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ABSTRACT Background subtraction is a popular technique for detecting objects moving across a fixed
camera view. The performance of this paradigm is influenced by various challenges, such as object relocation,
illumination change, cast shadows, waving background, camera shake, bootstrapping, camouflage, and so
on. In this paper, we present a synopsis on the evolution of the background subtraction techniques over the
last two decades. The different ways of mathematical modeling are taken into consideration to categorize the
methods.We also evaluate the performance of some of the state-of-the-art techniques vis-a-vis the challenges
associated. Eleven different algorithms of background subtraction have been simulated on thirty-four image
sequences collected from five benchmark datasets. For each image sequence, seven performance metrics are
evaluated and an exhaustive comparative analysis has been made to derive inferences. The potential findings
in the result analysis are presented for future exploration. The obtained image and video results are uploaded
at https://sites.google.com/site/soaBSevaluation.

INDEX TERMS Video surveillance, object detection, background subtraction, background modeling,
foreground extraction, background maintenance, shadow removal.

I. INTRODUCTION
Computational inefficiency, for the last few decades, has
been a major bottleneck in processing videos in reasonable
time. The recent advancement in parallel architectures has
made feasible live-analysis of video data. It has also stimu-
lated the researchers to developmore sophisticated and robust
models that can deliver output under challenging conditions.

The objective of video surveillance is to extract essential
information from a set of image sequences by automatically
detecting and tracking the objects of interest followed by
recognizing the relevant activities. Video Surveillance has
enormous applications both in public and private sectors such
as theft avoidance, crime hindrance, site visitors monitoring,
combating in opposition to act of terrorism, land security,
accident prediction, and many others. A generic surveillance
framework comprises a set of cameras placed at strategic
locations that are connected to digital computers to ana-
lyze the ongoing activities. This article concentrates on the
very first phase of an automated surveillance framework:

separating moving objects through background subtraction.
Figure 1 illustrates few sample objects extracted as fore-
grounds from their respective frames and background model.

Background subtraction has been the most widely used
approach to detect moving objects over the last two decades.
In general, this framework is a three-stage process as shown
in Figure 2. In the first stage, i.e. background initializa-
tion, either the first frame or few initial frames are taken
into consideration to estimate a model of the background.
Each successive frame is then compared with the established
background to extract the moving objects during foreground
extraction. The final stage, background maintenance, keeps
updating the model to adapt any changes that may occur in
the observed scene over the time. However, this framework is
susceptible to various challenges such as cast shadow illumi-
nation, bootstrapping movement during initialization, back-
ground oscillation with varying periodicity across the view,
the chromatic similarity between a foreground to its underly-
ing background, gradual change in sunlight illumination over
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FIGURE 1. First row: four frames of the Fountain video; Second Row: Corresponding output, white pixels indicate foreground object.

the time, rapid varying illuminationwith cloudmovement and
switching the lights on/off. The subtle elements on each of
these difficulties with their varying solutions are expounded
in Section III.

FIGURE 2. Primitive steps of background subtraction.

Quite a significant amount of work on background
subtraction are available in literature [1]–[4]. In this
paper, we provide an overview of the existing meth-
ods along with their solution strategy towards miti-
gating the challenges. We simulate eleven state-of-the-
art methods on various image sequences collected from
five benchmark datasets. An in-depth analysis of the
results reveal some key findings in background subtraction
methodologies. All results of this study are available at
https://sites.google.com/site/soaBSevaluation.

The rest of this paper is organized as follows. Section II
outlines the evolution of various mathematical models.
Section III details the challenges as well as their solution
strategies proposed over the years. Simulation statistics
alongside the selected datasets, state-of-the-art methods, and
performance measures are enumerated as well as the obtained
results are analyzed in Sections IV and V. Finally, Section VI
presents the concluding remarks.

II. THE GENESIS OF BACKGROUND SUBTRACTION
Effective background modeling and its periodic update are
very much essential for accurate object detection. There
exists plenty of literature in this field over the last two

decades [5], [6]. However, there is no unique way to cat-
egorize these methods. In this section, we enumerate the
evolution of various mathematical models of background
subtraction to detect moving objects.

A. BASIC MODEL
The simplest way is to set the first frame as the background
and subtract all subsequent frames to extract the foregrounds.
However, an oscillating background cannot be adapted using
a single frame. Furthermore, the very first frame of the
sequencemay contain moving objects that may falsely appear
as background. The frame difference method uses the previ-
ous frame rather than the initial frame for subtraction pur-
pose. This method well adapts the slow varying illumination;
however, fails to update the background, when a moving
object ceases its motion abruptly. Lai and Yung modeled the
background using the arithmetic mean of pixel values over
few temporal sequence [7]. The W4 system considers three
tuples for subtraction over the initialization sequence; the
minimum gray value, the maximum gray value, and the max-
imum intensity difference between two adjacent frames [8].
However, the inherent noise during image acquisition may
substantially alter the intensity gap that leads to false pos-
itives and false negatives. All these methods are unimodal
and therefore, an associate oscillatory background cannot be
tailored employing a single-valued model.

