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ABSTRACT Methods to overcome metal artifacts in computed tomography (CT) images have been
researched and developed for nearly 40 years. When X-rays pass through a metal object, depending on
its size and density, different physical effects will negatively affect the measurements, most notably beam
hardening, scatter, noise, and the non-linear partial volume effect. These phenomena severely degrade image
quality and hinder the diagnostic power and treatment outcomes in many clinical applications. In this
paper, we first review the fundamental causes of metal artifacts, categorize metal object types, and present
recent trends in the CT metal artifact reduction (MAR) literature. To improve image quality and recover
information about underlying structures, many methods and correction algorithms have been proposed
and tested. We comprehensively review and categorize these methods into six different classes of MAR:
metal implant optimization, improvements to the data acquisition process, data correction based on physics
models, modifications to the reconstruction algorithm (projection completion and iterative reconstruction),
and image-based post-processing. The primary goals of this paper are to identify the strengths and limitations
of individual MAR methods and overall classes, and establish a relationship between types of metal objects
and the classes that most effectively overcome their artifacts. The main challenges for the field of MAR
continue to be cases with large, dense metal implants, as well as cases with multiple metal objects in the field
of view. Severe photon starvation is difficult to compensate for with only software corrections. Hence, the
future of MAR seems to be headed toward a combined approach of improving the acquisition process with
dual-energy CT, higher energy X-rays, or photon-counting detectors, along with advanced reconstruction
approaches. Additional outlooks are addressed, including the need for a standardized evaluation system to
compare MAR methods.

INDEX TERMS Biomedical imaging, computed tomography, radiation therapy, reconstruction algorithms,
metal artifact reduction.

I. INTRODUCTION
Ever since the first computed tomography (CT) scan in the
early 1970s [1], the effort to improve image quality for clin-
ical applications has been persistent. A long-standing culprit
in the degradation of image quality is the metal object, such
as a dental filling, artificial hip, spine implant, or surgical
clip. Metal objects in the field of view will strongly attenuate
x-rays or even completely block their penetration, resulting
in corrupt or missing projection data received by the detector.
When an image is reconstructed using this incomplete data, it
leads to unnatural changes in appearance, known as artifacts,
which are often observed as bright or dark streaks in the
image. Errors in CT number throughout the image affect diag-
nostic ability and hinder accurate distinction of tissue types.

This is particularly detrimental in radiation therapy planning
for cancer treatment, where inexact tumor localization and
characterization of surrounding tissues can propagate to dose
calculation errors that severely affect treatment success [2].
Another clinical area in which metal artifacts are a major
impediment is orthopedics, due to the high image quality that
is required very close to metal implants [3]. To overcome
artifacts in CT caused by metal objects, extensive research
and development efforts have been devoted to metal artifact
reduction (MAR) over the past four decades.

Metal artifacts are common in clinical images and
are caused by several mechanisms, most prominently
beam hardening, scatter, noise, and the non-linear partial
volume (NLPV) effect [4], [5]. Beam hardening occurs in

5826
2169-3536 
 2016 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 4, 2016



L. Gjesteby et al.: Metal Artifact Reduction in CT: Where Are We After Four Decades?

polychromatic x-ray beams when the average beam energy
increases (‘‘hardens’’) due to lower-energy photons being
more easily absorbed by matter. This phenomenon is more
pronounced in the presence of high atomic number materials,
including metals, which greatly attenuate low-energy x-rays.
As the beam hardens, the physics of transmission change. The
remaining photons with higher average energy have subse-
quent attenuation dominated by Compton scattering, which
alters the path of x-rays and causes transmitted photons to hit
the detector off the centerline of the incident beam [6]. Both
beam hardening and scatter result in more photons reaching
areas of the detector where they normally would not be,
leading to an underestimation of the attenuation coefficient.
Hence, a metal object leads to dark bands or streaks in the
image along the axis of greatest attenuation, typically sand-
wiched by bright overshoots, while the metal object itself will
still show up white.

Noise also contributes to metal artifacts in CT. Photon flux
measured by CT detectors approximately follows a Poisson
distribution, so low photon counts will cause higher relative
statistical errors in associated regions of the detector [7]. In
addition, detector electronic noise dominates the measure-
ments at very low signal levels. These errors are random,
and therefore present as thin dark and bright streaks in the
image [4].

The fourth significant cause of metal artifacts is the NLPV
effect. This arises when the edge of a metal object straddles
certain projection lines, causing a variation in the attenuation
coefficient perpendicular to the x-ray propagation direction.
Since the intensity of this region measured by the detector
is no longer a linear function of attenuation, inconsistencies
arise in the projection data, resulting in density estimation
errors in the image [8].

An additional artifact cause that stems from data sampling
rather than data inconsistency is aliasing. This occurs when
the Nyquist-Shannon sampling theorem is not satisfied and
the measurement interval between projections is too large.
Theoretically, projection data should be sampled at half of
the detector cell width or less to avoid aliasing [7]. Under-
sampling will lead to overlap in the measured frequency spec-
tra, and high-frequency components will not be discernible,
leading to streaks near object edges. While some low-level
aliasing may always exist, it only presents as visible image
artifacts when associated with high-density objects,
especially metal objects.

There are many existing MAR techniques that address
the above-mentioned artifact causes in various ways. In this
review, we perform a thorough review and classification of
MARmethods from journal articles, conference proceedings,
and patents over the past 40 years. Although not every single
approach is included, we have selected nearly all contribu-
tions of novel techniques that are well-known in the field, or
at least were at their time of introduction, based on the num-
ber of citations and the publication journal/conference. Our
classification scheme defines six major classes of procedures:
(1) The most obvious way of reducing metal artifacts in CT is

to prevent them from occurring in the first place, which can
be achieved by using non-metal implants or removing metal
from patients before scanning. Unfortunately, this is not a
realistic option in most cases, so correction further into the
imaging process is needed. (2) The next chance for minimiz-
ing artifacts is in the data acquisition phase, where modifica-
tions can be made to x-ray tube parameters, the detector, and
the scan geometry. Multiple energies can also be employed
to obtain information at different x-ray spectra. Although
these adjustments increase the intrinsic fidelity of the data,
MAR with only scan acquisition adjustments still does not
yield sufficient image quality in many clinical applications,
so (3) the raw data must be corrected and/or the recon-
struction algorithm must be improved. These correction- and
reconstruction-based MAR approaches are by far the most
widely researched. Models of beam hardening, scatter, noise,
and other physical causes of artifacts can be applied to correct
raw data so that they more accurately represent the ideal line
integrals. If the quality of the data is so poor that physics
corrections are ineffective, (4) complete replacement of pro-
jections can be performed, or an (5) iterative reconstruction
can be used that down-weights or ignores the corrupt data.
Lastly, if raw projection data is not accessible, (6) MAR can
be implemented through post-processing of the reconstructed
images, such as filtering or normalization. There are several
hybrid procedures that combine techniques and algorithms
from multiple categories, but we classify these in the section
that best defines the primary innovation of the method.

This review aims to provide a comprehensive presenta-
tion and discussion of existing MAR techniques and algo-
rithms, spanning from 1978 to the present. The purpose of
this endeavor is to define the current limitations and offer
insight into the future directions of the field for overcoming
these challenges. An overview of trends in the literature
(Figs. 1, 2, 3) gives a general idea of where the field is

FIGURE 1. Total annual publications on CT MAR during the period of 1995
to 2015. Data obtained from Web of ScienceTM using keywords ‘‘CT metal
artifact reduction.’’
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headed. The total number of annual publications related to
CT MAR in 2015 has nearly tripled since 2010, as shown
in Fig. 1. An increase is certainly expected due to the
‘‘publish or perish’’ mentality in academia, but nevertheless
the upsurge is substantial. This growth in research indicates
the large effort towards adequateMAR solutions for all appli-
cations. In particular, since 2010, more MAR papers have
been published related to hip and dental implants than spine
and cardiac applications, as illustrated in Fig. 2. Very recently,
there has been an uptick in the amount of MAR papers related
strictly to the topic of radiation therapy, which shows it is
gaining momentum as an area in need of better techniques
for improved image accuracy. Roughly 20% of the CT MAR
publications in 2015 were concerned with radiation therapy
applications, which is second only to dental implants (24%).

FIGURE 2. Annual publications on CT MAR for hip, dental, radiation
therapy, spine, and cardiac applications from 2010 to 2015. Data obtained
from Web of ScienceTM using keywords ‘‘CT metal artifact reduction’’
AND the field, such as ‘‘hip.’’ It should be understood that the same paper
may be counted among multiple categories if it addresses multiple
applications.

