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ABSTRACT The paper proposes a novel approach for direction estimation of a moving pedestrian as
perceived in a 2-D coordinate of field camera. The proposed direction estimation method is intended for
pedestrian monitoring in traffic control systems. Apart from traffic control, direction of motion estimation
is also very important in accident avoidance system for smart cars, assisted living systems, in occlusion
prediction for seamless tracking in visual surveillance, and so on. The proposed video-based direction
estimation method exploits the notion of perspective distortion as perceived in monocular vision of
2-D camera co-ordinate. The temporal pattern of change in dimension of pedestrian in a frame sequence
is unique for each direction; hence, the dimensional change-based feature is used to estimate the direction
of motion; eight discrete directions of motion are considered and the hidden Markov model is used for
classification. The experiments are conducted over CASIA Dataset A, CASIA Dataset B, and over a self-
acquired dataset: NITR Conscious Walk Dataset. The balanced accuracy of direction estimation for these
experiments yields satisfactory results with accuracy indices as 94.58%, 90.87%, and 95.83%, respectively.
The experiment also justifies with suitable test conditions about the characteristic features, such as robustness
toward improper segmentation, partial occlusion, and changing orientation of head or body during walk of
a pedestrian. The proposed method can be used as a standalone system or can be integrated with existing
frame-based direction estimation methods for implementing a pedestrian monitoring system.

INDEX TERMS Visual surveillance, occlusion handling, pedestrian direction estimation, perspective
distortion, hidden Markov model.

I. INTRODUCTION
Direction estimation of a moving subject is an important
task during many video processing and computer vision ori-
ented applications such as behaviour analysis, motion analy-
sis, traffic control systems, smart cars, gait based pedestrian
identification and visual surveillance at secure public places.
Motion of a pedestrian in a 3D global plane can be completely
analysed in 2D camera plane by three factors, i.e. direction of
motion, velocity ofmotion, and depth information. Therefore,
information about direction of motion of pedestrian is very
significant in motion analysis.

In many fields like accident avoidance mechanism in cars,
traffic control system, and visual surveillance where dynamic
decisions are needed to be taken, advance knowledge of
direction of motion is very handy. This establishes the task
of pedestrian direction estimation as an important domain

of research. Specifically, a prior knowledge of most proba-
ble direction of pedestrian is crucial for accident avoidance
and for different surveillance tasks as optimal camera place-
ment [1] and for seamless object tracking [2].

Occlusion is a severe issue in pedestrian monitoring.
Different authors have shown awareness towards problems
arising due to occlusion and presented their views on treat-
ment of occlusion. The survey by Yilmaz et al. [3] presents
a section with some of the earlier research on treatment
of occlusion. A recent survey on handling occlusion while
object tracking is shown in [4].

Although a lot of research on occlusion treatment targets
estimation of velocity, estimation of current location and
its probable location of reappearance after occlusion, the
other dimension of research towards occlusion has also been
explored where the prediction of occlusion is targeted [2].
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This prediction of occlusion will assist the existing meth-
ods of occlusion handling and occlusion avoidance with a
prior knowledge of occlusion. Information about pedestrian’s
direction of motion thus becomes vital in such situations.

Apart from surveillance, direction of motion estimation
has been used in many areas such as collision prediction
mechanism in smart cars, traffic control system, assisted
living, behaviour analysis and long term motion estimation.
Markis and Ellis [5], Wakim et al. [6] and Antonini et al. [7],
have used direction estimation for pedestrian behaviour
model. Abramson and Steux [8] and Large et al. [9] have
performed long term motion analysis and path prediction.
In a similar work to occlusion prediction, Tsuji et al. [10] have
used relative motions and used the knowledge of direction
estimation for collision prediction.

Many works for direction estimation of a moving
pedestrian have extracted the orientation information of
the pedestrian in each frame and observed the orientation
in subsequent frames to estimate the direction of motion.
To cope with the challenges of low resolution images, com-
plex and dynamic background, and illumination variation,
many researches have used low-level features like Histogram
of Gradient (HoG), Scale Invariant Feature Transform (SIFT)
or Haar like features with Support Vector Machine (SVM),
Neural Network (NN), Regressions, andAdaboost classifiers.

Shimizu and Poggio [11] have used SVM on Haar wavelet
co-efficient to distinguish different orientation and estimate
direction of motion with study of orientation over subsequent
frames. Gandhi and Trivedi [12] have used multi-class SVM
on HoG based features to distinguish different orientations
and further used Hidden Markov Model (HMM) for integra-
tion from multiple frames to estimate direction of motion.
Enzweiler et al. [13] have presented an integrated approach
for single frame pedestrian classification and orientation esti-
mation to predict the direction of motion. Zhao et al. [14]
have used a Haar like feature vector subjected to Adaboost
classifier for orientation. Cascaded orientation estimation is
applied for body and head orientation estimations. Further,
most frequent orientation estimate and rounded average of
estimated sum are used for direction estimation.

Many other researchers have also attempted to segment
different body parts and study their orientations individually.
Recently, Flohr et al. [15] have proposed probabilistic pedes-
trian orientation system where head and body orientations
are studied separately. The proposed research is intended
to overcome faulty detection and provide robust orien-
tation and direction estimation. Bensebaa et al. in their
research [16], [17] have segmented different body parts i.e.
head and shoulders, knees, feet, and body. The authors have
attempted to study their orientation separately over their
silhouettes to estimate the heading direction of pedestrian.

The articles so far have utilised the static cues and gen-
eralised it over multi frames. Liu et al. [18] have utilised
RGB-D sensor where RGB sensing helps in illumination
change andD sensing for depth of the subject. The article pro-
vides insight about how only static cues (intra frame) are not

sufficient and needs to be complemented with dynamic cues
(inter frame) for orientation and direction of motion estima-
tion. The authors have proposed Dynamic Bayesian Network
System (DBNS) to effectively employ the complementary
nature of both static and motion cues, which motivates to
incorporate dynamic cues for direction estimation. A lot of
research for direction and orientation estimation of pedestrian
has been performed over videos exploiting dynamic cues
along with appearance patterns.