B. STATISTICAL MODELS: SINGLE GAUSSIAN,
MIXTURE OF GAUSSIANS, CODEBOOK
The initialization pixel sequence along the temporal axis is
modeled using a univariate Gaussian distribution [9]. The
multivariate distribution, for RGB color channels, is mod-
eled as a product of three independent univariate Gaussian
distribution, where each distribution is parametrized by the
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sample mean µ and standard deviation σ . The standard
Z -score labeling is applied to extract the foreground pixels
against the motion parameters. However, the single Gaus-
sian model is unimodal and hence fails to accommodate the
oscillating background. As an alternative, Stauffer and Grim-
son incorporate the mixture of Gaussians (MoG) to create
a multi-modal background. Each pixel location is classified
into J ≥ 1 classes, where the unknown parameter J is
chosen arbitrarily. The learning rate parameter is introduced
to cope with varying illumination. The choice of learning rate
parameter plays a major role; low learning rate fails to tackle
sudden illumination variations, whereas higher rate includes
the slow-moving objects in the background [10], [11].
Zivkovic and Hayden, in their work, proposed a solu-
tion to choose the correct number of background classes
at each location based on their sample variation over the
frames [12], [13]. In another work, Kaewtrakulpong and
Bowden changed the background update equations in the
original MoG model to address the rapid illumination
variations [14]. The codebook scheme uses few statisti-
cal attributes to encode each background location such as
the minimum and maximum intensity for a pixel over the
frames, frequency-of-occurrence for each codeword, frame
number at which the codeword has first time occurred,
frame number at which the codeword last appears, and the
maximum frame gap during which the codeword remains
missing [15], [16]. Fernandez-Sanchez et. al. follow the
same principle to initialize the background; moreover, they
incorporate the depth cue as an additional model parame-
ter to strengthen the discriminating ability of the developed
model [17].

C. NON-PARAMETRIC MODEL
The temporal pixel sequence at any location might not fol-
low the default Gaussian distribution. The kernel density
estimation (KDE) techniques are applied in those scenarios,
where the underlying distribution is unknown. In particular,
these algorithms take ample training samples to converge to
the underlying density function [18], [19]. The KDE based
methods strongly depend on the suitable choice of kernel
bandwidth that must have finite local support. Moreover, the
bandwidth is inversely related to the number of frames
adapted for background initialization. A narrow bandwidth
results in a jagged density estimation, whereas an exten-
sive one leads to over-smoothed distribution [20]. Piccardi
and Zen, in their work, apply the median of the absolute
difference between adjacent frames to estimate the kernel
bandwidth [21]. The varying waving periodicity in the case of
oscillating background appeals to approximate kernel band-
width for each model location across each of R, G, B color
channel. In another work, the mean-shift paradigm is chosen
to estimate the kernel bandwidth with fewer training sam-
ples [22]. Elgammal et al. apply a fast Gauss transform to
reduce the overall response time of density computation [23].
Mittal and Paragios, in their work, model the dynamic back-
ground using optical flow, and the feature uncertainty is

resolved using a KDE technique [24]. Parag et al. suggested
a boosting based ensemble learning to select appropriate
features for the KDE based methods [25].

D. NON-RECURSIVE BUFFER BASED SUBTRACTION
Lo and Velastin store the recent pixel history in a finite
buffer to represent the model location [26]. The signifi-
cant difference between the current pixel and buffer median
decides if it were a foreground; else, the new background is
enqueued inside the buffer. The first-in-first-out strategy is
applied to tackle the situation when the overflow condition
is encountered. Subsequently, Cucchiara et al. prefer the
medoid rather than the median statistics to take the appro-
priate decision [27], [28]. In another work, the background
is modeled using a linear predictive model through Wiener
filtering [29]; the covariance of pixel sequence estimates the
filter coefficients. This work is further extended in a relevant
subspace via PCA [30], [31]. Wang and Suter use the notion
of consensus to model the background. Additionally, two
algorithms are suggested to deal with rapid varying illumi-
nation and background relocation [32], [33].

E. FUZZY MODEL
Fuzzy principle can be incorporated to address the deci-
sion uncertainty during foreground extraction [34]. Zhang
and Xu incorporate the fuzzy Sugeno integral to model the
underlying scene under observation [35]. Subsequently, the
Choquet integral is preferred over the former one that yields
comparatively better accuracy [36]. Azab et al. fuse the edge
information alongwith the color and texture features tomodel
the background, where the Choquet integral is applied to
extract the foreground pixels. Bouwmans et al. proposed
another type-2 fuzzy technique to take the classification
decision [37], [38]. Kim and Kim apply the fuzzy color
histogram to model the waving background [39].

F. LEARNING MODEL
A classifier (for example, neural network) is used to train
the underlying density distribution of the pixel sequence and
decide the nature of the next picture element. Culibrk et al.
train a probabilistic, multi-layered, feed-forward neural net-
work with 124 neurons to create a background model.
A Bayesian classifier is then employed to separate the
non-stationary pixels [40]. Maddalena and Petrosino design
a self-organization map network in which each back-
ground location is represented by a set of learned weight
vectors [41], [42]. Moreover, a spatial coherence paradigm
is introduced to reduce false alarms.