A look at the most-cited paper in each of four MAR
method categories can reveal information on the technical
trends. The most-cited Projection Completion publication is
‘‘Reduction of CT artifacts caused by metallic implants’’
by Kalender et al. (1987), which is a benchmark linear
interpolation algorithm to which many new MAR methods
are compared. Among Iterative Reconstruction algorithms,
‘‘Iterative deblurring for CT metal artifact reduction’’
by Wang et al. (1996) has the most citations, as a method
that explicitly discards data through the metal object and
estimates new projections with a deterministically interpreted
expectation maximization formula. The most heavily cited
Physics-based Pre-processing MAR paper is ‘‘Generalized
multi-dimensional adaptive filtering for conventional and
spiral single-slice, multi-slice, and cone-beam CT’’ by
Kachelriess et al. (2001), which employs adaptive filter-
ing to suppress noise. Finally, the Acquisition Improvement
category is represented by a paper that managed to reach
100 citations within four years after publication. ‘‘Metal arti-
fact reduction by dual energy computed tomography using
monoenergetic extrapolation’’ by Bamberg et al. (2011) is
a dual-energy CT (DECT) protocol that overcomes beam
hardening artifacts and generates monoenergetic images.

FIGURE 3. The most-cited paper in each of four MAR method
categories (with total citation numbers indicated), including Acquisition
Improvement (Bamberg et al.), Physics-based Pre-processing
(Kachelriess et al.), Projection Completion (Kalender et al.), and Iterative
Reconstruction (Wang et al.). Data obtained from Web of ScienceTM.

All four publications are discussed in further detail in
their respective category sections. Fig. 3 reflects the total
number of citations for these well-regarded papers. While
surveying citation data, it was noted that iterative reconstruc-
tion algorithms that account for a physical cause of artifacts
have gained more recognition over the past five years, while
interpolation algorithms may be falling out of favor for com-
plex applications. Additionally, there has been a rapid rise in
popularity of DECT for MAR.

II. METAL OBJECTS
A wide range of metal objects leads to a wide range of
CT image artifacts. Depending on the size and material
of the implant, different degrees of x-ray attenuation and
physics effects will occur. For example, small objects with
low density, such as surgical clips, may only cause minor
beam hardening or scatter, which can be solved by a physics-
based pre-processing correction of the data. Larger and/or
denser implants, such as prosthetic hips or dental fillings, will
likely require modification of the reconstruction algorithm,
either by a projection completion method or statistical itera-
tive reconstruction. Table 1 defines five categories of metal
objects, their associated physical and image effects, and the
most relevant MAR approaches.

III. METAL ARTIFACT REDUCTION METHODS
The classification scheme in this review defines six major
groups of MAR techniques: Metal Implant Optimization,
Acquisition Improvement, Physics-based Pre-processing,
Projection Completion, Iterative Reconstruction, and Image
Post-processing.

The methods that primarily alter the reconstruction
algorithm are discussed under Projection Completion and
Iterative Reconstruction. A standard CT scan acquires
projection data of an object at different angles and recon-
structs the measurements into an image using filtered back-
projection (FBP) or an iterative estimation. The sinogram is
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TABLE 1. Categorization of metal implants detailing the types of artifacts and effective techniques for image correction. Adapted from Jin et al. [9] with
permission.

the collection of all line attenuation measurements acquired
for an image. Since the number of individual measurements
is finite, a theoretically ideal image cannot be obtained, but a
suitable approximation can be generated using the available
data. Ametal object in the imaging region causes errors in the
projection data mainly due to beam hardening, noise, scatter,
or the NLPV effect. Reconstruction using corrupt or incom-
plete data will result in an image with artifacts. To eliminate
these artifacts, many MAR algorithms modify the process
by which the image is reconstructed. A common approach
is to directly correct or replace the corrupt projection data
in the sinogram, such as by interpolation. Another method
is to ignore or statistically down-weight data affected by the
metal object and employ an iterative procedure to arrive at an
image using the more reliable data. Each of these techniques
can be improved by pre-processing the data with a model
that accounts for a physical cause of the artifacts. Sometimes
this correction step is enough by itself and reconstruction
modifications are not even necessary. Prior knowledge is
an additional consideration that can be applied to projec-
tion completion and iterative reconstruction methods. MAR
procedures that employ techniques in more than one of the

overall categories are discussed within the class that best
defines their novelty. The following is an in-depth description
of each of these groups and their subclasses, and a detailed
presentation of the published methods that comprise them.

A. METAL IMPLANT OPTIMIZATION
The simplest way of reducingmetal artifacts in a CT scan is to
prevent the presence of metal in the field of view. For clinical
applications, this can be crudely achieved by removing metal
from the patient or opting for a non-metal implant in the first
place. In practice, these options are often not realistic due to
the invasive surgery required for implant removal or inade-
quate metal alternatives. However, a study by Gray et al. does
show patient cases in which dental fillings were extracted for
radiation planning of head and neck cancers [10]. The streak
artifacts were completely removed by this extraction, and the
ability of physicians to delineate anatomical regions of the
head were greatly improved.

Beyond extraction, the majority of studies have focused
on assessing image artifacts produced by different types of
metal to identify the optimal implant with the least attenu-
ation. Weese et al. determined that for surgical clips used
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FIGURE 4. Standard clinical CT images of a torso cadaver containing rods of 5.5 mm diameter stainless steel (left), 4.5 mm diameter titanium
(middle), and 4.5 mm diameter vitallium (right). Reprinted from Knott et al. [15] with permission from Elsevier.

TABLE 2. Mechanical characteristics of patient implant materials relative to each other. Adapted from Knott et al. [15] with permission from Elsevier.

in hemostasis, those made of titanium and stainless steel
produced significantly fewer artifacts than did clips made
of tantalum [11]. Further, plastic clips caused no visible
artifacts, so they would be ideal from an imaging standpoint,
but are limited by ineffective long-term utility. Ebraheim et al.
later compared stainless steel and titanium in the context of
screws and bars for pelvic fixation [12]. Their results revealed
that titanium implants substantially reduced image artifacts
compared to stainless steel hardware while providing the
same level of fixation and quality of fracture healing. A com-
parison between titanium and cobalt-chrome artificial hips
by Haramati et al. further confirmed that titanium produced
superior image quality, especially in the area directly sur-
rounding the bone [13]. Fig. 4 compares CT image artifacts
from rods made of stainless steel, titanium, and vitallium,
which is an alloy of cobalt, chromium, and molybdenum that
is a candidate to replace titanium. The characteristics of these
materials relative to each other are displayed in Table 2. The
stiffness of titanium is low compared to stainless steel, which
can be a positive or a negative depending on the application.
Either way, its higher strength and biocompatibility make
titanium an attractive implant option. The titanium rods also
produced the lowest degree of artifacts as seen in Fig. 4.
Vitallium has a stiffness, strength, and biocompatibility that
ranks in between those of stainless steel and titanium, which
gives the material more versatility with medium-level charac-
teristics. The image artifacts of vitallium remain a limitation.

In addition to optimizing metal types for
reduced artifacts, an exploration into the complementary

imaging contrast agents used in DECT was done by
Lambert et al. [15]. Their work sought contrast enhancement
materials that are more compatible for higher energy x-rays.
Since one of the x-ray energy spectra used in DECT is
typically higher than the x-ray spectrum of standard CT scans,
the photons can more easily penetrate metal and lead to fewer
inconsistencies in the data. Unfortunately, as beam energy
increases, the signal from contrast agents such as iodine or
barium diminishes due to their low k-edges. Thus, contrast
materials with higher k-edges are more effective with higher
average energy beams.

It was shown that tantalum, tungsten, and bismuth
preserved contrast signal much better than barium and
iodine over the 40 to 140 keV photon energy interval.
Barium and iodine signals declined 91-97%, while the higher
k-edge group exhibited just a 21-32% reduction in CT num-
ber, supporting its potential for use in patients during DECT
to complement metal artifact reduction.

Recent exploration has identified magnesium screws as
resorbable implants that can interface tissue with bone, and
then biodegrade [16]. This material has been shown to main-
tain its shape and strength while promoting bone growth in
mice, with mature bone forming around the implant after
three months. Future studies will look at controlling the rate
of degradation of the material, which could shape the future
direction of patient-level metal artifact reduction. Zimel et al.
has also explored carbon fiber nails as an alternative to tita-
nium nails for fixating large bones, and found that carbon
fiber produced fewer CT image artifacts [17].
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Implant optimization within the patient is a basic starting
point for MAR, but further reduction measures are necessary
to achieve acceptable levels of image quality.

B. ACQUISITION IMPROVEMENT
A second class of strategies is to alter the CT scan acquisition
parameters such as x-ray tube voltage, tube current, scan
plane, and slice thickness. A more drastic approach is to
employ dual-energy protocols that acquire data using two
x-ray spectra for material decomposition. Spectral CT with
photon-counting is an even different method with the ability
to resolve multiple energies from a single spectrum.