Goel and Chen [19] have called their classification method
as Global Locale Motion Pattern Classification (GLMPC)
where they have attempted to detect pedestrian in a video.
In order to classify a pedestrian from a non-pedestrian, they
have proposed 3 subclasses of pedestrian depending on 3 dif-
ferent walk directions. The algorithm classifies motion of
pedestrian into 3 discrete directions. Andriluka et al. [20]
have exploited body pose but not the motion cues in the tem-
poral pattern and hence can only estimate the orientation and
not the direction of motion. Chen et al. [21] have proposed
head and body orientation based calculation of direction
estimation in low resolution videos. Authors in this article
have exploited intra-frame features for body cues and then
the position exploiting temporal patterns in particle filtering
framework. Both the researches have discretized the direction
to 8 levels. Baltieri et al. [22] have proposed an orienta-
tion classifier approach exploiting only appearance model.
Liu and Ma [23] have proposed an on-line orientation classi-
fier approach on field camera. The article attempts to suppress
the effect of perspective distortion and proposes a Reliable
Motion Direction (RMD) determination method that assumes
a constant apparent velocity of pedestrian walk. These meth-
ods are very limited in cases when pedestrians are moving
slow, are stationary or suffering occlusion, however theywork
fine during constant motion of pedestrian.

Table 1 summarises a few landmark researches for direc-
tion estimation of moving subject. The study of existing
survey for direction of motion of a subject reveals following
facts:
• Researchers have used features like Haar, HoG or
exploited silhouette over frames to estimate their
orientation.

• This process is extended over multiple frames and then
the trend over multiple frames are either modelled [12]
or statistically concluded for direction estimation like
selecting most frequent orientation or applying rounded
average [14].

• The opposite pair of directions like approaching and
departing from camera is always confusing if calculated
over individual frame. A few articles [14], [24], [25]
have reported them.

• The low resolution videos fail to capture many features,
and factors like noisy environment, imprecise acquisi-
tion, or improper segmentation may further make the
cause difficult.

• Most of the the researchers have considered
8 equiangular discrete directions as optimal
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TABLE 1. A few landmark research on direction of motion estimation.
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TABLE 1. (Continued.) A few landmark research on direction of motion estimation.
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TABLE 1. (Continued.) A few landmark research on direction of motion estimation.

choice [2], [12], [14], [15], [18]. However, few articles
have considered 4 discrete directions [26], [27], 16 dis-
crete directions [11], and 24 discrete directions [17] as
well.

We propose an HMM based method that operates over
a video for pedestrian direction of motion and exploits the
temporal terrains i.e. the pattern of change of width and
pattern of change of height of bounding box of the identified
pedestrian blob in the frame. It uses these features to train
different HMMs to classify the movements among different
direction classes. The robustness of dynamic cues selection is
already presented in earlier work [28]. In this article, we have
used 8 different classes for 8 equiangular discrete directions
ranging [0◦, 360◦] from view axis (refer to Fig. 1).
The sinusoidal wave pattern with perspective affected dis-

tortion uniquely identifies a subject as pedestrian from any
other moving object like vehicle or animal in the scene due
to unique human gait patterns. Moreover, the method also

FIGURE 1. 8 equiangular discrete directions with respect to field camera.

overcomes confusion between cases where subjects moving
towards and away from camera. The proposed method is
robust to various other issues like illumination changes, envi-
ronmental factors, partial occlusion for few frames and low
resolution of surveillance videos. The proposed method can
either be used alone or with existing methods of orientation
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estimation over consecutive frames to enhance the direction
estimation results.

Problem formulation, theoretical proposal, feature selec-
tion, and HMM based training, testing and inferences are
presented in the Section II. About the experimental envi-
ronment and analysis which include assumptions, con-
straints, database details, evaluation parameters and steps
involved in the experiment are discussed in the Section III.
In Section III-E, results related to classification over different
databases using various performance metrics and comparison
of proposed method with some landmark research are pre-
sented. Section IV includes conclusion and scope for future
work.

II. PROPOSED METHOD
We propose to exploit the dynamic cues of a surveillance
video to estimate the direction of motion of a pedestrian.
The temporal changes in the dimensions of bounding box
are found to be unique as subject moves in different direc-
tions. We have chosen 8 equiangular discrete directions in
the context of our proposed method as presented in Fig. 1.
Changes in width and height with respect to a few selected
directions are plotted in Figs. 2(a) and 2(b) that demonstrates
unique patterns with respect to different directions of motion.
These patterns can be exploited to estimate the same. Much
elaboration on these graphs and inferences are presented in
detail in Section III-D.

FIGURE 2. Plots representing unique pattern of change in dimensions as
the pedestrian moves in different directions. (a) Pattern of change of
width. (b) Pattern of change of height.

As the pattern of change of height and width along with
the displacement of centroid appears to be enough to estimate

the direction of motion, yet considering such features alone
can handle a limited type of cases. A few cases of direc-
tion estimation that cannot be addressed with such features
are:
• Partial static occlusion, where the pattern of change of
width or pattern of change of height are not visible for
few frames

• Segmentation errors, that can add noise and can also
deform the shape of the pedestrian’s blob

• Pedestrian’s carrying conditions, clothing conditions,
and unusual postures like putting hands in pocket etc can
deform one of the feature

Such situation demands to exploit both width and height
feature simultaneously. Moreover, the modelling technique
used for the human motion patterns as captured in field cam-
era has to be properly justified and robust enough to handle
the cases of partial occlusion.

To model this unique temporal pattern of the dimensions
of moving subject in field camera, authors are motivated
to use HMM for direction classification. The justification
to use HMM, formulation of feature and preprocessing are
discussed next. The involved steps are:
• Preprocessing
• Feature formulation for HMM
• Problem modelling through HMM
• Machine learning and classification

A. PREPROCESSING
Field camera records video footage that is needed to
be pre-processed before feature extraction. The step of
pre-processing can be further divided into following
sub-steps:
• Background subtraction for pedestrian selection
• Connected component generation through morphologi-
cal operations

• Frame rectification and unwanted blob removal
• Bounding box fitting over pedestrian blob

1) BACKGROUND SUBTRACTION FOR
PEDESTRIAN SELECTION
Through themethod of background subtraction, blobs of non-
stationary pixels are separated from stationary pixels.Moving
blobs are categorised as foreground while rest as background.
The existing databases (as presented in Table 2), which
are already background separated do not require this step.
However, we have used Visual Background Extrac-
tor (ViBe) [29] for background subtraction for self-acquired
dataset to ensure fast and accurate computation, citing the in-
time processing being the prime requirement of the proposed
method. ViBe is a robust method of background subtraction.
This is also an adaptivemethod as it works over different envi-
ronmental constraints. Hence, this method has been adopted
for the proposed method. The set of background pixels also
contains undesired blobs other than that of pedestrian and
frames need morphological operation followed by a certain
rectifications as discussed next.