G. LOW-RANK SPARSE DECOMPOSITION
Subspace learning models are also introduced in the field of
background subtraction. The Robust Principal Component
Analysis (RPCA) is applied to decompose the video frames
into a low-rank background matrix and a sparse foreground
matrix [43], [44]. Wright et. al., in their work, incorporated
a L1-norm on the sparse matrix such that the background
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frames are linearly correlated to each other [45]. In another
work, the Total Variation regularization constraint is incor-
porated to handle the noisy data [46]. The low-rank matrix
(background model) assumes to capture any variation that
has been observed at the underlying scene over the time.
However, The RPCA paradigm considers the entire image
sequence as a vectorized data matrix and therefore has high
memory overhead [47]. Sobral et. al. suggested an incremen-
tal tensor subspace learning that builds the low-rank matrix
using few initial temporal sequence only, and periodically
update the model with subsequent frames [48]. In another
work, a Sparse Outlier Iterative Removal (SOIR) algorithm
is employed to model the background scene, where a cyclic
iteration process is suggested to separate foreground
pixels [49], [50].

H. SHADOW REMOVAL MODEL
Shadow darkens the scene illumination, and hence, the under-
lying region falsely appears as foreground. The literature
includes two different ways to tackle this situation. The for-
mer group suggests various invariant color models [27], [51]
to nullify the shadow effects, whereas another set of algo-
rithms prefer the texture feature that remains indifferent in
the presence of shadow [52], [53]. Wang and Suter, in their
work, apply the normalized RGB color space to model the
background; however, it has been observed that the normal-
ized RGB is very much noisy in case of low intensity [54].
Cucchiara et al. apply the HSI model to suppress the shadow
illumination and use a median filter to selectively update
the established model [27]; a second validation is further
applied using both invariant color and texture pattern of the
underlying scene [28]. Huang et al. incorporate the color and
color co-occurrence features to model the static and waving
background respectively [55]. Huerta et al. suggest a two-
stage approach to counter the shadow illumination [56]. The
first stage combines the gradient details and color information
to detect the probable shadow pixels. A second validation is
further applied based on the temporal and spatial analysis of
chrominance measure, brightness content, texture distortion,
and diffused bluish effect. Zhou et al. consider multiple cues
such as motion details, object location, its shape, and color
feature to detect the objects in motion [57].

I. POST-PROCESSING REFINEMENT
Foreground extraction may be erroneous owing to the clut-
tered background and the inherent sensor noise during image
acquisition. It may so happen that a few portion of foreground
pixels may be wrongly identified as the background and vice-
versa. A post improvisation module should be incorporated
to minimize such false alarms [58]. The median filtering is
a suitable tool to reduce such false positives. Again, some
methods apply connected component analysis to attach the
disjointed regions. The size constraint as per the objects of
interest can be incorporated to eliminate small foreground
pixels. Many authors prefer morphological post-filtering for
such improvisation. Morphological Opening is applied to

reduce the scattered noise pixels. The closing operation con-
nects the disjointed pixels. Moreover, the morphological fill-
ing can be applied to fill the camouflage gap.
The literature includes a number of articles on the use of

background subtraction in identifying the moving entities.
Parametric models are based on their underlying assump-
tions; the appropriate parameter selection can be cumbersome
and moreover, it may vary with different scene structures.
On the other hand, non-parametric models are more reli-
able, however, requires a long pixel history to estimate the
underlying density function. Pixel-based methods usually
apply the color feature to compare the pixel intensities at
the same location over the frame sequence, whereas block-
based methods consider the inter-pixel neighborhood char-
acteristics, partition the image into several blocks, and apply
both color and texture cues to decide the pixel behavior. The
unimodal background outputs significant false positives in
case of uninteresting waving motion that can be tackled by
themulti-modal background at the price of higher space com-
plexity. The recursive models update the model parameters
in an iterative fashion, and thereby fast enough to deploy
in real time applications. On the contrary, the non-recursive
techniques store the recent pixel information inside a buffer to
model the background. The latter one well adapts the gradual
illumination variations at the cost of high memory overhead.

III. CHALLENGES AND MITIGATIONS
Moving object detection through background subtraction is
usually challenged by a number of factors. The strength
and weakness of any background subtraction algorithm are
assessed by observing the efficiency with which it coun-
ters the challenges. In this section, we detail the possi-
ble challenges along with their solutions proposed over the
years.

A. GRADUAL ILLUMINATION CHANGE
Visibility of outdoor scenes is, in general, affected by the
problem of slow illumination change. The sunlight illumi-
nation varies gradually over the day and thereby inducing a
deviation in the modeled background. As a result, faulty fore-
ground pixels appear, even though, no real object movement
has occurred.

Earlier schemes apply the recursive paradigm to model the
underlying background. Motion parameters, such as mean
and variance, are recursively updated with each forthcoming
background pixel. In this principle, only two parameters per
location are required tomodel the entire scene. Such recursive
update over a longer period may include the distant past
pixel contribution. The so formed model parameters may get
more skewed towards the old values. It may so happen that
a true background pixel may significantly differ against such
biased distribution. Such misclassification adversely impacts
the ensuing decisions for a more drawn out period.

The non-recursive methods, on the other hand, store only
the recent pixel history in a finite buffer to model each
location. The subsequent pixels are then compared with the
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buffer statistics such as median, medoid etc, to take necessary
decision. A forthcoming background pixel is included in the
buffer as long as the overflow condition is not encountered,
or replaced by an existing buffer value when its size is full.

B. UNINTERESTING BACKGROUND OSCILLATION
AND CAMERA SHAKE
The waving of leaves, vacillating of banners, the fluttering of
flags, water stream in wellsprings are few real life instances
which are usually independent of motions under considera-
tion. In addition, the camera may also undergo motion due to
external forces.

