IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received August 5, 2016, accepted August 29, 2016, date of publication September 8, 2016, date of current version October 6, 2016.

Digital Object Identifier 10.1109/ACCESS.2016.2606478

Improving Home Automation Security;
Integrating Device Fingerprinting

Into Smart Home

ARUN CYRIL JOSE', REZA MALEKIAN', (MVEMBER, IEEE), AND NING YE23

! Department of Electrical Electronics and Computer Engineering, University of Pretoria, Pretoria 0002, South Africa
2College of Computer, Nanjing University of Posts and Telecommunications, Nanjing 210003, China
3Jiangsu High Technology Research Key Laboratory for Wireless Sensor Networks, Jiangsu Province, Nanjing 210003, China

Corresponding author: R. Malekian (reza.malekian @ieee.org).

This work was supported in part by the National Research Foundation, South Africa, under Grant IFR160118156967, in part by the
University of Pretoria’s Post Graduate Research Support Bursary, in part by the National Natural Science Foundation, China, under
Grant 61572260, Grant 61373017, Grant 61572261, and Grant 61672296, and in part by the Scientific & Technological Support
Project of Jiangsu Province under Grant BE2015702, Grant BE2016185, and Grant BE2016777.

ABSTRACT This paper explains the importance of accessing modern smart homes over the Internet, and
highlights various security issues associated with it. This paper explains the evolution of device fingerprinting
concept over time, and discusses various pitfalls in existing device fingerprinting approaches. In this paper,
we propose a two-stage verification process for smart homes, using device fingerprints and login credentials,
which verifies the user device as well as the user accessing the home over the Internet. Unlike any other
previous approaches, our Device Fingerprinting algorithm considers a device’s geographical location while
computing its fingerprint. In our device identification experiment, we were able to successfully identify
97.93% of the devices that visited our Webpage using JavaScript, Flash, and Geolocation.

INDEX TERMS Home automation, smart homes, identity management systems, security, access control.

I. INTRODUCTION

The concept of Home Automation was a topic of inter-
est in the Academic arena since the late 1970s, with time
and advancement of technology people’s expectations about
Home Automation and how they should access their home
has dramatically changed. The affordability and popularity
of electronic devices and internet were contributing factors
to this change. The modern Home Automation System [1]
is a delicate balance of Ubiquitous Computing Devices [2]
and Wireless Sensor/Actor Networks. The added expecta-
tions and ‘Convenience of Access’ has brought new security
challenges to the Home Automation front.

Various researchers showed that, there are vulnerabilities
in many commonly used devices and technologies in Home
Automation. The Wireless Sensor Networks deployed in
Home Automation System are vulnerable to various Routing
attacks [3] and Wormhole attack [4], communication tech-
nologies like ZigBee and 802.15.4 used in Home Automation
are vulnerable to Replay Attacks [5]. Various approaches
to preserve privacy and security in Wireless Sensor
Networks (WSN) were discussed in [6]-[9]. However,
the work of Fouladi and Ghanoun [10] shows that some

of the security specific products used in homes like the
Z-Wave door locks are vulnerable to hacks. The work of
Jose and Malekian [11] specifies how the concept of secu-
rity has changed in modern homes and explains the chang-
ing role of a modern Home Automation Security Systems.
A modern Home Automation System must identify, alert and
prevent an intrusion attempt in a home; it must also try to
preserve evidence of the intrusion or attempted intrusion, so
the perpetuator can be brought to justice. The ‘Convenience
of Access’ mentioned above is achieved through internet and
mobile electronic devices. They allow Home owners to access
their home from anywhere in the world at any given time.
Connecting Home Automation System to the internet gives
an attacker the opportunity to try and gain access to a home
from the comforts of their own home. On the contrary, in
a non-internet enabled home this could only be done when
an attacker is within the proximity of the home’s internal
network.

Most obvious way to improve security would be to deny
access to a home over the internet, but that significantly
inconveniences the home inhabitants and the way they
access their home and services, this defeats the purpose

2169-3536 © 2016 IEEE. Translations and content mining are permitted for academic research only.

5776 Personal use is also permitted, but republication/redistribution requires IEEE permission.

VOLUME 4, 2016

See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

A. C. Jose et al.: Improving Home Automation Security; Integrating Device Fingerprinting Into Smart Home

IEEE Access

of Home Automation Systems. So, securing access to a Home
over the internet is a vital part in Home Automation Security.
This could be established by limiting access to a home over
the internet; Access should be limited to a fixed number of
trusted people using a fixed number of trusted electronic
devices. To achieve this, we have to identify the user as well
as the device accessing the home over the internet.

Objectives of our work:

o Successfully identify a device accessing the home over
the internet using Device Fingerprinting. Successfully
identify a user accessing the home over the internet using
his/her login credentials.