VOLUME 4, 2016 5793



R. Raman et al.: Direction Estimation for Pedestrian Monitoring System in Smart Cities

TABLE 2. Different databases used, their parametric properties, and special cases present.

2) CONNECTED COMPONENT GENERATION THROUGH
MORPHOLOGICAL OPERATION
After background subtraction, frame may contain undesired
blobs identified as foreground. This may happen due to
improper segmentation, partial occlusion or due to presence
of noise. Dilation is performed to connect the nearby blobs to
overcome the unwanted separation of connected foreground
as different blobs. Different body parts of a pedestrian might
be identified as different blobs in the binary frames. Disk
dilation has been performed iteratively over such frames on
different blobs until the nearby blobs form a single connected
component. In the article, we have used dilation operation
with disk as structuring element with radius 7 running for
5 iterations. The objective of this morphological operation
is to fill unwanted holes in the foreground and to strengthen
the foreground pixel near the body joint regions. However,
for severely cluttered images the authors have adopted the
background subtractionmethods byYao andOdobez [37] and
Reddy et al. [38]. The resulting connected foreground helps
in selection of single largest blob.

3) FRAME RECTIFICATION AND UNWANTED BLOB REMOVAL
After morphological operation largest connected component
has been chosen as desired foreground while deleting rest
of the foreground blobs. With fixed background and moving
foreground, optical flow [39], [40] based methods may also
be applied to overcome improper segmentation.

Figs. 3(a) and 3(b) show two frame sequences where the
pedestrians are moving in discrete direction 6 and direction 3
respectively. Figs. 3(c) and 3(d) show corresponding frame
sequences after noise removal.

4) BOUNDING BOX FITTING OVER PEDESTRIAN BLOB
The temporal change in the dimensions of a moving blob
can be defined efficiently by the change in the dimension
of bounding box fitted over the blob. With this motive a
rectangular bounding box has been put over the blob and
their temporal change in subsequent frames are recorded.
Figs. 3(e) and 3(f) present same set of frame sequences after
fitting rectangular bounding box over the identified pedes-
trian blob.

B. FEATURE FORMULATION FOR HMM
The temporal change in consecutive frames is the output after
pre-processing. 8 equiangular discrete directions of motion,
D1 through D8 that a moving subject may achieve with
respect to field camera is considered. The change in the
dimension of a moving object as perceived in a camera view
is perspective in nature and unveils distinct patterns. This fact
has been exploited to model the patterns for each of the 8 dis-
tinct directions of motion using HMM. The temporal pattern
of change of width and height of a moving subject is unique
for each of the discrete direction. Figs. 2(a) and 2(b) show
the pattern of change of width and height over the frames
in different directions respectively. These unique patterns are
now needed to be trained using a machine learning algorithm.
The temporal changes in the pattern are stateless and hence
follow Markovian property; this gives a good reason to use
HMM for training.

The features identified to be unique for each direction
are the temporal change pattern in height and width of the
bounding box along with the displacement direction of its
centroid. Thus, the aggregated feature is formed as a 1D array
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FIGURE 3. Steps of preprocessing. (a) Sample frame sequence # 1 with
noise. (b) Sample frame sequence # 2 with noise. (c) Sample frame
sequence # 1 after noise removal. (d) Sample frame sequence # 2 after
noise removal. (e) Sample frame sequence # 1 after boundary fitting.
(f) Sample frame sequence # 2 after boundary fitting.

which is linear concatenation of temporal pattern of change in
height, padding (for displacement direction of centroid) and
temporal pattern of change in width.

Temporal change patterns of the dimensions of the
bounding box exploits perspective distortion and can clas-
sify directions among (direction 1), (directions 2 and 8),
(directions 3 and 7), (directions 4 and 6), and (direction 5).
The displacement direction of centroid of bounding box can
differentiate between pair of directions with similar per-
spective distortions but opposite displacement direction of
centroid i.e. (directions 2 and 8), (directions 3 and 7), and
(directions 4 and 6) (refer to Fig. 4). Thus the aggregated
feature can classify among 8 direction classes as proposed
in this article (cases available in CASIA Dataset A and NIT
Conscious Walk Dataset, discussed in Section III-B).

In cases where all the available discrete directions of
pedestrian have same displacement direction of centroid
(as in cases of CASIA Dataset B, discussed in
Section III-B), the displacement direction of centroid is
not required, as among the available direction classes in
this database, pair of directions with similar perspective

FIGURE 4. Genesis of the aggregated feature vector.

distortion but opposite displacement direction of centroid are
not present and padding may be removed from the aggregated
feature.

Corresponding feature vector can be formulated in two
possible ways as follows:
Case I: 1h|t + pd + 1w|t
Case II: 1h|t + 1w|t
where,
1h|t : temporal change of height (h) of the bounding box

fitted on the silhouette of the moving pedestrian
over time t extracted from consecutive frames in
video

1w|t : temporal change of width (w) of the bounding box
fitted on the silhouette of the moving pedestrian
over time t extracted from consecutive frames in
video

pd : sequence denoting padding to discriminate1h|t and
1w|t

The padding (pd) can be represented as:

pd =

{
0n if xf0 > xfc
1n if xf0 ≤ xfc

where, in the 2D Cartesian coordinate system,
xf0 : abscissa of the centroid of the foreground in first

frame
xfc : abscissa of the centroid of the foreground in current

frame
Hence pd should be an array filled with n zeros when

the pedestrian moves in directions 6, 7, and 8. In other
cases (for movements along directions 1, 2, 3, 4, and 5),
pd should be filled with ones (refer to Fig. 6). Thus pd
will not only act as a unique separator between height ter-
rain and width terrain, but will also bear partial discrim-
inating power with respect to movement direction. Fig. 5
illustrates two typical sample cases (for directions 3, and 7)
graphically depicting the change in centroid and selection of
pd accordingly.
However it is not sufficient only to choose whether pd will

be filled with 0 or 1. The number of zeros or ones (n) has
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FIGURE 5. Illustration for finding pd in different cases.