1) PARAMETER ADJUSTMENT
Straightforward techniques to improve data acquisition are
to simply scan around the metal object or obtain data from
preferred gantry angles. A head tilt routine was employed
by Brown et al. for patients with aneurysm clips so that the
axial plane through the clip projected away from the cluster
of major cerebral arteries to be evaluated [18]. This method
showed that metal artifacts could be minimized in the most
important regions of the image by altering the angle of acqui-
sition. A study by Lewis et al. later explored gantry tilt angles
of 5 to 15 degrees for imaging total knee prostheses [19].
Their results showed that gantry angles of 10 to 15 degrees
provided the most accurate mean attenuation values around
the implant. Lakits et al. then compared helical CT in the
axial plane, as well as multiplanar reconstruction of coronal
and sagittal images, with conventional CT acquisition in the
axial and coronal planes [20]. They determined that a helical
acquisition allowed significantly better localization of metal
objects and reduced beam hardening artifacts, mainly due to
the sagittal plane information, which is not obtainable with
conventional CT.

In the context of CT angiography for evaluating vessels
around aneurysm clips after placement, Mamourian et al.
found that axial imaging of titanium and cobalt-chrome
implants led to diminished streak artifacts when compared
to helical scanning [21]. However, for most applications, the
improvement in image quality with axial acquisition is not
worth the loss of volumetric coverage provided by helical
CT. One unique method presented by Tolakanahalli et al.
is to obtain digital subtraction angiography-type images
using CT with contrast agents [22]. Topographic images are
obtained at different angles and the metal objects are sub-
tracted out of the projection data to allow better visualization
close to the metal surface.

Other variations to the scan acquisition process have been
employed to combat metal artifacts. Link et al. extended
the CT scale from a maximum window of 4,000 to 40,000
Hounsfield units (HU) to decrease artifacts from femur
implants and improve diagnostic power [23]. This extension
is beneficial because metal objects with high attenuation
coefficients have CT numbers from 8,000 to 20,000 HU,
and their values are cut off on standard scanners, resulting
in distortion [24]. It was also found that decreasing slice

thickness from 5 mm to 2 mm increased diagnostic scores
when combined with the extended scale. Moon et al. further
revealed that smaller slice thicknesses as thin as 0.75 mm led
to greatly reducedmetal artifacts from stainless steel implants
in the femur [25].

A more aggressive approach that has been achieved with
ongoing engineering advancements is to increase the volt-
age (kVp) and/or current (mA) of the x-ray tube so that
either higher energy photons or a greater number of photons
are generated to penetrate the metal object and surrounding
tissue. These modifications inherently increase the quality
of the raw data. The Moon et al. study also exhibited that
higher tube voltage (140 vs 120 kVp) improved artifacts, but
higher tube current (500 vs 300 vs. 100 mA) did not have
a significant effect on the image quality. Lee et al. assessed
various protocols for imaging the spine after pedicle screw
placement [26]. The tube voltage was varied between 80, 100,
and 120 kVp, and the tube current was applied in the range of
60 to 220mA.As expected, higher voltages led to fewermetal
artifacts, but the current variation did not have a significant
effect.

The x-ray energy can be increased even more dramatically
with a linear accelerator. Schreiner et al. acquired images of
hip implants using megavoltage CT with photon energies up
to 4 mega-electron-volts (MV), which significantly reduced
artifacts around the metal surface [27]. The drawback of this
technique is increased radiation dose, and so in an effort
to reduce the megavoltage exposure, Wu et al. integrated
select views using MV photon energies into a standard kilo-
voltage acquisition [28]. The high-voltage data replaces the
metal-affected projections in the standard-voltage sinogram
so that information lost due to photon starvation is restored.
In the context of tomotherapy, Jeon et al. employed a similar
protocol and showed that images reconstructed from hybrid
sinograms containing MV and kV x-ray data had higher
contrast-to-noise and signal-to-noise ratios than those from
just kV or MV sinograms alone [29]. This, along with
decreased metal streak artifacts, allowed for better distinction
of relevant structures around implants.

With each adjustment to the scanning procedure that
improves metal artifact reduction, there is a disadvantageous
side effect. This usually comes in the form of increased
radiation dose to the patient or loss of image contrast. Table 3
presents the effects and disadvantages of the acquisition
adjustments discussed in this section.

2) DUAL-ENERGY CT
To overcome beam hardening effects, dual-energy CT has
been effective because it allows for monoenergetic data sets
to be extracted from scans acquired at two separate polychro-
matic beam spectra. With attenuation coefficients obtained
at two energies, monoenergetic images can be synthesized,
often referred to as virtual monochromatic spectral (VMS)
images. In one of the most highly cited MAR papers over
the past five years, Bamberg et al. acquired images of metal
screws in patients at 100 and 140 kVp, and then extrapolated
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TABLE 3. Effects of adjustments to scan acquisition procedure for reducing metal artifacts. Adapted from Lewis et al. [30] with permission from Springer.

FIGURE 5. Metal artifacts decrease as photon energy increases in single energy extrapolated images from
dual-energy CT. Reprinted from Meinel et al. [32] with permission from Wolters Kluwer.

the energies of the standard 100 and 140 kVp spectra [31].
This method substantially reduced artifacts by 48.6% at the
optimal 119.5 keV energy setting, while increasing diagnostic
assessment of the metal surface and surrounding region. They
also concluded that 105 keV was an optimal extrapolated
energy for visualizing screws.

A later dual-energy CT study by Zhou et al. extracted
higher photon energies, ranging from 70 to 190 keV, and
determined that 130 keV was optimal for reducing metal
artifacts [33]. Meinel et al. reached similar conclusions when
extrapolating single energy images from a dual-energy pro-
tocol with 140 and 100 kVp scans [32]. For assessing metal
hardware in hip and upper leg bone injuries, the extrapolated
energy range of 100 to 130 keV produced the best diagnos-
tic image quality. The median streak intensities decreased
from 413 HU at 88 keV to 153 HU at 120 keV, which
resulted in improved diagnostic quality of the images. Fig. 5
shows extrapolated VMS images with artifacts decreasing as
photon energy increases. However, there are drawbacks at

higher energies, including higher radiation dose to the patient.
Additionally, Pessis et al. showed that image contrast
declined beyond a certain energy level, such as 140 keV, and
that lower energies around 80 keV were better for detailing
soft tissues [34]. A law of diminishing returns in VMS recon-
struction was put forth by Lewis et al. in the context of hip
implant imaging [30]. They extracted 16 single photon energy
images between 40 and 190 keV in steps of 10 keV. The
results demonstrated that streak artifacts could be reduced
with minimal loss of spatial resolution up to 150 keV. Above
this threshold, metal artifact reduction is no more effective,
and contrast-to-noise ratio decreases. This trend is consistent
at tube currents of 100, 200, and 400 mA.

A statistical framework to model noise in dual-energy
CT was proposed by Sukovic and Clinthorne [35]. A penal-
ized weighted least squares (PWLS) objective function
with constraints in the density domain handles the non-
Poisson noise from amorphous silicon (aSi:H) detectors,
and is minimized using the Gauss–Seidel algorithm.
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This method is compared to the dual-energy FBP counterpart,
in terms of bias/standard deviation, and demonstrates advan-
tages in high noise cases, specifically at the low flux rate
of 3 × 105 photons/second/detector element (5mm).

3) PHOTON-COUNTING CT
More recently, photon-counting detectors have been
considered as a way to reduce metal artifacts. Specifically,
photon-counting detectors in charge-summing mode are
capable of discriminating individual photon energies for
spectral reconstruction and aremore efficient at very low pho-
ton count levels. Rajendran et al. employed a Medipix3RX
detector to acquire spectral CT images of titanium and mag-
nesium scaffolds at different energy ranges [36]. Data is
reconstructed using the simultaneous algebraic reconstruc-
tion technique (SART) that accounts for dead pixels in the
detector with oversampling compensation. Images depicting
the narrow high energy range of 50 to 80 keV yielded the best
metal artifact reduction while preserving contrast.

Nasirudin et al. also used a photon-counting detector for
spectral CT material decomposition [37]. This information
is incorporated into a penalized maximum likelihood recon-
struction. Their results showed significant reduction in bright
and dark streaks compared to FBP, while structure near metal
edges was preserved, as seen in Fig. 6. The proposed method
also repeatedly produced attenuation values of teeth and
implants that closely matched with theoretical estimates.

C. PHYSICS-BASED PRE-PROCESSING
Physics-based pre-processing techniques aim to model the
physical cause of metal artifacts, such as noise, scatter, beam
hardening, and the NLPV effect, and correct data in the metal
trace to improve reconstruction. These corrections are usu-
ally applied in the projection domain before reconstruction,
although the same physics models can alternatively be incor-
porated in the forward model of an iterative reconstruction
algorithm.