« Identify legitimate user even when there are changes
in location, browser or other browser specific features,
which happens over time.

« Identify malicious devices and create a ‘blacklist’ con-
sisting of fingerprints of those devices that will not be
allowed access to home. Identify legitimate devices and
develop a ‘whitelist’ consisting of fingerprints of devices
that are allowed access to the home.

Rest of the paper is organized as follows, Section II
discusses the Related Works on device fingerprinting and
security issues associated with username and passwords.
Section III describes different device fingerprinting parame-
ters used in this paper; Section IV discusses the implementa-
tion details along with fingerprinting algorithm and explains
the two stage verification process in home automation sys-
tems. Section V explains the Mathematical modelling of our
work. The Experiment Setup is mentioned in Section VI
Section VII, states our Results and discuss the obtained
result and compares them with previous studies. The paper
Concludes by indicating future directions our work could
take.

Il. RELATED WORKS

The concept of cookie was introduced into the context of the
web browser in 1994, by Lou Montulli [12], [13]. Cookie
allowed webservers to store small amount of data on the
visiting user’s computer which is sent back to the server upon
request. The concept of cookie was quickly embraced by
browser manufacturers. Soon after, attackers began to take
advantage of cookie’s statefull nature. Third-party advertis-
ing sites used cookies to track users over multiple websites
which encouraged behavioral advertising [14]. This pri-
vacy violating behavior caught the attention of the research
community [15]-[18], legal community [18] and was a cause
of concern among the public [20], [21]. Moreover, cookies are
vulnerable to Cross Site Scripting [22] and Cookie Stealing.
The concept of cookie was further expanded to Flash
cookies [23] and later to ‘evercookie’ [24] which is almost
impossible to remove; this further enhanced the privacy con-
cerns associated with cookies. A cookie-retention study [25]
showed that one in three users deleted their first and third-
party cookies within a month of visiting a website. The above
researches illustrate the privacy, security and unavailabil-
ity issues associated with using cookies to identify a user.

VOLUME 4, 2016

So utilizing cookies in Home Automation to identify a user
over the internet doesn’t seem like a sensible decision.

The issues associated with cookies prompted researchers
and internet advertisers to come up with a new way to tracking
internet users. In 2009 Mayer [26] and in 2010 Eckersley [27]
demonstrated how features of a web browser can be used
to uniquely identify a user without cookies over the inter-
net. Mayer [26] did a study on 1328 web clients. In his
study, he hashed the combined contents of navigator, screen,
navigator.plugins and navigator.mimeTypes. Using this, he
uniquely identified 96% of the web browsers in his study.
Eckersley [27] conducted a study on 500,000 users and
uniquely identified 94.2% of them. He combined various
properties of the web browser and installed plugins, to
uniquely identify users. He used Flash and JavaScript to
collect the required information from the client machine.
In 2012, Yen et al. [28] conducted a fingerprint study
on month long logs of Bing and Hotmail by using User
Agent (UA) string and client’s Internet Protocol (IP) address.
The authors were able to identify 60 to 70% of users by just
using UA string and the accuracy improved to 80% when
IP prefix information was combined with the UA string.
Eckersley [27] dismisses the use of IP address for finger-
printing as they are ‘“‘not sufficiently stable.” Now a days,
internet users try to mask the UA string of their web browser
to avoid identification, but the work of Nikiforakis et al. [29]
illustrated how counterproductive this is and demonstrated
spoofing UA string aids in user identification which is con-
trary to the popular user belief. So, in our work IP prefix was
avoided but UA string was utilized for device identification.

Mowery et al. [30] proposed a device fingerprinting
method exploiting the difference in JavaScript performance
profiles among different browser families. Each browser exe-
cutes a set of predefined JavaScript bench marks and the
completion time of each bench mark forms a part of the
performance signature of the browser. Using this technique,
the authors were able to successfully identify a browser’s
family 98.2% of the time; the identification process took over
3 minutes to completely execute. A study [31] shows that,
an average user views a web page for about 33 seconds.
So, fingerprinting based on JavaScript benchmark execution
time may not be the solution as it takes too long to identify a
client. Moreover, accuracy and detection rate of more specific
device fingerprinting attributes such as, operating system,
browser version and Central Processing Unit (CPU) architec-
ture is significantly low. The work of Mowery et al. [30], also
demonstrated how selective enabling/disabling of JavaScript
using browser plugins (like ‘NoScript’ in Firefox) for certain
websites could aid in fingerprinting and subsequently helps
user identification. Disabling JavaScript completely in the
browser would be the way to preserve a user’s online privacy
but most websites needs JavaScript to function properly. The
above research shows, contrary to the popular user belief
selectively enabling of JavaScript helps in device identifica-
tion. This gives a reason for even the most privacy concerned
users not to disable java script, so the fingerprinting algorithm

5777

IEEE Access

A. C. Jose et al.: Improving Home Automation Security; Integrating Device Fingerprinting Into Smart Home

discussed in this paper utilizes JavaScript for device
identification.