FIGURE 6. Selection of pd reflecting classification through displacement
of centroid.

to be chosen wisely. The value of n is chosen satisfying two
contradictory objectives:

i. The n-unit padding should be long enough so that it
can act as a unique separator between height and width
terrain

ii. The n-unit padding should be minimal in length
to reduce the total feature vector length (as a
long feature vector will cost more computation
time)

With a trade-off between the two factors outlined above,
the value of n has empirically been found to be 5.

This possibly happens due to the presence of partial occlusion
or segmentation error (where height or width is not visible)
persisting through consecutive 4 frames. Through this under-
standing, the size of padding can be modelled based on the
nature of the database (and the efficiency of background
subtraction applied on it) on which the method is supposed
to work.

Thus it can be well justified why an aggregate feature
vector with padding (Case I shown above) will bear bet-
ter directional discrimination ability than a feature vector
constructed without padding (Case II shown above). Hence
we have chosen a padded aggregate feature for proposed
modelling.

1) PROBLEM MODELLING THROUGH
HIDDEN MARKOV MODEL
The time varying changes in the dimension of bounding
box follows dependencies from the previous frame. i.e.,
P (qt+1 |qt , yt ) = P (qt+1 |qt ) where, qt+1 and qt are the
dimensions at time t and (t + 1) respectively and yt being
direction of motion to reach current dimensions.

The problem thus satisfies the Markovian property and
this is the reason Hidden Markov Model is used for training
the model for estimation of direction of motion. To model
a problem to HMM, their observation states, hidden states,
transition and emission probabilities are needed to be defined.
Following are the definitions with respect to the proposed
method.
Observed State or visible state (denoted by V (t)): are the

visible features that is accessible from an event sequence to
be modelled. A sequence of observed state forms observed
state sequence denoted as

V t
1 = {V1, · · · · · · ,Vt }

In the proposed method, observable feature sequence is
defined as change in dimensions of the bounding box sur-
rounding the foreground blob. As stated before, the observed
state sequence is formed as 1h|t + pd + 1w|t .

While the size of pd is already discussed to be 5 units,
1h|t and1w|t are constructed withm (= f × t) units (where,
f is the number of frames elapsed per second in the video).
In our implementation, we consider change of terrains within
a time gap of t = 1s and the video is considered to move with
30 FPS. Hence, 1h|t and 1w|t are both 1 × 30 = 30 units
long in size. Thus, the aggregated feature size turns out to be
(30+ 5+ 30) = 65 units.
Since the discrete directions of motion are mirror image

of each other along the view axis, the pattern of change
of dimensions for pair of directions 2 and 8, 3 and 7, and
4 and 6 are identical in camera projection, however their
direction of motion is exactly opposite. To differentiate this a
padding of 0 or 1 denoting rightwards or leftwards movement
is introduced. Many of the existing researches are producing
erroneous results while handling opposite pair of directions
reported in the survey of Section I.
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Hidden State (denoted by ω(t)): are the states not observed
directly rather needs interpretation from observed sequence.
The perceiver does not have access to the hidden state, instead
algorithm measures some property of the observed state to
infer hidden state. In the proposed method 4 hidden states
are taken due to sinusoidal nature observed at the selected
feature vector. As the articles suggested [41], [42], brute
force selection of number of hidden states near the estimated
proximal value of number of hidden states, the simulation of
the HMM are also performed with 3 and 5 hidden states how-
ever the training lasted for 100-120 iterations as compared
to 50-60 iterations in case of 4 hidden states. This
empirically justifies the selection of number of hidden
states.

FIGURE 7. State transition diagram of the HMM of proposed method.

2) TRANSITION AND EMISSION PROBABILITIES
As depicted in Fig. 7, the transition and emission prob-
abilities are defined as: Transition among hidden states,
i.e., aij : P(ωj(t + 1)|ωi(t)) Emission of a visible state,
i.e., bjk : P(vk (t)|ωj(t)) with limiting conditions as,∑
j
aij = 1 ∀i and

∑
k
bjk = 1 ∀j. Projected problem is a

learning problem of HMM. The problem states that given a
set of observed state sequence V T and any hidden state as
given by ω(t), the task is to determine the probabilities aij
and bjk using forward backward algorithm. We start with the
above defined initial arbitrary values of aij and bjk and find
more accurate values of aij and bjk at the end of Baum-Welch
or forward-backward algorithm as illustrated below.

The probability that the model produces a sequence V T of
visible states is

P
(
V T
)
=

rmax∑
r=1

P
(
V T
|ωTr

)
P(ωTr ) (1)

where each r indexes a particular sequence ωTr =

{ω(1), ω(2), . . . , ω(t)} of T hidden states. In the general case

of c hidden states, there will be rmax = cT possible terms in
the sum of Eq. (1), with respect to all possible sequence of
length T .
As we are dealing with first-order Markov process, the

factors in Eq. (1) can be written as Eq. (2) and Eq. (3).

P(ωTr ) =
T∏
t=1

P(ω(t)|ω(t − 1)) (2)

P(V T
|ωTr ) =

T∏
t=1

P(v(t)|ω(t)) (3)

Combining the results of Eq. (2) and Eq. (3), previously
described Eq. (1) can be rewritten as Eq. (4).

P(V T ) =
rmax∑
r=1

T∏
t=1

P(v(t)|ω(t))P(ω(t)|ω(t − 1)) (4)

We denote our model - the a’s and b’s - by θ and using
Bayes formula, probability of the model given observed
sequence is given by Eq. (5).

P(θ | V T ) =
P(V T

| θ )P(θ )
P(V T )

(5)

Now, αj(t) and βi(t) can be defined as shown in Eq. (6) and
Eq. (7).

αj(t)=


0 t = 0 and j 6= initial state
1 t = 0 and j = initial state∑
i
αi(t − 1)aij]bjkv(t) otherwise

(6)

βi(t)=


0 ωi(t) 6= ω0 and t = T
1 ωi(t) = ω0 and t = T∑
j
βj(t + 1)aijbjkv(t + 1) otherwise

(7)

Where, αj(t) represents the probability that the model is in
hidden state ωj(t) having generated first t elements of V T

and βi(t) represents the probability that the model is in hidden
state ωi(t) and will generate rest of the target sequence from
(t + 1) to T . The notation bjkv(t) (as mentioned in Eq. (6)),
and bjkv(t+1) (as mentioned in Eq. (7)) denotes the transition
probabilities bjk selected by visible state emitted at time t and
(t + 1) respectively. However, this way of determining αj(t)
and βi(t) are mere estimates of their true values, as we do not
know the actual values of aij and bjk in Eq. (6) and Eq. (7).
We can calculate improved values of αj(t) and βi(t) by
defining γij(t) (shown in Eq. (8)) which is the probability
of transition between ωi(t − 1) and ωj(t), given the model
generated the entire training sequence V T by any path.