1) NOISE SUPPRESSION
Hsieh modeled local noise characteristics with an adaptive
mean filter [38]. This reduces quantum noise artifacts
and streaks while attempting to preserve spatial resolution.
Rangayyan and Gordon also combined adaptive filtering
with algebraic reconstruction (ART) to suppress streak arti-
facts [39]. A multidimensional adaptive filtering approach
was developed by Kachelriess et al. to apply 3D nonlinear
filters in the raw data domain [5], [40]. Resolution trade-
offs are smaller as compared to one-dimensional smooth-
ing approaches, as demonstrated with patient data from
single- and multi-slice CT to reduce image noise or patient
dose. Image noise along most attenuating paths is effectively
reduced by 30%–60% in non-cylindrical body regions, such
as through the shoulder, with resolution loss below 5%. This
method also helps reduce metal artifacts in the hip region.

An improvedmulti-dimensional adaptive filtering approach
was presented by Watzke, where the adaptive filtering

FIGURE 6. Reconstruction results of a dental phantom containing one
tooth with a circular metal filling. The novel spectral-driven iterative
reconstruction (SPIR) is compared with FBP and the penalized maximum
likelihood iterative reconstruction method without prior information (IR).
The right column is a zoomed view of the implant in the left column.
Reprinted from Nasirudin et al. [37].

strength was adjusted in the shadow of the metal object [41].
Another noise reduction method for hip implant images using
directional filtering was implemented by Prell et al. [42].
Boas and Fleischmann developed two techniques, metal
deletion technique (MDT) and selective ART, which both
incorporate an edge-preserving blur filter to reduce noise and
streaks [43]. Selective ART also includes a model for noise
and beam hardening effects. MDT involves forward projec-
tion after the filter, which guides the sinogram completion in
metal areas.

2) SCATTER AND BEAM HARDENING CORRECTION
Seitz and Rüegsegger improved an interpolation projection
completion technique by correcting for beam hardening
first and then linearly interpolating corrupt projections [44].
Verburg and Seco presented a novel beam hardening cor-
rection for low atomic number implants, such as titanium,
that compares projections through the metal with neighbor-
ing unaffected projections [45]. For higher atomic number
implants, additional iterative reconstruction based on total
variation (TV) regularization was applied. Fig. 7 presents
the proposed physics correction technique on a titanium
spinal implant compared with other common MAR methods.
Higher order beam hardening artifacts were approached by
Schüller et al. without segmentation of the image [46].
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FIGURE 7. Titanium spine implant images show that the proposed beam hardening correction algorithm is more effective
than projection replacement techniques alone in reducing streaks and preserving anatomy in the image. Reprinted from
Verburg and Seco [45] by permission of IOP Publishing.

To determine where beam hardening correction should be
applied, a histogram deformation of the original image is
obtained to produce a nonlinear CT value distribution.

For scatter reduction, Meyer et al. proposed an empirical
scatter correction (ESC) algorithm that makes the assumption
that a linear combination of the uncorrected image with vari-
ous basis images will be scatter-free [47]. The coefficients for
the linear combination are calculated by maximizing flatness
criteria.

D. PROJECTION COMPLETION
Oftentimes, data in the metal trace are completely corrupt or
missing, so new projection data must be synthesized to com-
plete the sinogram. One way to achieve this is by interpolat-
ing replacement values, eitehr from neighboring projections
or from a mathematical model. We have grouped these as
Interpolation methods. A second projection completion
approach that increases accuracy is to incorporate prior
knowledge to guide the estimation of the data that replaces
corrupt projections. This prior image is reprojected (forward
projected) to generate projection data for sinogram comple-
tion, and thus these types of procedures are classified as
Reprojection.
To improve projection completion processes, some

algorithms employ a normalization step that compares raw
sinogram data to a prior image sinogram. These techniques
are discussed in the Normalization section of this class.
Projection completion algorithms are the most commonly
used and most widely developed form of MAR.

1) INTERPOLATION
The first projection completion method was published by
Lewitt and Bates in 1978. Their technique calculates smooth
continuations of hollow or truncated projections using either
polynomial interpolation or by synthesizing data that sat-
isfies consistency criteria [48]. This criteria is determined
by operations on the Fourier coefficients of the projections.
The interpolation method is much more straightforward and
less computationally intensive, but its success varies on a
case-by-case basis, with the highest effectiveness occurring
when a small fraction of the projection is hollow, the density
distribution is symmetric, or the projection does not change
greatly in the interpolated section.

Hinderling et al. applied an interpolation technique based
on the idea of Lewitt and Bates to reduce metal artifacts
when imaging the bone-cement interface of hip implants [49].
They localize the edge of the metal object by finding a
sharp discontinuity in the projection gradient, and then cre-
ate a square wave pseudo-projection between edges of the
implant. A linear interpolation of the measured data plus
pseudo-projections is used to replace the corrupt projec-
tion in the implant interval. Once reconstructed, the image
artifacts are suppressed and the distribution of cement and
bone can be seen, though the homogeneity is not quite
accurate.

Glover and Pelc implemented polynomial completion to
address motion streak artifacts from surgical clips [50]. Using
a ‘‘rubout’’ operation, the projections through the metal
object are removed and replaced with data from polynomial
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interpolation of neighboring projections. This allows streaks
to be eliminated from the image without affecting other areas.
One side effect of the method is that nonlinear processing can
introduce new artifacts.

Seitz and Rüegsegger developed a consistent completion
technique for quantitative CT bone densitometry based on
linear interpolation [51]. The computation time for such a
protocol is long in complex regions where the solutions to
systems of linear equations are not straightforward, although
with today’s computing power this may no longer be a chal-
lenge.

Kalender et al. sought a simpler algorithm using linear
interpolation [52]. Unlike prior methods that segment metal
in the sinogram domain, the boundaries of metal pelvic clips
are manually segmented in original corrupt images, and this
segmentation is forward projected to identify the correspond-
ing projection data, which are then replaced with interpolated
neighboring data. The success of this algorithm depends
mainly on the geometric complexity of the metal objects and
surrounding anatomy. It was shown to be effective in pelvic
regions, but failed when used in the skull due to close areas
of high and low attenuation.

Bruyant et al. took a different approach to reducing
artifacts with interpolation by increasing the number of pro-
jections that could be used for image reconstruction [53].
Their algorithm is called interpolation of projections by
contouring (IPC), and involves plotting level lines in the sino-
gram to connect pixels with the same intensity. Interpolation
is used to fill in values at all pixels for each level line plot. The
data were resampled to multiply the number of projections by
2 or 3, which helped reduce streak artifacts without increasing
scan acquisition time.

A more advanced pattern recognition scheme by Morin
and Raeside adapted a nearest-neighbor classification to rede-
termine the transmission values of rays passing through the
metal object [54]. Their resulting images were superior to
those obtained with simple linear interpolation.

Mahnken et al. applied interpolation in a two-dimensional
manner by replacing attenuation values of metal-affected
sinogram data with the nearest non-corrupt point in the radial
direction out of 16 points [55]. If no reliable point is found,
the value is weighted to zero. The original segmented metal
image is adaptively mixed with the FBP of the corrected
projection data to achieve a final image that maintains the
object’s shape. Moseley et al. devised a two-dimensional
Taylor series polynomial interpolationMARmethod that per-
formed well on small fiducial markers in cone-beam CT [56].
The markers can be completely masked and the values of
image voxels in which streaks were present can be reduced
to 1% of the original magnitude after correction.

Another polynomial interpolation technique was employed
by Wei et al. for suppressing metal artifacts near bones [57].
Their ‘‘smoothing-plus-scaling’’ procedure isolates bone
structures and assigns average CT values to bone pixels in the
same region. The metal pixels are replaced with values from
polynomial interpolation of neighboring data. All corrected

pixels are then added back to the original projection data to
reconstruct an image with artifacts suppressed.

Yazdi et al. developed an adaptive interpolation algorithm
that preserves metal object edges effectively by finding the
projection data associated with each edge and maintaining
the distance between them [58]. Linear interpolation is per-
formed between these projections to replace the values in
the metal implant region. A median filter is applied so that
outlier projection values are removed in the implant region.
The mean attenuation values and standard deviation in the
metal regions of the corrected image were reported to match
with that of the original image before metal was inserted.

Veldkamp et al. adapted the same interpolation technique
in their protocol, but the novelty of their approach was in
the metal segmentation by employing a Markov random field
to identify affected projections [59]. They also incorporated
linear interpolation and Laplacian smoothing for sinogram
completion. Yu et al. implemented an innovative algorithm
that employs a mean-shift technique for highly accurate
segmentation of metal objects [60]. Additionally, once the
segmentation is forward projected, a feedback-based lin-
ear interpolation scheme is used that ensures the calculated
values are not larger than the original data they replace.
The resulting images of aneurysm clips exhibited a 20-40%
reduction in artifacts as measured by standard deviation of
surrounding tissue CT numbers.