Earlier background models are inherently unimodal as
each background location is defined either by a single value
or by a finite range. As an alternative, multi-label background
models are in use for the last one and half decade. In such
modeling, multiple classes are assigned for the background
coordinates so that the waving patterns can be sampled with-
out any loss.

The earlier multi-modal systems assign an equal number of
classes for each pixel location. However, the waving pattern
may not be uniform across the background. As a result, the
equal class distribution, without any knowledge of scene
structures, may fail to accommodate all possible variations.
The recent state-of-the-art methods first learn the oscillation
periodicity for each pixel location with sufficient training
samples, and then, assign the required number of classes
across the model.

C. SHADOW AND REFLECTION
Shadow darkens the underlying region, whereas diffuse
reflection brightens the scene visibility. In other words, a
shadow can be interpreted as a scaled down value of lumi-
nance, whereas diffuse illumination as a scaled up value.
In either case, the resulting deviation yields unnecessary false
positives. These problems are usually suffered by methods
that are solely based on luminance features. In case of RGB
color space, each of the channels is a linear combination of
both luminance and chrominance component. The shadow
removal strategy demands an invariant pixel representation
that should be independent of luminance channel. In other
words, the so formed pixel data structure should be a function
of the chrominance measure only. There exist two different
ways of addressing the shadow illumination issues. Chro-
matic channels such as Hue from HSV , a, b from Lab,
Cb, Cr from YCbCr color channel, and so forth, are applied
to nullify the illumination factor. Another set of methods
applies a battery of texture features that remain invariant to
illumination.

D. BOOTSTRAPPING
In the best case, there would be no object movement at the
observed scene during background modeling. Foreground
movements during initialization create faulty classes in the
developedmodel, known as the bootstrapping problem.Once,
the foreground objects leave their location, the rearward

background appears as non-stationary in rest of the frames.
On the contrary, the same foreground object, or look-alike
objects, when pass across the underlying region, may remain
undetected due to the match with the faulty background class.

Usually, the appearance frequency of a background class is
taken into consideration to figure out the bootstrapping prob-
lem. A moving object cannot remain stationary at the same
location for a longer period. In other words, the appearance
frequency of such faulty classes is very low as compared
to that of a true background class. Once the background
modeling is over, a suitable outlier labeling method can be
applied to remove the low-frequency classes.

E. BACKGROUND DISPLACEMENT
Abackgroundmodelmight change after initial training owing
to various scenarios such as parking a vehicle, replacing an
old refrigerator with a new one with varying shape and size,
shifting chairs to another room etc. The above scenarios can
be generalized into three different categories, as given below.
Case 1:When a new background object is introduced into

the scene, it is quite apparent that the number of objects in the
foreground increases by one.
Case 2: When an existing background object is removed,

it creates a void space whose pixel distribution is not at par
with the prevailing background, and thus introducing a new
foreground object that actually does not exist.
Case 3: The relocation of existing background objects

could be interpreted as a combination of the above two cases.
An existing background object is removed from its current
position (Case 2) and placed at another location (Case 1), and
creating an illusion of two new objects, which is in actual one
object.

The developed system should be robust enough to update
such changed location as background. Usually, the visibility
duration of each object is taken into consideration to alleviate
this issue. In particular, a foreground object that remains
stationary at a location for a longer time period will be
incorporated into the background model. On the contrary, an
existing background class that remains absent for sufficient
frame period will be removed from the model.

F. CAMOUFLAGE
Foregrounds significantly deviate from the modeled back-
ground in terms of their visual appearance. Most of the exist-
ing schemes incorporate the intensity and color difference
as a measure to identify the non-stationary pixels. However,
color alone cannot solve the detection task. It may so happen
that the color of a moving object may match to its rearward
background. As a result, the pixel difference lies within the
set threshold that yields false negatives. Recent schemes
incorporate the texture or gradient information along with the
color feature to strengthen its ability to detect the foreground
objects more accurately. The only case when it may fail lies
with same color and texture values at both foreground and
background points; however, such scenarios are very rare.
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G. SUDDEN ILLUMINATION VARIATION
Usually, the number of background pixels at any instant of
time exceeds the number of foreground pixels. However, the
rapid illumination variation alters the entire visibility of the
scene, and maximum background pixels significantly deviate
from their original value. The indoor illumination is usually
disturbed by the lights on/off at times, whereas the outdoor
environment fluctuates in the presence of cloud.

The simplest solution is to reinitialize the model as soon as
the fast variation is observed. The usual background update
strategy discussed in Section III-E can also be applied at
the expense of few successive frames so that the model
can be relabeled automatically. Detection result during this
frame interval may be faulty; however, the outcome is more
reliable at the expense of this small frame gap. Methods
based on Gaussian mixture model update the background
using a learning rate parameter. Another set of algorithms
models the variation transformation as regression polynomial
of probable background coordinates.

IV. SIMULATION SETUP
In our work, we simulate some state-of-the-art algorithms
on several image sequences. The outcomes consequently
acquired, are investigated and the findings are summarized in
the next section. In this section, we detail the standard datasets
and various performance measures used for the evaluation.