γij(t) =
αi(t − 1)aijbjkβj(t)

P(V T | θ )
(8)
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FIGURE 8. Block diagram of the proposed method.

Hence we find an improved estimation of aij and bjk as
âij and b̂jk through Eq. (9) and Eq. (10) respectively.

âij =

T∑
t=1

γij(t)

T∑
t=1

∑
k
γik (t)

(9)

b̂jk =

T∑
t=1,v(t)=vk

∑
l
γjl(t)

T∑
t=1

∑
−lγjl(t)

(10)

3) PROBABILITY OF THE MODEL
If we denote the a’s and b’s of our model by θ and use
Bayes formula, probability of the model given observed
sequence is

P(θ | Ot1) =
P(Ot1 | θ )P(θ )

P(Ot1)
(11)

where, a’s and b’s of HMM of the proposed model is denoted
by θ .

In this way 8 HMMs for each discrete direction are
modeled. The successful supervised training of models
are depicted by log likelihood graphs as shown further
in Figs. 10, 11 and 12. Further, test sequences are classi-
fied with highest probability and above a minimal threshold.
The highest probability classifies the direction while mini-
mal threshold segregates human from non-human based on
motion patterns. Formal definition and explanation of HMM
in the context of proposed model is discussed among the
evaluation parameters in Section III.1

1For general understanding of HMM, and its implementation in time
sequential image data, readers may refer to Rabiner and Juang [43] and
Yamato et al. [44].

C. MACHINE LEARNING AND CLASSIFICATION
The proposed method of classification through HMM com-
prises two phase viz. learning phase and direction estimation
phase. In the learning phase training video samples undergo
various steps to obtain feature vectors for each video that
uniquely defines respective classes. Hence different HMMs
are formed each representing a unique direction. Log like-
lihood graphs are used to represent their proper learning.
Section III-C defines log likelihood graph as an evaluation
parameter and log likelihood graphs related to performed
experiments are presented in Section III-E. Further, in the
direction estimation phase, test videos are taken, their fea-
ture vectors are extracted and are classified among different
classes as defined in the learning phase, thus resulting into an
estimated direction for each subjects testing samples. From
both the subsets (training aswell as testing video) of database;
steps of extracting silhouette of pedestrian, temporal change
in dimension of their bounding box and their feature extract
are performed. The set of training feature vectors for each of
the direction classes are kept in the database. Newly arriv-
ing test videos undergoes similar procedure for its feature
extraction and are subjected to be classified among any of the
direction classes. Fig. 8 presents a block diagram depicting
overall description of the proposed method.

III. EXPERIMENTAL RESULTS AND ANALYSIS
The proposed method for direction estimation is experimen-
tally justified. This section elaborates the experiment and
related experimental environment prepared for conducting
those experiments. This includes:
• Constraints and assumptions in the experiment
• Details about various databases used
• Evaluation parameters
• Experiments conducted for direction estimation
• Results
• Analysis
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A. CONSTRAINTS AND ASSUMPTIONS
IN THE EXPERIMENT
The experiments are conducted in a constrained environ-
ment with certain assumptions. These constraints depicts the
robustness as well as environmental limitations of the pro-
posed method. They are presented as follows.

• The proposed method is constraint to work over binary
image sequences with human subject as foreground
silhouettes

• Preprocessing to achieve the same is not elaborated and
assumed to be minimal

• Sudden and frequent changes in the direction of walk are
not assumed in the experiment

• The proposed method is constraint to work with static
field camera

• The method is constraint to work in visible spectrum
• The proposed method is not robust to full and longer
exposure to occlusion, such cases are not considered in
the experiment

• The method is proposed to handle direction estimation
of multiple human subjects present in a scene assuming
no mutual occlusion however experiments demonstrated
here have cases with only single pedestrian in the scene

B. VARIOUS DATABASES USED
With the limitations of existing databases with respect
to our proposed experimental requirements, three differ-
ent databases are used. They are CASIA dataset A and
dataset B [45] and NITR conscious walk dataset [46].

These datasets are used with an intention to bring many
scenarios in the purview of our proposed method. Subjects
involved as pedestrian in the experiments have diversified
cases as:

• Participating pedestrians are both female and male, and
have diverse physical build, age group and ethnicity

• The velocity of walk within a video footage is not nec-
essarily constant

• The velocity of walk in different video footage may be
different

• Capturing environment and walking surfaces are
different

• Pedestrians are not strictly following a direction during
their walk

• Pedestrians have diverse carrying and clothing condi-
tions that affects the pattern of temporal changes in the
dimensions of silhouette

• Depth of the pedestrian with respect to field camera is
varying from video to video

• In few cases pedestrians are under partial static
occlusion

• There are some cases with different orientation of head
and body of a pedestrian to that of actual direction of
their motion

To further clarify the need of different databases used in
the experiment, their parametric properties and special cases

available in the database are presented in Table 2. Selected
frames from different databases to support the diversity of
special cases are presented in Fig. 9.