Projection completion efforts in the wavelet domain have
produced more accurate reconstructions in the image regions
close to metal objects. Zhao et al. presented the first algo-
rithm that performs linear interpolation in segmented metal
areas, transforms the sinogram to the wavelet domain, and
interpolates between wavelet coefficients to obtain consistent
data [61]. This method preserves edges and contrast while
keeping the computation time comparable to FBP.

A later technique in the wavelet domain was developed by
Mehranian et al. that takes advantage of prior wavelet coeffi-
cient information of CT sinograms and recovers missing data
by solving a regularized inverse problem [62]. It was shown
to outperform linear interpolation and the NMAR algorithm
based on prior image normalization [63] (discussed in the
Reprojection section), as illustrated in Fig. 8. Specifically, the
proposed technique achieved lower absolute mean deviation
values as compared to NMAR in the select regions of interest
on the prosthetic hip images. In addition, the technique more
effectively removed residual dark streaks.

Liu et al. used a sinusoidal curve fitting of the metal-
affected projection data instead of line integrals [64], [65].
Only the projections that matched the sinusoidal fit are
included for processing, which correspond to the metal
object. These projections are amended by subtracting out the
attenuation coefficient of the metal to minimize the intensity
that will lead to streaks. The new sinogram is reconstructed
with reduced artifacts. A more advanced method for accurate
structure representation and smooth sinogram filling is to
use interpolation based on Euler’s elastica as implemented
by Gu et al. [66]. This technique defines a curvature for
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FIGURE 8. Wavelet-domain interpolation optimized by prior information is more effective than interpolation and normalization in
reducing residual artifacts. Reprinted from Mehranian et al. [62] by permission of IEEE.

inpainting that treats missing data as an occlusion. The result-
ing images have smoothly connected edges and junctions,
though the computation time is greater due to iterative steps.

Zhang et al. tried a Laplacian diffusion filter to
interpolate metal regions using boundary pixels [67]. The
filter is calculated byminimizing the gradient fieldmagnitude
surrounding the metal. This method is not effective for large
or irregularly shaped objects. Joemai et al. also employed
2D Laplacian interpolation for their correction scheme [68].
Kratz and Buzug applied interpolation using non-equispaced
Fast Fourier Transforms (NFFT), which allows higher dimen-
sion interpolations [69]. Prior knowledge of the metal object
can be included in this technique to improve its accuracy.

A novel concept of reformatted projections was tested
by Yu et al., which combines projection data at the same
view angle over the full longitudinal scan range in helical
CT [70]. Two-dimensional interpolation is used to fill the
metal segmented projection based on Delaunay triangulation.
Themethod is advantageous for long hip implants because the
entire metal region can be captured with reformatted projec-
tions. In a similar method, Li et al. also employed reformatted
projections in helical CT and applied boundary mapping of
metal regions along with a dual-front active contour model to
track themetal shadow in each projection [71]. This improved
their accuracy and led to greater visibility of soft tissue in the
corrected images.

Tohnak et al. employed a sequential substitution scheme
for dental CT to swap corrupt data through fillings with

unaffected adjacent projections [72]. Of course, the success
of this technique is dependent on a reliable segmentation of
the metal objects. To overcome this dependence, Yazdi et al.
proposed an opposite view replacement method to replace
corrupt data with values in the opposite direction of the
affected projection [73]. The segmentation is not as crucial for
this process because it does not rely on adjacent projections.
This is relevant mainly for dental CT or head and neck
cancer treatment planning in which there are multiple dental
fillings. Xu et al. aimed to improve segmentation with the
Steger method that detects curvilinear structures for precise
determination of small metal object edges [74]. Neighboring
projections are used to complete missing data.

A TV inpainting method based on a partial differential
equation model was presented by Xue et al. [75]. An active
contour model is also used for segmenting the metal pro-
jection region. Together, the procedure yields a smooth pro-
jection completion for dual-energy CT that is reconstructed
to produce high quality images for material decomposition.
The atomic number of water surrounded by metal objects
was measured within 2.3% accuracy with the MAR cor-
rection, while measurements without MAR yielded 12.8%
error. Zhang et al. devised a fractional-order TV inpainting
technique that employs a fractional-order gradient parameter
for regularization, which handles wide data gaps well [76].

MAR methods for cone-beam CT must deal with
3D reconstruction. Wang et al. calculate the 3D coordinates
of metal objects and apply a bilinear interpolation to correct
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the projection data [77]. Toftegaard et al. developed a method
for gold radiotherapy markers in cone-beam CT that replaces
the markers with linear interpolation, and then reinserts them
by 3D trajectory estimation for a final volumetric reconstruc-
tion [78].

2) REPROJECTION
Crawford et al. developed a reprojection-based method that
achieves fast computation time for reducing metal streak arti-
facts [79]. Their process involves identifying metal objects
in an original reconstructed image and filling those regions
with the CT number of water. Then, the image is reprojected
and those projections are subtracted from the original image
projections. The corrected sinogram is reconstructed into the
final image. Naidu et al. patented a similar process based on
this sequence of operations [80]. Tuy developed amethod that
employs beam hardening correction and then a refinement of
projection data by forward projecting the last reconstructed
image [81]. The resulting images were enhanced bymoderate
streak reduction, but new artifacts were introduced around the
edges of surgical clips.

Jeong and Ra employed a parallel interpolation protocol
that involves reprojecting a metal-free image and merging
high-pass and low-pass filtered projection data [82]. The
high-pass filtered data is interpolated in regions where mul-
tiple metal objects overlap, and this is merged with low-pass
filtered data in which the metal projections are replaced with
linearly interpolated values. The merged sinogram is recon-
structed using FBP, and the resulting images have reduced
artifacts with minimal distortion to non-metal regions.

A tissue-class model is a segmentation of different
materials that compose the original image, including bone,
soft tissue, air, and metal, and is forward projected to
be used in the replacement of corrupt projection data.
Olive et al. developed the first tissue-class model approach
for MAR [83]. The initial CT image is segmented into mate-
rial classes, such as bone, air, metal, and soft tissue, and each
region of the same class is assigned a constant value. This
image model is forward projected to guide the replacement of
corrupt projection data. A difference sinogram is calculated
between the class image and original image, and this data
is then downscaled and adaptively filtered before final FBP
reconstruction. An earlier approach was proposed by Watzke
that involved segmenting and separately reprojecting bone
regions to avoid introduction of new streak artifacts intro-
duced by the standard interpolation methods [41].

Bal and Spies also implemented an inpainting algorithm
aided by an extracted tissue-class model [84]. First, an image
is reconstructed and adaptively filtered. Then, the image is
segmented using a clustering algorithm. The missing infor-
mation is estimated via reprojection of the segmented image.
In the inpainting stage, either the original sinogram or repro-
jected sinogram can be completed with data from the tissue-
class model. The reprojected sinogram method is particularly
advantageous because there is no need for original data. For
an optimal completion, the CT number of the metal class

is assigned to that of the surrounding material, and residual
offsets at the edges are suppressed by correcting the values
of the model-derived data segments linearly. This method is
compared with the simple linear interpolation method and
evaluated with clinical images in which various metal arti-
facts exist, showing significantly improved image quality and
organ contour detectability, which is especially useful for
radiation therapy planning.

Lemmens et al. devised an interesting algorithm that
includes a tissue-class model as well as a model for beam
hardening and noise based on maximum a posteriori (MAP)
reconstruction [85]. Sole use of multimodal prior image con-
straints will prohibit streak artifacts, but soft tissue contrast
will be compromised at the same time. Hence, in this method
the constrained image is only used for projection completion.
More specifically, the prior knowledge is available on atten-
uation coefficients of human tissues. The typical modes are
the attenuation coefficients of air, fat tissue, soft tissue, and
bone. The intensity priors are defined as Gaussian functions.
By using such a prior in combination with a Markov Gibbs
smoothing prior, an image can be produced free of streak
artifacts. The algorithmwas validatedwith simulations, phan-
toms, and patient data, and favorably compared with other
metal artifact reduction algorithms including the simple lin-
ear interpolation method and iterative reconstruction with a
polychromatic model.

Prell et al. made use of both interpolation and tissue-
class model-based reprojection methods to achieve more
accurate image reconstructions [86], [87]. An initial three-
dimensional interpolation algorithm is used to replace cor-
rupt metal projections, and the sinogram is reconstructed for
an intermediate artifact-reduced volume. Next, a tissue-class
model is obtained from segmentation that distinguishes air,
soft tissue, and bone in this volume, and is then reprojected to
directly substitutemissing attenuation values in the projection
data. A final reconstruction yields a clean, corrected image.
A normalization of the raw data relative to the forward pro-
jection data is also applied in one of the algorithms to pre-
serve edge information after interpolation [87]. The algorithm
achieved an average correction of 1300 HU for CT numbers
of metal artifacts, and image noise was reduced by 27%.
Fig. 9 displays results of the 3D interpolation algorithm with
and without forward projection of the tissue-class model.