A. DATASETS
Benchmark datasets alongside their ground-truth annotations
are crucial for both qualitative and quantitative analysis of
any algorithm. In this work, we simulate several image
sequences collected from five benchmark datasets namely,
Wallflower, I2R, CarnegieMellon, Change detection (CDW),
and Background Models Challenge (BMC). The selected
image sequences alongside the underlying challenges are
listed in Table 1.
Wallflower:We simulate five out of eight image sequences

from Wallflower dataset [29]. Besides, one ground-truth
image is provided with each sequence, which is compared on
a pixel-by-pixel basis.
Camouflage: In this video, a man strolls over the screen

of a computer. The color of his shirt matches to the moving
interlacing bars on the computer monitor. Towards the end,
the person casts shadow on the side wall.
Bootstrapping: This video is recorded inside a cafeteria.

Foreground movements can be observed from the very first
frame of the sequence.
TimeOfDay: The gradual variation of daylight illumination

over a day is portrayed in the TimeOfDay sequence. The video
demonstrates a moderately lit vacant room being brightened
gradually and uncovering various items present in it. Towards
the end, a man enters the room and sits on a couch.
LightSwitch: The lights are initially off with no moving

objects inside the room. After a while, a person comes,
switches the light on, and leaves the room.

TABLE 1. Selected videos and the underlying challenges.

WavingTrees: It demonstrates an oscillating background
that includes a person walking across a swaying tree.
I2R:We simulate seven out of nine image sequences from

I2R dataset [55]. Each sequence is again associated with
20 hand segmented images. Accordingly, the result is com-
puted across these 20 ground-truth annotations unlike single
ground-truth in Wallflower dataset.
Lobby: This video is captured inside a room with five

light sources illuminating the scene. It can be observed that
switching different lights on/off at various times alters the
visibility of the prevailing background.
Campus: This sequence delineates an open air scene where

the waving trees yield uninteresting background movement.
Fountain: Pedestrians are walking in front of a water foun-

tain. Any detection algorithm should incorporate the water
flow in the background model, otherwise, it results in false
positives.
WaterSurface: This is another instance of uninteresting

background movement, where the sea waves, if not dealt
properly, will give rise to significant false positives.
Curtain: It portrays an instance of both camouflage

and waving background. The fluttering curtain should be
absorbed in the model. Furthermore, the disguise issue can
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be observed owing to the attire similarity between the fore-
ground to that of underlying background.
Escalator: This video is recorded in a subway station. The

pedestrians, as well as the escalators, are in motion from the
very first frame itself. It illustrates the issue of bootstrapping
as well as background oscillation. In addition, the variation
in light illumination can be observed over the time.
Hall: It delineates pedestrian motion from the very first

frame alongside their cast shadow. Furthermore, the cam-
ouflage issue comes into picture owing to the similarity in
pedestrian clothing with various parts of the background.
Carnegie Mellon: This dataset [59] has only one image

sequence that contains 500 TIF frames along with their hand
segmented annotations. The scene is recorded with nominal
camera movement, which is of 18 pixels on average.
Background Models Challenge (BMC): This dataset is

partitioned into three different categories namely, Learning
mode, Synthetic videos and Real videos. In this work, we
simulate six out of eight sequences from the Real videos.
WonderingStudents: The bootstrapping movement is well

reflected from the very first frame of the sequence.
BewareOfTrains: This sequence portrays a number of chal-

lenges over the frames. The swaying leaves yield background
oscillation, whereas the chromatic match between foreground
cars and rearward background raises the camouflage issue.
Furthermore, the underlying shadow of the moving vehicle
alters the scene appearance, and the trains journey,
running → steady → running, appeals to update the back-
ground model.
BigTrucks: The truck is big in size, homogeneous in color,

and very close to the camera. The interior pixels, while the
truck is in motion, may appear as stationary due to pixel
homogeneity across the neighborhood. Movement during ini-
tialization, cast shadow, and the chromatic match between the
truck and side wall are few other issues.
RabbitInNight: The quantization noise in this low-

resolution video appears as a continuous motion over the
temporal sequence. In addition, the rapid change in light
illumination and the shadow of the walking pedestrian are
other concerns need to be taken care.
TrafficDuringWindyDay: The camera shake and waving

trees are the reasons for uninteresting background oscilla-
tion, whereas the car movement during initialization raises
the bootstrapping issue. Furthermore, the cloud movement
changes the appearance of the prevailing view.
TrainInTunnel: The bootstrapping motion of an individual

and his shadow can be well visualized in this sequence.
Change Detection.Net (CDW): This dataset is parti-

tioned into eleven categories with several image sequences
in each category [60], [61]. Furthermore, each video is
associated with their hand segmented annotations. In some
sequences, the ground-truth contains binary results from
part of an image only rather than the entire frame; in
those videos, the results are generated across the interest
region only. In particular, we simulate thirteen videos from
CDW dataset.

Parking, WinterDriveAway: In both sequences, the cars are
initially parked for some time and therefore behave as station-
ary against the developed model. After a while, one person
drives a car away from the scene and thereby creating a ghost
space that may falsely appear as foreground. Furthermore,
the cloud movement in the Parking sequence alters the scene
visibility in terms of rapid varying illumination.
Sofa: The primary focus in this video is a sofa and the

various items placed on or near by it. Over the time, few
background objects are either shifted to another location or
taken away from the camera view. A background model
should take care of all such movements.
Backdoor, BusStation, Bungalows: Pedestrian motion in

the first and second sequences, and moving vehicle in the
third sequence cast shadow that darkens the true intensity.
Alongside, the waving tree in the first video demands a multi-
modal background.
Canoe, Fountain01, Fountain02, Overpass: The river flow

in the first video, the fountain water in the second and third
videos, and the waving trees in the fourth video need to be
absorbed with the background.
Sidewalk, Traffic: The camera oscillation in both sequences

result in a dynamic background that is actually independent
of motion under consideration.