In 2012, Mowery and Shacham [32] proposed a device fin-
gerprinting technique based on the hypothesis that different
browsers display text and graphics in a different way. This dif-
ference raise from a combination of configuration differences
in software, browser, driver, hardware and GPU. To exploit
this, the authors rendered text and Web Graphics Lib-
rary (WebGL) scenes into a HyperText Markup Language 5
(HTML 5) <canvas> element and measured the difference
in the resulting pixel map of the canvas for different users.
The proposed method cannot differentiate between two web
clients with the exact same software and hardware configura-
tions and will not work on older versions of a web browser.

Kohno er al. [33] proposed device fingerprinting using
clock skew. The authors observed that, there is distin-
guishable clock skew difference between any two physi-
cal devices, and this unique clock skew difference between
two devices will remain relatively stable over time. They
exploited this clock skew feature to fingerprint a remote phys-
ical device by stealthily recording and analyzing its Internet
Control Message Protocol (ICMP) or Transmission Control
Protocol (TCP) timestamps. Using ICMP and TCP times-
tamps has their limitation, ICMP timestamps are blocked by
numerous firewalls, and some operating systems by default
disable TCP timestamps. Later Zander and Murdoch [34]
developed a device identification technique with synchro-
nized sampling which significantly reduces the quantization
error. It reduces the heavy network traffic which was neces-
sary for previous identifications, their work was the first to
calculate clock skew estimation through Hyper Text Transfer
Protocol (HTTP) protocol. However, their approach could not
be directly implemented at the server side for device identi-
fication. Inspired by this work, Huang et al. [35] developed
a client device identification in cloud computing scenario,
which relay on JavaScript to send periodic timestamp back
to the server for device fingerprinting. Nakibly et al. [36]
proposed a device fingerprinting technique by exploiting the
uniqueness of hardware features like, speaker/microphones,
motion sensors, Global Positioning System (GPS) accuracy,
battery charge and discharge time and GPU clock skew. Most
of their proposed techniques remain purely theoretical at the
moment. Moreover, their fingerprinting approach requires
constant user interactions, which is not ideal.

Other attempts in device fingerprinting include Operating
System (OS) fingerprinting using popular tools like Nmap,
Xprobe etc.; device fingerprinting approach discussed in this
paper did not implement OS fingerprinting as most of the
firewalls and network administrators prevent this [37] and it
requires manual interpretation [38].

Oluwafemi et al. [39] discussed the presence of some well-
known vulnerabilities in home automation systems, such as,
Cross Site Scripting (XSS) [40] and cookie stealing which
could be exploited to gain online access to home; authors
also demonstrates, how simple devices such as Fluorescent
lamps (CFL) connected to a home automation network or

5778

internet could be manipulated to cause physical harm to
home’s inhabitants.

Passwords are always vulnerable to brute force [41],
dictionary [42] and rainbow-table attacks [43]. A study done
by Kato and Klyuev [44] among 262 University students
revealed that, 80% of the passwords were not strong and
40 % of the passwords were reused for different accounts.
This concurs with the work of Hart [45] who concludes that
30% of people reused their passwords 4 or more times. The
work of Yan et al. [46] demonstrated that, average users have
difficulty remembering random passwords and people are
reluctant to use special characters in their passwords. Various
password policies implemented by the administrator further
complicates things [47]. So, people tends use grammatical
structures in their passwords, the work of Rao [48] illustrates
security issues associated with such passwords. Passwords
are set and has to be remembered by humans, whose memory
for sequences of items are temporally limited [49], with
a short term capacity of around seven plus or minus two
items [50]. Moreover, humans are vulnerable to social engi-
neering [51]. These human errors, human memory limitations
and social engineering compounds to the security issues asso-
ciated with passwords [52], [53]. Moreover, well known pass-
word hacking tools such as ‘John the Ripper’ or ‘Hashcat’
also assists an attacker. So passwords alone are not enough to
keep access to our homes secure over the internet. This paper
proposes a security system with two stage verification, which
utilizes password and device fingerprinting before granting
access to home.

ill. METHOD

From the Related Works in Section II, it is clear that there
are well documented security issues associated with imple-
menting just password based user authentication in the home
automation scenario. The system is at its most vulnerable
when the home is online. Our work utilizes device finger-
printing and legitimate login credentials as a part of double
verification process for authorized user and their device iden-
tification. Various approaches for Remote Physical Device
Fingerprinting are considered before we settled on fin-
gerprinting using JavaScript, Flash and Geo-Location. Our
reliance on JavaScript was justified by a study [54] which
showed that, 98% of internet users had their JavaScript
enabled when they visited Yahoo’s homepage. According
to Adobe, more than 1 billion devices were using Flash by
the end of 2015. The algorithm implemented in this paper
avoided using Java Plugin for device fingerprinting because
of their known security vulnerabilities. To the best of our
knowledge, this is the first attempt that incorporates HTML
5’s Geo-Location capability into device fingerprinting.