Philips Healthcare developed the O-MAR method for
orthopedic implants that is based on the reprojections of
a metal-segmented image and a tissue-class model derived
from the original image with metal removed. All tissue pixels
in the tissue-class image are set to a single value [88]. An error
sinogram is generated from the difference between the tissue-
class sinogram and the original sinogram. This error sinogram
is reconstructed to create a correction image.

Karimi et al. make use of a prior image derived from
segmentation of metal and tissue in the original image [89].
Metal regions are replaced with CT values of soft tissue, and
the prior image is reprojected to provide an estimation for the
projection data that are used to substitute corrupt projections.
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FIGURE 9. Forward projection of a tissue class model combined with 3D interpolation
MAR improves image quality better than either method alone. Arrows 1 and 2 illustrate
the reduction of the secondary artifacts and better imaging of structures close to the
implants. Arrow 3 depicts a clear reduction of interpolation-based artifacts by using the
forward projection-based correction. Reprinted from Prell et al. [86] by permission of
IOP Publishing.

This method was tested on head images containing dental fill-
ings and other small implants, and was effective in preserving
anatomical information. For luggage-screening applications
of CT, Karimi et al. developed a sinogram completion tech-
nique that includes constraints for beam hardening, noise, and
scatter [90]. A prior-image is created by solving a constrained
optimization problem, and the size of this problem is reduced
by using smaller artifact-only images. After the optimization
of projections, the small images are up-sampled to generate
the prior-image, which is then reprojected with metal regions
segmented. The sinogram replacement is completed accord-
ing to the method of Naidu et al. [80].
A more accurate prior image for reprojection was sought

by Wang et al. in their fusion prior-based MAR scheme [91].
This algorithm first corrects the original image projections by
linear interpolation of the metal regions, and after reconstruc-
tion applies an edge-preserving blur filter to suppress artifacts
introduced by interpolation in this pre-corrected image. The
CT numbers in the metal areas of the pre-corrected image
replace the metal in the original uncorrected image, and the
prior image is created by the fusion of these two images.
This prior image is forward projected and used to guide
the sinogram replacement. The new sinogram values are the
result of subtracting the prior sinogram from the original
sinogram, performing linear interpolation in the metal trace,
and then adding the result to the prior sinogram.

Li et al. utilized a prior image generated from the original
reconstructed image with an edge-preserving filter applied

and replacement of metal with soft tissue CT numbers [92].
The reprojection of this image is used to complete the corrupt
sinogram data. Heußer et al. proposed a prior-based algorithm
that utilizes a planning scan of the same patient before metal
implants were inserted or a scan of a similar patient [93]. This
image must be coregistered with the measured image that
contains artifacts, and then reprojected to be directly used in
sinogram completion. This can be a highly effective artifact
correction method assuming that an accurate prior image is
available.

For cases when an analogous artifact-free scan is not an
option, Zhang et al. implemented a prior image estimation
scheme by imposing TV minimization and a uniformity con-
straint around the metal objects for algebraic reconstruc-
tion of the original projection data [94]. The constrained
prior image is then forward projected and combined with
smooth interpolations of original projection data to replace
corrupt sinogram regions. This hybrid technique shows
promising results even for severe metal artifacts. Similarly,
Bannas et al. employed a prior image obtained using an iter-
ative compressed sensing reconstruction technique [95]. The
prior image constrains the estimation of missing information
to improve image quality.

3) NORMALIZATION
Data normalization helps to improve the projection comple-
tion method for metal artifact reduction. The idea is to use
the x-ray path length through a comparable cross-section for
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data normalization so that the sinogram becomes compar-
atively flat and thus more straightforward for interpolation
over corrupted metal traces. Müller and Buzug presented
one way by first reconstructing an uncorrected image to find
metal objects and traces, and then normalizing projections by
dividing each measured data point by the intersection length
of the corresponding x-ray and the metal object [96]. After
interpolation of metal traces, data are denormalized for image
reconstruction.

Meyer et al. introduced a new type of projection
completion technique, called normalized MAR (NMAR),
that normalizes original projection data to prior image pro-
jection data [63]. An artifact-free prior image is obtained
by multithreshold segmentation of the original image after
smoothing to define regions of bone, air, and soft tissue. The
image is reprojected and the original sinogram is divided
by the prior image sinogram. This normalization increases
the homogeneity of the regions where linear interpolation
will be applied, which leads to more accurate interpo-
lation results. After interpolation, the projection data are
denormalized and the corrected data are reconstructed. The
normalization and de-normalization procedure fuses original
and completed data more smoothly. Image quality measures
compared NMAR against the standard linear interpolation
and MAR based on simple length normalization for CT scans
of hip prostheses, dental fillings, and spine fixation. NMAR
can greatly reduce artifacts close to the metal surface even
in severe cases, but is dependent on a good prior image with
accurate segmentation. This method produces image quality
gains and is computationally efficient compared to iterative
methods.

The same group improved their method with
an adaptive NMAR (ANMAR) algorithm that merges orig-
inal and NMAR projections using a weighted sum to avoid
data loss close to metal objects [97]. Fig. 10 presents the
comparison of this method to NMAR and simple linear
interpolation (MAR1). Lell et al. applied NMAR to clinical
cases of head and neck CT to evaluate its performance and
found that there were no algorithm-induced artifacts [98].

E. ITERATIVE RECONSTRUCTION
Iterative reconstruction starts with an assumed image and
compares its projections to the projection data actually mea-
sured by the CT scan acquisition. The goal is then tominimize
the error between these sinograms by optimizing an objective
function that guides the reconstruction. Examples of this
objective function include minimum least squares error and
maximum likelihood, which aims to find the distribution of
linear attenuation coefficients from the projection data with
the maximum probability.

1) CORRUPTION AVOIDANCE
One approach to iterative reconstruction is to completely
ignore the subset of projection data that is corrupted by metal
objects. Thesemethods treat theMAR problem as the exterior
problem, and use data outside the metal trace to arrive at a

reconstruction result. The exterior problem gives a unique
solution outside the metal object, but is not that stable close
to the metal surface.

Medoff et al. defined the ‘‘bagel problem’’ for MAR,
which treats the object being scanned like a bagel with the
metal-affected region as the hole in the center [99]. The
measurements of x-ray data passing through the hole are
completely ignored and only the area outside is reconstructed
from unaffected line integrals. The hole is filled in with con-
stant attenuation values, optionally based on the known den-
sity of the metal object, and the corresponding line integrals
are estimated. An iterative update of the image is performed
until steady state is reached. Image quality is improved using
this method, though information content at the metal edges is
reduced.

Wang et al. formulated two iterative deblurring algorithms
for metal artifact reduction, using the expectation maximiza-
tion (EM) formulation and the simultaneous algebraic recon-
struction technique (ART) [100]. The objective function is
deterministic, meaning it is not directly interpreted in terms
of statistics. Corrupted data due to metal are explicitly dis-
carded. The EM procedure defines an initial image estimate
and reprojects it to obtain the estimated projections. The mea-
sured projection data are divided by the estimated projection
data, and then backprojected and multiplied by the current
image estimate (pixel by pixel) to generate an improved
image estimate. In simulations with noise-free and additive
noisy projection data from dental phantoms, both algorithms
produced superior image quality as compared to FBP after
linearly fitting projection gaps. Furthermore, the EM-type
algorithm converges faster than the other algorithm in terms
of either the I -divergence or Euclidean distance between ideal
and reprojected data. Also, for a given iteration number, the
EM-type deblurring method produces better image clarity but
stronger noise than the ART-type counterpart. These algo-
rithms were adapted for cone-beam CT with the addition of
a 3D relaxation factor that accounts for beam inhomogene-
ity [101].

The iterative nature of the EM-type algorithm makes it
computationally slow relative to MAR methods based on
FBP, so Wang et al. sought to speed up their method by using
row-action/ordered-subsets of the projection data [102]. Each
iteration uses only a subset of the data so that the image can
be estimated more quickly. The computation time is reduced
roughly by a factor equal to the total number of data subsets
used. Just four iterations were able to achieve significantly
improved image quality.

An inverse iterative procedure was presented by
August and Kanade in which a metal mask is generated to
isolate projections that need correction [103]. A penalized
maximum likelihood method is applied only to the metal
mask, which significantly speeds up processing time. The
non-metal region is used as a constraint for ensuring corrected
data consistency, while smoothness is ensured by a gradient
penalty term in the optimization equation. A ten-fold reduc-
tion in processing time compared to full image optimization
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FIGURE 10. Adaptive NMAR achieves more natural images with comparable streak reduction to NMAR. Reprinted from Meyer et al. [97] by
permission of IEEE.

was seen on images of hip implants, with comparable final
results. A similar approach was developed independently by
De Man [104].

2) STATISTICAL COMPENSATION
Instead of explicitly omitting metal-affected data, a statisti-
cal objective function can be employed that down-weights
data through the metal object, but still includes them in the
iterative reconstruction.