B. STATE-OF-THE-ART COMPARISON
In our work, we simulate eleven state-of-the-art meth-
ods for comparison analysis —(i) Block-based classifier
cascade with probabilistic decision integration (BCCPDI,
[62]), (ii) Pfinder: real-time tracking of the human body
(Pfinder, [9]), (iii) Fuzzy integral for moving object
detection (FuzzyIntegral, [63]), (iv) Self organizing
background subtraction (SOBS, [41]), (v) Improved adap-
tive background mixture model (IABMM, [14]), (vi) Multi-
layer background subtraction based on color and texture
(MultiLayer, [64]), (vii) Pixel-based adaptive segmenter
(PBAS, [65]), (viii) Fast principal component pursuit via
alternatingminimization (FPCP, [43]), (ix) GoDec: Random-
ized low-rank & sparse matrix decomposition (GoDec, [44]),
and two variants of ViBe [66]: (x) ViBeRGB, based on RGB
color space and (xi) ViBeGray, based on gray color space.

C. PERFORMANCE MEASURES
Background subtraction can be interpreted as a binariza-
tion process in which each pixel of the current frame
can either be labeled as background (black) or foreground
(white). The efficacy of such algorithms are evaluated by
computing the number of correctly identified motion pixels
(true positives TP), the number of correctly labeled back-
ground pixels (true negatives TN), the number of pixels that
are incorrectly detected as foreground (false positives FP) or
wrongly labeled as background (false negatives FN). A con-
fusion matrix is created using these four parameters as shown
in Table 2.

The following seven evaluation metrics are computed
using the above four parameters.
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TABLE 2. Confusion matrix for background subtraction.

PCC, percentage of correct classification, is the proportion
of correctly detected pixels over total image pixels under
consideration.

PCC =
TP+ TN

TP+ TN + FP+ FN
× 100 (1)

Specificity, known as true negative rate, measures the
percentage of correctly identified negative samples over the
actual number of negatives present in the ground-truth.

Specificity =
TN

TN + FP
× 100 (2)

False Positive Rate (FPR), known as fall-out, outputs
the proportion of false positives that are retrieved by any
algorithm, out of the total number of negative samples in the
ground-truth.

FPR =
FP

FP+ TN
× 100 (3)

False Negative Rate (FNR), known as miss rate, outputs
the proportion of false negatives that are retrieved by any
algorithm over the total number of positive samples in the
ground-truth.

FNR =
FN

FN + TP
× 100 (4)

Recall, known as detection rate, is the ratio of number
of true positives to the total number of positive examples
annotated in the ground-truth.

Recall =
TP

TP+ FN
× 100 (5)

Precision, known as positive prediction, is the ratio of num-
ber of true positives to the total number of foreground pixels
detected by any algorithm.

Precision =
TP

TP+ FP
× 100 (6)

F1measure, known as figure of merit, is the harmonic mean
of Precision and Recall. Higher is the score, better is the
efficacy.

F1 =
2× Precision× Recall
Precision+ Recall

(7)

These seven measures lay the basis of our analysis that we
discuss in the next section.

V. RESULTS AND DISCUSSIONS
We simulate eleven state-of-the-art algorithms (listed in
Section IV-B) on 34 image sequences collected from five
benchmark datasets (enumerated in Section IV-A). The tab-
ular results of the above seven evaluation metrics are listed
in Tables 3, 4, 5, 6, 7, 8, and 9. Furthermore, the obtained
binary images and video results of the test sequences are
uploaded at https://sites.google.com/site/soaBSevaluation.
For the readers’ perusal, the variation in results distribu-
tion over the simulated image sequences are compared in
Figures 3, 4, 5, 6, 7, 8, and 9 for all state-of-the-art algo-
rithms; the vertical red bar demonstrates the results varia-
tion across the simulated videos, whereas a green rectangle
in each red bar depicts the average performance of the
corresponding approach. The following paragraphs sum-
marize the in-depth analysis of the obtained results with
the perspective of various challenges and performance
metrics.

A. ANALYSIS FROM CHALLENGE PERSPECTIVE
1) ANALYSIS ON BACKGROUND DISPLACEMENT
We simulate three image sequences that depict the back-
ground relocation scenario, namely Parking, Sofa, and Win-
terDriveAway. It has been observed that SOBS, FPCP,
GoDec, and BCCPDI have good recall rate whereas IABMM,
Multilayer, Pfinder, VibeRGB, VibeGray have
good precision rate. Background displacement strongly
depends on the scene under observation. It is quite imprac-
tical to set a predefined threshold of time beyond which all
stationary foregrounds can be absorbed into the background.
On the contrary, it is very tough to strict an absence duration
threshold beyond which an existing background class will be
removed from the developed model. These two parameters
have to be varied with respect to the underlying environment.
The scene knowledge along with the information of possible
stationary objects have to be learned to reduce such false
alarms.

2) ANALYSIS ON BOOTSTRAPPING
Both Bootstrapping and WonderingStudents videos well
reflect the bootstrapping scenario. All methods except
IABMM have satisfactory output. Bootstrapping can be con-
sidered as a special case of background relocationwherein the
knowledge of possible objects, their size, average halt dura-
tion etc, have to be learned over the initialization sequence
to remove the faulty background classes from the developed
model.

