APIs and simultaneously provides
heterogeneous DPIA services to multiple T-NMS systems.
The SoDPI framework is based on multi-layer architecture
consisting of three layers i.e. Core DPIA Processing (CDP)
layer, DPIA Services Abstraction (DSA) layer and SMD layer
for Service Management and Data Dispatching functions.
SoDPI framework provides four different DPIA services that
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include General Packet Traffic Statistics, Layer-7 protocols
based traffic statistics, Reassembled data access of TCP
streams and Access of extracted protocol fields and contents
after semantic analysis of L-7 protocols. System evaluations
include comparison of SoDPI framework with conventional
standalone approach based monitoring applications for accu-
racy performance, computational resource utilization and
required logistical resources. Evaluation results show that
accuracy performance of SoDPI framework is at par with
conventional approach based example applications but with
reduced amount of required computational and logistical
resources for DPIA operations. Comparing CPU and mem-
ory utilizations, SoDPI framework instance with two exam-
ple monitoring applications consumed significantly reduced
amount of computational resources in terms of peak CPU and
memory utilization with 20.2% saving in CPU utilization and
18.3 % saving in memory utilization. Comparison of required
logistical resources also show that independent instances of
software and hardware components for DPIA processing
are required by conventional approach based example appli-
cations while proposed SoDPI framework deploys single
instance of hardware and software components for DPIA
processing along with single data provisioning arrangement
for multiple client applications. Reduced number of required
hardware, software and associated components results in
significant reduction of CAPEX as well as OPEX for service
providers.

APPENDIX
4 N
int32 sodpi_sessid = sodpi_create_session

(SERVER_IP, SERVER_PORT) ;
int32 Resp = set_transfer_location_for_DPIA_results
(sodpi_sessid,CLIENT_IP,
META_STORAGE_LOCATIONI, , )
int32 Reqg Id =
register_aggregated_stats_access_for_ Protocols (
sodpi_sessid, “0.0.0.0",
7255.255.255.255", 1,
ALL_PROTOS) ;
Resp = sodpi_start (sodpi_sessid);

G J

Code Listing 1. Code listing for protocol-aware traffic statistics collector
application.

(int32 sodpi_sessid = sodpi_create_session \

(SERVER_IP, SERVER_PORT) ;
int32 Resp = set_transfer_location_for_ DPIA_results

(sodpi_sessid, CLIENT_IP,
META_STORAGE_LOCATION2Z, .cuvunee )
list_of_protocols * protos = new struct
list_of_protocols() ;
protos->protocol = eSMTP;
protos->next = new struct list_of_protocols();
protos->next->protocol = ePOP3;
protos->next->next = NULL;
Int32 RequestId = register_layer7_parsed_data_access
(sodpi_sessid, *0.0.0.0",
”255.255.255.255”, protos,
MetadataWithContentsAccess) ;
\Besp = sodpi_start (sodpi_sessid); Y,

Code Listing 2. Code listing for Data transfer monitoring application.
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TABLE 8. Definitions for common data structures and enumerations for
SoDPI framework.

Fields Description

enum Direction { TCP stream data direction

client_to_server,
server_to_client,
both_directions};

enum ePortType { Transport Port Types

TCP,UDP};

enum eLevelOfAccess { Level of Access requested

MetadataAccessOnly,
MetadataWithContentsAccess};

enum eProtocols {

L-7 Protocol Types
eSMTP, ePOP3};

typedef struct { List of TCP/UDP ports

uintl6é port;

ePortType port_type;

list_of_ports *next;
} list_of_ports;

typedef struct { List of Protocols

eProtocols protocol;
list_of_protocols *next;

} list_of_protocols;
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