FIGURE 9. Frame sequences depicting the diverse cases with pedestrian
carrying bag (a, b, c, d), having different head orientation during a
walk (e, f, g, h), walk with hands in the pockets (i, j), wearing coat (k, l),
improper segmentations (m, n, o, p), and partial static occlusion with
incomplete width or height information (q, r, s, t). Pedestrian frames are
from CASIA dataset A, CASIA dataset B [45] and NITR conscious walk
dataset [46] and have diverse physical build, walking velocity, age group,
ethnicity and gender. Respective frame locations in the database
available in .png format are: (a) CASIA/Gait Dataset B/012-bg-02-090-073
(b) CASIA/Gait Dataset B/007-bg-02-090-070 (c) CASIA/Gait Dataset B/
124-bg-01-090-043 (d) CASIA/Gait Dataset B/001-bg-01-090-057
(e) CASIA/Gait Dataset A/fyc-45_1-092 (f) CASIA/Gait Dataset A/
fyc-45_1-085 (g) CASIA/Gait Dataset A/fyc-45_1-014 (h) CASIA/Gait
Dataset A/fyc-45_1-011 (i) CASIA/Gait Dataset B/032-cl-02-000-069
(j) CASIA/Gait Dataset B/032-cl-02-000-059 (k) CASIA/Gait Dataset B/
001-cl-02-090-059 (l) CASIA/Gait Dataset B/020-cl-02-090-060
(m) CASIA/Gait Dataset A/syj-90_3-089 (n) NITR conscious walk db/
1001D2S1F065 (o) CASIA/Gait Dataset A/fyc-90_1-002 (p) CASIA/Gait
Dataset A/fyc-90_1-006 (q) CASIA/Gait Dataset B/002-bg-01-018-042
(r) CASIA/Gait Dataset B/002-bg-01-018-034 (s) CASIA/Gait Dataset B/
002-bg-01-018-059 (t) CASIA/Gait Dataset B/002-bg-01-018-050.

C. EVALUATION PARAMETERS
• Log Likelihood Graph: Log Likelihood Graph in
a supervised learning depicts the Log likelihood
(on Y axis) of a learning model with the increase of
expectation maximization iterations (on X axis). In the
context of the proposed 4-state Hidden Markov Model
based training, corresponding plots in different log like-
lihood graph shows monotonic increase, followed by
convergence. This depicts the successful training of all
the HMMs ending up with maximum likelihood within
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limited iterations and hence the suitability of the param-
eter set to form aggregated features for training.

• Balanced Accuracy: Accuracy can be defined as pro-
portion of total number of correct predictions. The for-
mula for accuracy is given by

Accuracy =
TP+ TN

TP+ FP+ TN + FN
(12)

Where,
TP: True Positive
FP: False Positive
TN: True Negative
FN: False Negative
However, in multi-class classification, balanced accu-
racy is used and is given by the arithmetic mean of class
specific accuracies.

Balanced Accuracy =

∑
all classes

Accuracy

Number of classes
(13)

• Recall: Recall (also known as TP Rate, True Positive
Rate, or Sensitivity) can be defined as the proportion
of positive cases that were correctly identified and is
given by

Recall =
TP

TP+ FN
(14)

In multi-class classification, as in the proposed case the
corresponding information is given by average recall
gives, which is arithmetic mean of all positive cases that
were correctly identified.

Average Recall =

∑
all classes

Recall

Number of classes
(15)

• Precision: Precision can be defined as the predicted
positive cases that were correct and is given by

Precision =
TP

TP+ FP
(16)

In the proposed multi-class classification, precision of
classification can be definedwith amore suitable param-
eter called average precision which is given by:

Average Precision =

∑
all classes

Precision

Number of classes
(17)

• F-Measure: F-Measure is the harmonic mean of preci-
sion and recall, and it is a measure to judge the accuracy
of a classifier. In the harmonic mean, when equal weight
is given to recall and precision, it is more precisely called
as F1-Measure.

F1 −Measure =
2× Precision× recall
Precision + Recall

(18)

In the proposed multi-class classification, F1-Measure
of classification can be defined with a more suitable

parameter called average F1-Measure which is given by:

Average F1 −Measure =

∑
all classes

F −Measure

Number of classes
(19)

• False Positive Rate: FP Rate can be defined as the pro-
portion of positive cases that were incorrectly identified
and is given by

FP Rate =
FP

FP+ TN
(20)

In multi-class classification, as in the proposed sce-
nario, a more suitable parameter called average FP Rate
yields the corresponding information.which represents
the average of all false rejections and is given by:

Average FP Rate =

∑
all classes

FP Rate

Number of classes
(21)

• Error Rate: Error rate is given by (1 − Accuracy).
In the proposed multi-class classification, error rate
is presented as percentage of incorrectly classified
instances and is given by the average ofmisclassification
for each individual classes.

Average Error Rate =

∑
all classes

Error Rate

Number of classes
(22)

• Confusion Matrix: In supervised learning, a confusion
matrix or an error matrix is a tool of statistical clas-
sification that lets the visualization of mislabelling of
classification data in the form of false positive and false
negative, while the correct labelling are present in the
forms of true positive and true negative.

• V-Fold Cross Validation: In such validation method,
database is randomly divided into V equal sized samples
and each time any one of the sample is utilised as testing
sample while all other samples are utilised as training
sample. This technique of model verification also proves
a dataset to be unbiased.

D. EXPERIMENTS CONDUCTED FOR
DIRECTION ESTIMATION
The proposed method is validated with conducted experi-
ments. As already shown in Fig 2, the temporal pattern of
width and height of the bounding box of randomly selected
video having directions of walk as 4, 5, 6 and 7 (refer to Fig. 1)
are plotted. Study of the graph reveals following observa-
tions:
• The temporal changes in the dimensions of bounding
box are unique with respect to each direction

• Field camera follow perspective geometry, hence the
temporal patterns shows perspective affected scaling
distortion

• Height of the pedestrian remains constant as it moves
orthogonal to the view axis (i.e. in direction 3 or 7).
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FIGURE 10. Log Likelihood graph presenting machine learning of 6 discrete directions using HMM over
CASIA Dataset A.

This is due to the fact that depth of pedestrian remains
constant with respect to field camera

• Temporal change in width of the pedestrian in the
same pair of directions shows sinusoidal nature; this
is due to cyclic motion of limbs during a gait
cycle

• The temporal increment in the dimension of pedestrian’s
bounding box is maximal when it directly approaches
towards the camera (i.e. direction 5) and minimal in the
opposite case (i.e. direction 1)

• The temporal changes along the direction 4 and 6 were
expected to show moderate increment in dimensions

The temporal pattern of change in the dimensions of a pedes-
trian moving along the direction 8, 1, 2, and 3 are mirror
images of directions 5, 4, 6, and 7 respectively along x axis.
They have not been included in order to avoid clumsiness in
the graph.

All the results discussed so far are consistent with the
anticipated pattern. With this motivation, further experiments
are conducted over different databases (refer to Table 2) that
are discussed in subsequent paragraphs.