3) ANALYSIS ON CAMERA SHAKE
Camera oscillation can be observed in Boulevard, SideWalk,
Traffic, and Carnegie Mellon sequences. IABMM has very
poor recall rate, whereas the Pfinder, FPCP, GoDec
marginally drop the precision rate. The oscillation periodicity
owing to camera-shake needs to be learned with sufficient
initialization frames.
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TABLE 3. Comparative analysis of percentage of correct classification (PCC).

TABLE 4. Comparative analysis of specificity.
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TABLE 5. Comparative analysis of false positive rate.

TABLE 6. Comparative analysis of false negative rate.
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TABLE 7. Comparative analysis of recall.

TABLE 8. Comparative analysis of precision.
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TABLE 9. Comparative analysis of F1-score.

FIGURE 3. PCC Distribution (%) across various methods.

4) ANALYSIS ON CAMOUFLAGE
The attire similarity between the foreground and background
can be observed in the Camouflage and Curtain sequence.
All methods except IABMM, FPCP, GODec possess com-
paratively better output. Complementary cues, i.e, texture
features along with color cues need to be incorporated to
tackle this disguise issue. In addition, the morphological
processing and other low pass filtering can be applied as a
post improvisation module to minimize the camouflage gap.

5) ANALYSIS ON GRADUAL ILLUMINATION VARIATION
The varying sunlight illumination, over the time, can be seen
in the TimeOfDay sequence. Multilayer is the only
method that produces acceptable results. Recursive models
often fail to tackle such eventual variations because their
underlying model parameters are skewed towards the long
past data. On the other hand, non-recursive methods effi-
ciently handle the problem at the cost of high memory over-
head in terms of a finite buffer at each pixel location.
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FIGURE 4. Specificity Distribution (%) across various methods.

FIGURE 5. False positive rate Distribution (%) across various methods.

6) ANALYSIS ON SUDDEN ILLUMINATION VARIATION
The rapid variation in illumination can be observed in the
Lobby and LightSwitch sequence. To the best of our knowl-
edge, the literature still lags any immediate foolproof solution
to tackle such rapid variation. MultiLayer and BCCPDI
produce comparatively better results. Such rapid variation
completely alters the color and intensity characteristics of the
underlying scene. One time-consuming yet reliable solution
is to re-initialize the model as soon as such rapid variation is
observed. The usual background update strategy also adapts
the changed pixel values in the model with few successive
frames.

7) ANALYSIS ON SHADOW
Shadow effect can be visualized in the Backdoor, Bunga-
low, and BusStation sequences. BCCPDI and Multilayer
efficiently suppress the shadow illumination as compared to
other algorithms. Shadow is the scaled down value of illu-
mination. Methods based on RGB or gray color space miss-
classify shadow as foreground. Gradient or texture features
along with invariant color models are suitable candidates to
counter this phenomenon.

8) ANALYSIS ON UNINTERESTING
BACKGROUND OSCILLATION
We simulate eight sequences (four from CDW, three from
I2R, one from Wallflower) that demonstrate various real
world instances of background oscillation. BCCPDI has the
most promising detection rate over others. Unimodalmethods
fail to incorporate dynamic background in the model. Multi-
modal systems usually assign equal number of classes, and
therefore fail in situations, where the waving periodicity dif-
fers across the scene. The obvious strategy is to learn sample
variation of pixel sequence at each location to determine the
oscillation periodicity. Then, a suitable clustering method can
distribute the input sequence into the required number of
classes.

B. ANALYSIS FROM METRIC PERSPECTIVE
The above analyses are useful in evaluating an algorithm
against an underlying challenge. However, a desired algo-
rithm should be capable of countering many challenges
at a time. In our simulation, we have considered those
image sequences that depict more than one challenge
simultaneously. The overall results distribution of each
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FIGURE 6. False negative rate Distribution (%) across various methods.

FIGURE 7. Recall Distribution (%) across various methods.

simulated algorithm on the image sequences, in terms of the
seven evaluation metrics, are summarized below.

1) Correct classification rate: PCC measures the percent-
age of correctly detected samples over the entire sample
space. Almost all methods possess high PCC as shown
in Figure 3.

2) Specificity rate: Specificity measures the proportion
of correctly detected background pixels out of total
background pixels present in the ground-truth. It can
be realized from Figure 4 that all methods except FPCP
and GoDec have an average of more than 90% speci-
ficity rate. The variation in results across the image
sequences is minimum (the average specificity rate is
maximum and reliable) in the case of IABMM followed
by MultiLayer and BCCPDI. Usually, the num-
ber of foreground pixels in any frame is very less as
compared to that of the background pixels. Thereby,
the ratio of true negatives to the total negatives will
be obviously very high unless the underlying scene is
highly multi-modal or the foreground density is very
high. Therefore, thismetric is not verymuchwell suited
to rank the simulated methods.

3) False positive rate: It measures the proportion of incor-
rectly labeled foreground pixels out of the total back-
ground samples available in the ground-truth. False
positives in the case of background subtraction occur
due to an oscillating background, bootstrapping move-
ment, relocating stationary objects, varying illumina-
tion, shadow impression etc. The distribution of false
positive rate is plotted in Figure 5. All methods except
FPCP and GoDec have comparatively low false pos-
itive rate. Again, the variation in the distribution is
minimal in case of IABMM, MultiLayer and
BCCPDI.