De Man et al. developed a maximum a posteriori
algorithm for metal artifact reduction based on the transmis-
sion maximum likelihood algorithm (ML-TR) that performs
CT reconstruction by optimizing the likelihood of measured
Poisson data [105], [106]. Statistically, ML-TR attributes less
weight to low-count data, thereby reducing artifacts from
directions of low counts due to metal obstacles. This itera-
tive algorithm uses a Markov random field smoothness prior
with the Huber potential function. Iterations are performed to
produce intermediate images at doubled resolution. The final
image is down-sampled to normal resolution. In comparison
to the simple linear interpolation method and typical iterative
algorithms (ML-TR and ML-EM) ignoring corrupted data,
this method produces good results in numerical and phantom
tests, reducing streak artifacts and preserving linear details.

A related polychromatic iterative reconstruction approach
was proposed by Menvielle, in which a hyperbolic regular-
ization and conjugate gradient optimization is used [107].
De Man et al. also incorporated a polychromatic data acqui-
sition model to account for beam hardening into an iter-
ative maximum-likelihood reconstruction algorithm [108].
Like other statistical reconstruction algorithms assuming
Poisson data, low-count data are naturally deemphasized.
Unlike earlier iterative algorithms, the polychromatic data
model reflects the physics most realistically. The polychro-
matic data-driven iterative reconstruction algorithm prevents
beam hardening and metal artifacts, with the spectrum of
the x-ray tube modeled as discrete energy bins. The energy-
dependent attenuation coefficients are taken into account by
decomposing these coefficients into photoelectric and Comp-
ton components, under the constraint of relative weight of

these components based on prior material assumptions. Good
results are obtained in simulations and phantom experiments.

Hamelin et al. adapted polychromatic sinogram models
that compensate for beam hardening during iterative recon-
struction [109]. They also developed a model for Gaussian
noise that is appropriate for large average photon counts.
These models can be applied on a region of interest basis
to account for areas of the image that suffer from different
artifacts. A more complex polychromatic beam model was
employed by Van Slambrouck and Nuyts, but only in regions
of the image close to metal [110]. A patch method is used to
determine metal and non-metal regions, and depending on the
contents, a simple beam model (MLTRC) or complex model
that can also increase resolution (IMPACT) is applied.

The maximum likelihood expectation maximiza-
tion (MLEM) algorithm assumes a Poisson noise distribution
of the projection data and reconstructs the image of linear
attenuation values with the highest probability. This particu-
lar statistical model is accurate for emission tomography, but
not for transmission data in CT. The algorithm weights trans-
mission data incorrectly because the noise on the x-ray path
length (post-log) does not follow a Poisson distribution. The
MLEM procedure is still advantageous in down-weighting
inconsistent projections to suppress metal artifacts, but can
be improved for modeling transmission data. Several MAR
methods employ this technique for an iterative reconstruction
after an interpolation scheme to minimize algorithm-induced
artifacts. Oehler and Buzug correct inconsistent projection
data by directional interpolation in combination with entropy
maximization to obtain appropriate weightings [111]. The
directional interpolation method is proposed to fill the data
gap following the data flow in the sinogram outside the metal
traces, allowing interpolation from data in different projec-
tions. This directional method leads to superior results com-
pared to the view-based interpolation schemes. A directional
interpolation is recommended with an appropriate weighting
to form a weighted maximum likelihood framework for metal
artifact reduction, which balances between missing data and
residual inconsistencies. A regularization term in the
log-likelihood function helps stabilize the model.
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FIGURE 11. KCR estimates the pose of the unilateral single-component screw by simultaneous registration and reconstruction to yield superior
image quality to FBP and penalized-likelihood reconstruction. Top: axial view. Bottom: coronal view. Reprinted from Stayman et al. [121] by
permission of IEEE.

Kratz and Buzug also applied weighted MLEM after
NFFT interpolation, which is effective for higher interpola-
tion dimensions [112]. This method can accommodate prior
information about the metal object. NFFT helped reduced
relative errors based on the ground truth in the image domain
bymore than 30% compared to linear and cubic interpolation.
Aootaphao et al. introduced a modified convex algorithm
to include a penalty term in the MLEM process, which
overcomes noisy images that can result fromMLEM alone on
ill-conditioned problems [113]. This followed cubic interpo-
lation of metal regions with an offset that allows surrounding
bone to be discerned.

Zhang et al. use constrained optimization, which mini-
mizes an objective function that preserves smoothness by
restricting projection values based on original non-metal
projections [114]. The algorithm outperforms ART and
EM methods for streak artifact reduction.

3) KNOWLEDGE UTILIZATION
Iterative reconstruction methods involving incomplete
data can be improved with further considerations, such as
compressed sensing and known component models. With
an increased aging population, more and more CT images
contain implants, surgical tools, and other metallic objects.
A significant opportunity for metal artifact reduction is to
use these precisely known physical models. A component
model defines the shape, size, and/or density information of
the metal objects in the image to help estimate the missing
projections. Kalvin and Williamson developed an iterative
algorithm that uses a scout image as a prior image for cases
when unencoded projection data are not available [115].
The scout image is acquired by keeping the x-ray tube
stationary and moving the patient table. Constraints on
the corrected image are imposed by scout projection data
for consistency and information about the objects in the

image, such as size. Kalvin patented a process based on this
sequence [116].

Chen et al. devised an algorithm to utilize sparsity of an
underlying image and generate a realistic prior background
through compressed sensing reconstruction from sparse data,
which requires only 20 view acquisition angles [117].

An extension of EM-type iterative deblurring by
Snyder et al. incorporates the shape and attenuation char-
acteristics of the known metal object to improve the iter-
ative reconstruction for intracavitary applicators [118].
O’Sullivan and Benac developed alternating minimization
to monotonically decrease the objective function [119]. This
technique minimizes the I -divergence between measured and
estimated model-based data, which is a reformulation of the
maximum-likelihood. Murphy et al. aim to estimate the pose
of metal implants by using a known component model of the
shape and composition [120]. Thismethod employs a steepest
descent gradient algorithm to approximate the position and
orientation of the objects.

Stayman et al. created a model-based penalized-likelihood
approach that incorporates a component specification model,
and performs an alternating maximization procedure for both
the anatomy and the known object inside the patient [121].
This proposed method achieved high quality images in
simulated vertebral pedicle screw reconstructions. Fig. 11
compares image quality of known-component reconstruc-
tion (KCR) with FBP and penalized-likelihood for an image
containing a pedicle screw.

F. IMAGE POST-PROCESSING
A less popular MAR approach is to perform
post-processing, which aims to correct in the image domain.
Post-processing methods reduce artifacts after the image has
been reconstructed, and do not rely on access to raw projec-
tion data. These techniques alone are often not as effective
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FIGURE 12. Images of two cobalt-chrome hip implants with strong artifacts between them. a) Original; b) MAF;
c) Linear interpolation (LI); d) LI-MAF merging with distance weighting; e) LI-MAF merging with directional
weighting. Merging with directional weighting significantly improves image quality and minimizes secondary
artifacts. Reprinted from Watzke and Kalender [125] with permission from Springer.

as raw data correction approaches since the damage already
occurred, but combining post-processing with reconstruction
modifications may have merits, as seen with some methods
discussed in this section.

1) DIRECT
Direct post-processing for streak reduction was attempted by
Henrich with minimal effectiveness [122]. This includes a
simple normalization of rows and columns to a gray value.
Soltanian-Zadeh et al. identified streak artifacts by thresh-
olding a difference image between original and low-pass
filtered images and removed them successfully in brain phan-
tom images [123]. For images with mild artifacts, Bal et al.
employed a radial adaptive filter that acts only on artifact
regions of the reconstructed image while preserving spatial
resolution elsewhere [124]. The filter is derived from the local
structure tensor at each pixel.

2) HYBRID
For more effective results, post-processing has been
integrated with other categories of MAR techniques.

Watzke and Kalender proposed to combine two artifact
reduction methods via image-based weighted superposition
of two versions of an image obtained using different MAR
methods, the simple linear interpolation method and the
multi-dimensional adaptive filtering (MAF) method [125].
The two techniques have their strengths and weaknesses,
since they were designed based on different considerations.
The linear interpolation method does not use corrupted data,
thereby reducing beam hardening and image noise. However,
this method often introduces new artifacts. On the other
hand, the MAF method greatly suppresses image noise, but
it does not effectively reduce artifacts. The synergy among
the two methods is clearly shown with patient data that leads
to superior image quality than what can be obtained from
either method alone. The outcomes achieved with directional
weighting are generally preferred over those with the distance
weighting. Fig. 12 illustrates the merging of linear interpola-
tion and MAF images, and the image quality improvement
with directional weighting.