Experiment # 1 is conducted over CASIA Dataset A.
This database has overall 240 binary frame sequences where
pedestrians are moving along 0◦, 45◦, and 90◦ with respect to
view axis. This covers 6 of the 8 discrete directions that are
discussed in the proposedmethod. Themissing two directions
(i.e. direction 4 and 8), are mirror images of directions 6 and 2
respectively and shows similar temporal pattern due to similar
perspective distortion. The direction of pedestrian motion in
this experiment are classified among 6 classes. Each of the
directions have 40 frame sequences in the database. Further,
10 fold division of the database is created in such a way
that each fold contains equal number of randomly chosen
samples from all the walk directions. All the experiments are
conducted with 9 folds for training and 1 fold for testing the
result. These experiments are conducted 10 times with each
fold tested exactly once. The random selection of samples

uses entire database for training as well as testing, supports
the unbiased nature of database.

Fig. 10 presents a sample case where different conver-
gent plots of log likelihood graph presents HMM based
training of different classes over CASIA Dataset A. Related
experimental environment is summarised in Table 4. Results
related to this experiment are discussed in the Section III-E.
CASIA Dataset A however does not contain enough discrete
directions.

TABLE 3. Merging 11 different walk directions of CASIA Dataset B into
five discrete directions.

Experiment # 2 is conducted over CASIA Dataset B.
This dataset has overall 13640 binary frame sequences with
11 different walk directions. The dataset contains various
carrying and clothing variations since the pedestrians are
carrying bag, wearing coat or having a regular outfit without
carrying anything.Walk directions are ranging 0◦ to 180◦

from view axis of camera instead of varying 0◦ to 360◦

hence these directions are needed to be classified among 5
of the 8 discrete direction classes. Table 3 shows merging of
the directions. Direction 3 which clubs 3 different walking
cases has 3720 walk samples while rest of the directions
have 2420 walk samples. However, for uniform training and
testing, 2420 randomly selected samples are considered for
direction 3 making an overall 12100 walk samples available
for experiment. These samples further undergoes 10 fold
cross validation where each fold are tested while other 9 folds
are used for training the model. Fig. 11 presents a sample
case where different convergent plots represents HMM based
training over CASIA Dataset B. Related experimental setup
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TABLE 4. Experimental environment for Experiment# 1.

FIGURE 11. Log Likelihood graph presenting machine learning of 5 discrete directions using HMM
over CASIA Dataset B.

TABLE 5. Experimental environment for Experiment# 2.

TABLE 6. Experimental environment for Experiment# 3.

is summarised in Table 5 and related results are discussed in
Section III-E.

So far, the classification over existing database samples are
limited to 5 and 6 different directions. To classify among all
the proposed 8 discrete directions, a new outdoor database is
acquired.

Experiment # 3 is conducted with NITR Conscious Walk
Database. This database consists of 21 subjects contributing
3 sample walks in each of the 8 directions spanning from
[0◦-360◦]. The pedestrians are consciously made to walk in
the presumed discrete directions with a few little deviations,
so as to have better machine training. 10 fold cross validation

is again performed over this dataset. Fig. 12 presents a sample
case where different convergent plots represents HMM based
training over NITR Conscious Walk Dataset. Experimental
environment of the same is presented in Table 6. Related
results are discussed in the Section III-E.

All the experiments are performed using MATLAB
Simulink software over workstation having Intel Xeon pro-
cessor with duel processing core where each core has a clock
speed of 2.4 GHz. The system works on a 64-bit operating
system and it has 8 GB of volatile memory. The detailed
classification results over different databases are presented
in Section III-E.
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FIGURE 12. Log Likelihood graph presenting machine learning of 8 discrete directions using HMM over
NITR Conscious Walk Dataset.

TABLE 7. Confusion matrix for casia dataset A.

TABLE 8. Confusion matrix for Casia dataset B

TABLE 9. Confusion matrix for NITR conscious walk dataset.

E. RESULTS
This section presents detailed evaluation of the proposed
method and its comparison with state-of-the-art and few
recent research in the domain. This results are further elab-
orated in following sub-sections:

1) QUANTITATIVE EVALUATION AND COMPARISON
The quantitative experimental results of the proposed method
over different databases and its quantitative comparison
with some existing work are presented in this subsec-
tion. The frames are rectified for feature extraction in the

pre-processing stage, as already presented earlier in Fig.3.
Tables 4, 5, and 6 summarises experimental environment.
Results related to experiment # 1, experiment #2 and enper-
iment #3 are presented in the form of confusion matrix in
Tables 7, 8, and 9, respectively. The direction estimation accu-
racy for CASIA Dataset A using a 10 fold cross validation
with 9:1 training to testing ratio for 6 directions are found in
the range of 90% to 100%, with an average balanced accuracy
of 94.58%.

The direction estimation accuracy for the experiment con-
ducted over CASIA Dataset B with 10-fold cross validation
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TABLE 10. Summary of evaluation results for direction estimation.

TABLE 11. Quantitative comparison of direction estimation results over different database.

with 5 discrete directions is found to be in the range of 89%
to 94%, with an average balanced accuracy of 90.87%. This
drop in the balanced accuracy is due to the merging of 11
intermediate directions of walk into 5 discrete directions.
However, an overall balanced accuracy over such a large
dataset with several walk directions justifies the robustness
of the proposed method.

These dataset does not possess all the 8 discrete directions
to be classified among. Hence experiment 3 is conducted
covering all the 8 proposed discrete directions. The direction
estimation accuracy for the experiment conducted over NITR
Conscious Walk Dataset with 10 fold cross validation with
8 directions are found to be in the range of 92 to 100%
with an average balanced accuracy of 95.83%. In multi-class
classification over different directions, results with different
parameters of evaluation i.e. Balanced Accuracy, Precision,
Recall, F1 Measure, Error Rate and False Positive Rate are
presented in Table 10.

The proposed method is further compared with a few
parallel researches with common experimental platform. The
methods compared in this section, works on video dataset
captured from field camera. All the methods are trained and
tested over 3 different datasets (as discussed in Table 2)
and uniformly underwent 10 fold cross validation for fair
comparison. Their comparison results with two evaluation
parameters: Balanced Accuracy and False Positive Rate is
presented in Table 11. The quantitative comparison of the
proposed method with some existing research in the domain
shows that the proposed method out performs these existing
methods with better Balanced Accuracy and False Positive
Rate.