4) False negative rate: It measures the percentage of incor-
rectly labeled background pixels out of the total fore-
ground samples in the binary ground-truth. Almost all
methods have a high false negative rate that can be
visualized in Figure 6. The disguise issue owing to
attire similarity between the foreground and rearward
background yields significant false negatives. Another
major factor is the selection of deviation threshold
that acts as a decision boundary between the fore-
ground and background regions; a large threshold may

6146 VOLUME 4, 2016



S. K. Choudhury et al.: Evaluation of Background Subtraction for Object Detection Vis-a-Vis Mitigating Challenging Scenarios

FIGURE 8. Precision Distribution (%) across various methods.

FIGURE 9. F1 Score Distribution (%) across various methods.

incorrectly include the foreground pixels in the back-
ground regions resulting in false negatives.

5) Recall rate: Recall measures the percentage of true
foreground pixels detected by any algorithm over the
actual collection of foregrounds in the ground-truth.
The Recall distribution is depicted in Figure 7. FPCP,
BCCPDI, and SOBS have comparatively better results
over their counterparts. On the contrary, the average
recall rate in case of IABMM is even less than 50%.

6) Precision rate: It measures the percentage of correctly
labeled foreground samples out of all positive samples
detected by any algorithm. The corresponding distri-
bution result is shown in Figure 8. MultiLayer and
IABMM have maximum recall rate, whereas FPCP,
GoDec, SOBS possess the least among others.

7) F1 Score distribution: Neither Recall nor Precision
alonemay accurately measure the efficiency of the sim-
ulated algorithms; rather their combination is a better
choice to select the superior methods. The distribution
of F1 Score, plotted in Figure 9, ranks BCCPDI and
MultiLayer as the two best methods.

C. PARAMETER SELECTION
One major concern in background subtraction is the choice
of appropriate parameters. The effect of various parameters
applied across different phases of background subtraction is
enumerated below.

1) Accurate modeling of a scene is directly related to
the number of frames (say M ) adapted to create the
background model. The parameterM should be varied
depending on the scene structure. Higher is the fore-
ground density or bootstrapping movements, the more
is the number of initialization frames required to cap-
ture all background locations precisely. Furthermore,
the periodicity of waving background at all locations as
well as the camera oscillation need to be learned with
sufficient training frames that are again directly relative
to the number of initialization frames M .

2) Foreground extraction phase requires detailed knowl-
edge of the size, speed, halt duration of pos-
sible mobile objects to formulate an appropri-
ate deviation threshold to separate the foreground
pixels.
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3) Background maintenance phase requires the scene
knowledge to decide (i) the immobile duration thresh-
old beyond which a foreground object will be absorbed
in the model, and (ii) the absence duration threshold
beyond which an existing background will be removed
from the model.

4) The shadow illumination may increase or decease
depending on the intensity of source illumination.
Accordingly, the shadow removal threshold should be
modeled as a function of light illumination rather than
a constant value.

5) Another major concern is the temporal buffer length in
case of non-recursive modeling that holds the recent
pixel history. A small sized buffer may fail to appro-
priately model a background location. On the contrary,
a large-sized buffer may include the long past obser-
vation that may result in false negatives together with
higher memory overhead.

VI. CONCLUSION
This paper includes a detailed evaluation of various back-
ground subtraction framework for detecting objects moving
across a scene. The principles adopted by the reported meth-
ods for mathematical modeling is taken into consideration
to classify their evolution: parametric vs. non-parametric
model, unimodal vs. multi-modal background, pixel-based
vs. region-based segmentation, recursive paradigm vs. non-
recursive architecture etc. We have enumerated the possible
challenges that come into picture during background sub-
traction along with their varying mitigation strategies over
the years. Some of the state-of-the-art methods are simulated
on thirty-four benchmark image sequences, in which each
sequence portrays either a single challenge or a number of
challenges at a time. A set of seven benchmark evaluation
measures is selected to compare the output sequence with
the supplied ground-truth. The variation in result distribution
across the simulated image sequences gives an idea to select
the suitable method depending upon the requirement.

The underlying scene knowledge along with more prior
details regarding the foreground movements and available
background objects are very much helpful in formulating
(1) the absence duration beyond which the existing back-
ground class(es) will be removed from the background
model, and (2) the appearance interval after which an immo-
bile foreground will be relabeled as background. The varying
oscillating pattern across the background (at eachmodel loca-
tion) has to be learned with sufficient initialization frames to
address the uninteresting background movement and camera
motion. Complementary texture details need to be incorpo-
rated along with invariant color features to tackle the prob-
lem with camouflage and shadow illumination. Finite queue
(with recently accessed background pixels only) driven non-
recursive background modeling is proven effective to cope
with slow varying sunlight illumination. No solution to the
problem of rapid light illumination variation, to the best of
our knowledge, is found in the literature; however, the back-

ground update automatically reinitializes the model at the
cost of few successive frame delays. It can be observed that
the false positive rate is very low for the simulated methods,
however, such attempt sometimes substantially increases the
false negative rate. It can be realized that the selection of
appropriate parameters at each stage of background subtrac-
tion demands the prior scene knowledge and more infor-
mation regarding the possible stationary and non-stationary
movements.
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