Meyer et al. further introduced a frequency split
MAR protocol that combines high frequency information
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of the original image to preserve edge data with low fre-
quency information of the image corrected by NMAR [126].
A weighting scheme is used to optimize high frequency data
containing edge information without including excess noise
in the final reconstructed image.

A baggage screening MAR technique was presented by
Mouton et al. in which projection completion is com-
bined with post-processing [127]. Metal projection data are
replaced by spline interpolation of neighboring projections
and the corrected sinogram is reconstructed. The resulting
image is then processed to reduce artifacts introduced by
interpolation. The pixel values are constrained so that they
cannot exceed their value in the original image to avoid
bright streaks. More recently, Ballhausen et al. combined
CT volumes acquired at different tilt angles and computed
the average gray values from each volume for regions in
space that had artifacts present in some volumes and not oth-
ers [128]. This helped strongly reduce streaks and improved
visual details near metal objects.

IV. DISCUSSION AND CONCLUSION
Oftentimes, different MAR approaches have their unique
niches. Table 4 summarizes the detailed assessment of MAR
methods described in Section 3 by establishing their relation-
ship to the metal objects whose artifacts they were intended
to overcome. Projection completion algorithms make up the
majority of MAR techniques, and are primarily targeted to
correct artifacts from large and/or highly attenuating metal
objects, such as prosthetic hips and dental fillings. There are
also several iterative reconstruction algorithms developed for
reducing artifacts from these types of implants. For smaller
and less attenuating metals, improvements to the acquisition
protocol or physics-based pre-processing correction may be
sufficient, as there are several methods in these classes geared
to those implant categories.

Despite four decades of effort toward reducing metal
artifacts in CT (starting with Lewitt and Bates in the late
1970s [48]), there are important applications in which metal
objects remain troublesome. In light of Table 4, we under-
line that larger, irregular metal parts remain challenging, and
hybrid iterative reconstruction is the main approach to utilize
physical models and minimize metal artifacts.

As a first step for many MAR algorithms, metal segmenta-
tion is performed on a first-pass reconstruction image. Due
to severe beam-hardening or photon starvation, it is rather
difficult to have an accurate segmentation, especially close to
the metal surface. Huang et al. performed a thorough study of
three commercially available MAR techniques on phantoms
corresponding to different types of metal implants [129].
These methods are 1) the O-MAR algorithm by Philips
Healthcare, which is an iterative projection replacement tech-
nique based on a tissue-class model, 2) the monochromatic
gemstone spectral imaging (GSI) protocol by GE, which
employs dual-energy acquisition at 80 and 140 kVp, without
any MAR software and 3) the GSI protocol with additional
MAR software. For the case of large hip implants, GSI with

software correction achieved the best artifact reduction results
due to the decrease in beam hardening effects facilitated by
dual-energy acquisition. More complex phantoms, such as
dental fillings, presented a challenge for all three MAR tech-
niques, characterized by the production of additional artifacts
in the image without major reduction of the original streaks.
For titanium rod spinal implants, all software algorithms
induced streaks between the metal objects and the imaging
target, which was the lung. These results highlight the lim-
itations of existing MAR methods. Although the O-MAR
algorithm is intended for orthopedic implant applications,
Kidoh et al. tested it strictly for dental fillings and determined
that it does have utility in improving image quality, but it
cannot effectively overcome streak artifacts [130]. Radiolo-
gists assessing images of head and neck tumors in patients
with fillings concluded that O-MAR improves the depiction
of the oral cavity, but it causes unnatural texture in the
images.

To optimize metal artifact reduction, important informa-
tion could be extracted from data segments compromised by
metal objects. It is emphasized that such data segments could
be improved using multi-energy scanning techniques, which
can effectively facilitate metal artifact reduction. Other prior
information in terms of expected image domain knowledge
is useful as well. A most immediate objective of MAR is to
improve the fidelity of the acquired data so that segmentation
quality can be optimized and advanced correction algorithms
may not be as necessary. Higher tube voltages generate higher
energy x-rays that can penetrate dense metal objects and
increase the inherent quality of the raw data. Multiple-energy
protocols, high-energy sparse view acquisition, and photon-
counting spectral CT have emerged as promising techniques
to overcome beam hardening and photon starvation artifacts
that result from x-rays passing through metal objects. A high-
kVp dual-energy protocol has been proposed by Xi et al. in
which sparse views at 160 kVp, or even 170 kVp, are acquired
intermittently during a standard 120 kVp scan [131]. The data
obtained at higher energy suffer from less beam hardening
and photon starvation effects, thereby providing adequate
projections that can replace corrupt projections throughmetal
objects acquired at the standard energy. Simulation data of
this process has shown high image quality close to the metal
surface, and is a viable option for improving radiation therapy
planning.

Model-based iterative reconstruction is also
a promising research direction for reducing metal arti-
facts [132], [133]. This general class of algorithms
incorporates models of physics and materials that help
improve the consistency and relevance of x-ray data. System
models account for the polychromatic spectrum of the x-ray
tube, statistical noise models adjust for the size of the focal
spot and detector shape, and prior models constrain the data
to only realistic representations of the image. Compressed
sensing methods can be considered under prior models in
that they use known properties such as sparsity, low-rank, and
dictionaries to guide the reconstruction when insufficient data
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TABLE 4. Relationship between representative publications in each MAR method class and the categories of metal objects for which they are intended to
correct.

is available from the acquisition process. Complementary
data from other imaging modalities has also been shown
to reduce CT metal artifacts in a unique way. Tri-modality
imaging systems that perform CT, MRI, and positron emis-
sion tomography (PET) in a single session can acquire syn-
ergistic information for image correction as demonstrated by
Delso et al [134].
A common observation inMAR papers is that the results of

a proposed technique are often compared to results obtained
using the simple linear interpolation algorithm. Unsurpris-
ingly, nearly every new approach is far superior to this
benchmark. To improve synergy in the MAR field and com-
pare many techniques to each other, there is a need for
better benchmarks and metrics. Reconstruction algorithms

ought to be run on identical data from the same acquisition
process. For techniques that alter the scan procedures, iden-
tical phantoms should be available. Phantom templates could
be shared in a database, downloaded, and 3D printed so
that there is common ground for comparison. These phan-
toms also cannot be too simple, otherwise the complex cases
of metal objects are not represented. Testing also needs
to include task-based evaluation to assess clinical impact,
such as radiation therapy planning. An additional point is
that many MAR algorithms require access to raw projection
data, but these often cannot be implemented on commercial
CT scanners due to restrictions.

In recent years, public concerns over x-ray radiation dose
have led to great progress in low-dose CT. Sub-milli-Sievert
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scans are becoming common. As a result, metal artifacts
could become more evident, which will demand more
attention to maintain diagnostic performance. For low-dose
CT and spectral imaging, photon-counting detectors are
emerging that have an inherent benefit for metal arti-
fact reduction, but have yet to be fully explored. Among
many relevant clinical tasks, a primary example that heav-
ily relies on successful metal artifact reduction is proton
therapy planning. In this case, any residual metal arti-
facts can significantly compromise therapeutic outcome
margins.

From a methodological perspective, metal artifact reduc-
tion and local/interior tomography are closely related.
Roughly speaking, in the case of metal artifact reduction,
portions of data inside a projection profile are unavailable or
seriously compromised due to the presence of metal objects.
Meanwhile, local/interior tomography targets reconstruction
of an internal region of interest (ROI) from purely trun-
cated projection data segments delimited by the ROI (interior
tomography), or from these local data segments plus some
additional measured and/or extrapolated data along paths out-
side the ROI (local tomography). Since interior tomography
solves the classical interior problem [135], [136], in a good
sense metal artifact reduction methods define what we call
exterior tomography. Mathematically, exterior tomography
allows a unique solution but regularization is needed for
stability.

As a side note, the recent news exposure on AlphaGo
demonstrates an impressive success of machine learning,
and is inspiring for metal artifact reduction [137]. It can be
imagined that the above-described benchmark database can
be expanded to serve as a source of big data for training so
that a machine learning algorithm can be developed to rec-
ognize metal artifacts and infer underlying structures. Such
an algorithm can be optimized in a task-specific fashion to
become a universal intelligent image analyzer. This could
be an exciting direction for big-data-driven intelligent metal
artifact reduction.

Forty years of research and development have produced
effective methods for reducing metal artifacts. Despite these
efforts, some metal objects still pose great challenges for
MAR, mainly large or irregular prostheses and dense, highly
attenuating implants. There is still no universal solution for
cases involving these types of metal that demand high image
accuracy, especially for proton therapy. To reach this goal,
improved acquisition protocols will need to be combined
with reconstruction algorithms that account for the relevant
physics effects and prior information. This approach
fosters collaboration between multiple groups in different
disciplines.

In conclusion, multi-energy data acquisition, advanced
algorithms, extensive prior knowledge, standardized
benchmark datasets, as well as clinical evaluation
and validation would synergistically contribute to the
most effective techniques for metal artifact reduction
in CT.
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