2) COMPARISON OF INTRINSIC PROPERTIES
This subsection compares intrinsic properties of the proposed
method from some of the existing method in the domain

that witnesses a vast diversity towards approaching estima-
tion of pedestrian direction. These diversities are mainly due
to different research requirements. Some of them are view
angles of the recording camera (top camera, field camera),
camera position (stationary, moving camera), extra sensor
based requirement (infra-red sensor, depth sensor, monocular,
binocular or multi-vision based camera), different data input
requirement (frame based and video based) and different
objectives (traffic, surveillance, home assistance). Due to this,
a direct comparison from many other research is not feasible.
However, we have attempted to compare their intrinsic prop-
erties in this subsection.

The proposed method can handle the situation of static
partial occlusion since temporal patterns of both width and
height contribute to the aggregate feature and at least one of
the patterns remain available during partial occlusion. Fig. 9
shows a few example cases available in the dataset where only
height or width information of the pedestrian blob is available
in the frame and such cases are handled.

Proposed method uses motion feature over the bounding
box of the pedestrian blob and hence even if the head or body
is oriented in other direction as that of actual direction of
motion, the overall direction estimation is unaffected. The
head and body orientation based direction estimation meth-
ods [14], [15], [17], have reported to get affected in such
scenario.

Motion feature can capture the human gait motion and are
used for human detection [19], [47]–[49]. The set of feature
selected in the proposed method for pedestrian direction esti-
mation segregates human from a non-human under motion.
This is due to the properties of the feature, like unique human
gait pattern and height to width ratio of human, that it is
segregated from vehicles, animals and other moving objects
in the scene. Being less than a matching threshold, a non-
human blob is not classified in any of the 8 direction classes;
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TABLE 12. Comparison of intrnsic properties of proposed method with some existing research on direction estimation.

hence the direction estimation is performed only over those
moving blobs which are identified as a human, based on
their motion feature. Goel and Chen [19] have also attempted
to perform human detection based on their motion feature
using SVM and GLMPC over synthesized CASIA Dataset A
claiming an accuracy of 97.4%, however, they have classified
the directions only among 3 direction classes i.e. front, left
and right (direction 3, 5, and 7). On the similar experimental
conditions the proposed method is found to achieve estima-
tion accuracy of 97.75% with all the 8 discrete direction
classes.

In the proposed method, exploiting motion feature gives
a robust direction estimation result yet a sudden change
in the direction of motion takes few frames to update and
the overall result updates in such conditions are slower.
This slowness in the update is comparable to other existing
methods [14], [15], [26], [27], which generates direction
estimation results by statistical combination of different
orientation results over a few frames. However, such methods

gives an orientation estimates in each frame and regards it as
a probable direction of motion, which our proposed method
does not.

Due to large deviation in the environmental constraints,
experimental set-up, and database types, a quantitative
comparison of the proposed method with some landmark
researches over a common platform is not feasible; however,
an attempt has been made to compare the intrinsic features of
the proposed method with few existing landmark researches
across the platform. Table 12 presents the same. The table
gives a fair idea about the robustness of the proposed model
over existing researches and about its intrinsic features.

F. ANALYSIS
This subsection evaluates the claims of the proposed method
with different results and comparisons. The quantitative
results compared over common platform justifies the robust-
ness of the proposed method over other researches. The
result convincingly shows the proposedmethod to beworking
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FIGURE 13. Qualitative results with successful direction estimates. (a) Sample frame sequence with successful direction estimation
by proposed method as direction 6. (b) Sample frame sequence with successful direction estimation by proposed method
as direction 7.

well even when the cases of static partial occlusion, varying
head orientation, diverse clothing and carrying condition, and
improper foreground segmentation are present. The proposed
method out performs some of the existing methods in the
domain with better Balanced Accuracy and False Positive
Rate.

Fig. 13 presents two frame sequences from CASIA dataset
A for presentation of qualitative result of direction estimation
by the proposedmethod. In Fig. 13,Dgt represents the ground
truth direction and Dest represents estimated direction by the
proposed method. The results on two different pedestrian
videos (with frame gap of 30 and 15 frames) are shown
respectively in Figs. 13(a) and 13(b), depicting the correct
direction estimation at each frame in both the sequences.
The result also shows the correct estimation of direction with
different apparent velocity as both the frame sequences have
different apparent velocity due to different depth from camera
in two frame sequences. With different experimental results
and comparisons, the accuracy of direction estimation and
its intrinsic features are presented. The proposed method
is robust since it uses motion features, on the other hand
methods that performs direction estimation using orientation
information gives an additional information about the orien-
tation of pedestrian in each frame, that the proposed method
does not. The proposed method can be used as a standalone
system or can be integrated with orientation estimation based
methods to produce faster yet accurate direction estimation
results along with orientation information.

IV. CONCLUSION
Proposed method is a motion feature based direction estima-
tion method. Due to motion feature, the proposed method is

robust to partial occlusion, tolerable segmentation errors, and
different head and body orientation. The method can estimate
the direction of human motion through his gait patterns.

The proposed method finds its usage in the domain of
traffic safety and management, visual surveillance in smart
cities, assisted living in smart homes and human computer
interaction. Its potential usage in different aspects towards
development of smart cities motivates to take the research
further for more complicated and challenging environments
like shopping malls, subways, and railway station to explore
emerging issues like crowd behaviour analysis for business
intelligence, monitoring, and surveillance.

ABBREVIATIONS
3DPeS Dataset 3D People Surveillance Dataset
CASIA Dataset Institute of Automation Chinese

Academy of Sciences Dataset
DBNS Dynamic Bayesian Network System
FIND Feature Interaction Detector
GLMPC Global Locale Motion Pattern

Classification
HMM Hidden Markov Model
HoG Histogram of Gradient
INRIA Dataset Institut National de Recherche en

Informatique et en Automatique
Dataset

NITR Dataset National Institute of Technology
Rourkela Dataset

NN Neural Network
PETS Dataset Performance Evaluation of Tracking

and Surveillance Dataset
PKU Dataset Peking University Dataset
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RGB-D Sensors Red Green Blue and Depth Sensor
RMD Reliable Motion Direction
SIFT Scale Invariant Feature Transform
SVM Support Vector Machine
TUD Dataset Technische Universitat Darmstadt

Dataset
ViBe Visual Background Extractor.
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