A. PARAMETERS CONSIDERED FOR

DEVICE FINGERPRINTING

The tables given below, Table 1 and Table 2, shows all
the JavaScript parameters used for Device Fingerprinting.
JavaScript is used to identify browser specific and device
specific parameters for device fingerprinting.

VOLUME 4, 2016

A. C. Jose et al.: Improving Home Automation Security; Integrating Device Fingerprinting Into Smart Home

IEEE Access

TABLE 1. Browser specific parameters using java script.

No. Parameter Obtained From

1 Browser Name navigator.userAgent

2 Browser Version navigator.userAgent

3 JavaScript Enabled navigator.javascriptEnabled

4 Flash Enabled navigator.flashEnabled

5 Cookie Enabled By actually setting/retrieving and
deleting a cookie

6 Local Storage Enabled By actually setting/retrieving and
deleting an item in local storage

7 Mime Length navigator.mimeTypes.length

8 Mime Type [EachMimeObject].type

9 Suffix Associated with [EachMimeObject].suffixes

each Mime Type
10 Number of Plugins
Associated with each

Mime Type
11 Plugin Length
12 Plugin name

13 Each Plugin’s Version
14 Number of Mime Type

[EachMimeObject].
enabledPlugin.length

navigator.plugin.length
[EachPluginObject].name
[EachPluginObject].description
[EachPluginObject].length

Associated with each
plugin

TABLE 2. Device specific parameters using java script.

No. Parameter Obtained From

1 OS Name navigator.userAgent

2 OS Bits navigator.userAgent

3 Screen Maximum Width ~ navigator.screen.maxWidth

4 Screen Maximum Height — navigator.screen.maxHeight

5 Screen Current Width navigator.screen.availWidth

6 Screen Current Height navigator.screen.availHeight

7 Screen Color Depth navigator.screen.colorDepth

8 Screen Pixel Depth navigator.screen.pixelDepth

9 Taskbar Position Calculated from Maximum Height,

Width and Current Height and Width
Calculated from Maximum Height,
Width and Current Height and Width

10 Taskbar Size

11 Time zone navigator.date
12 Country Name navigator.date
13 Current time navigator.date
14 Geographical Location navigator.geolocation.

(Latitude, Longitude) getCurrentPosition()

Browser Specific parameters given in Table 1 can be

99 ¢

obtained from “‘navigator.userAgent,” ‘‘navigator.javascript
Enabled,” “navigator.flashEnabled,” ‘“‘navigator.mime
Types” and ‘‘navigator.plugins.” ‘‘navigator.userAgent”

provides information about OS name, OS Bits, Browser
Name and Version which can be utilized for fingerprinting
and identifying a device, while lesser bit parameters like
“navigator.javascriptEnabled,” ‘“‘navigator.flashEnabled”
provides ‘true’ or ‘false’ values which provides less iden-
tifiable information. The algorithm determines whether
‘cookies’ are enabled by actually setting/retrieving and then
deleting the set cookie. ‘Local Storage’ enabled is also
checked in a similar way.

The browser specific parameters mentioned above
OS name, OS Bits, browser name, browser version
when combined adds to the uniqueness of the fingerprint
thus improving the fingerprint accuracy. Other browser
specific parameters like, Multi-Purpose Internet Mail

VOLUME 4, 2016

Extensions (MIME) length, MIME type, MIME suffixes and
their number of associated plugins provides highly iden-
tifiable information corresponding to a browser which are
utilized for fingerprinting. Total number of installed plugins,
plugin name, version of each installed plugins and number of
mime types associated with each plugin also contribute to the
high accuracy of our fingerprint. The order of the installed
plugins retrieved depends on the installation time of each
of the individual plugin, as demonstrated by Mayer [26].
A combination of all these parameters are used to develop
a client device’s fingerprint.

Device specific parameters given in Table 2 can be
obtained from ‘“navigator.screen” and ‘‘navigator.date”
object in JavaScript. Parameters like screen maximum width,
screen maximum height, screen current width, screen cur-
rent height, screen color depth, screen pixel depth does
not change even if a user changes their web browser.
Position of the taskbar (top/bottom OR left/right) and taskbar
size can be deduced from the screen parameters, these
two parameters almost never changes. A device’s current
time, time zone and country name can be obtained from
the “navigator.date” object in JavaScript. The OS Name
and OS Bits obtained from UA string of the browser are
also device specific parameters. Many other device finger-
printing parameters such as, “navigator.language, naviga-
tor.product, navigator.app Version, navigator.appName” etc.
can be obtained using JavaScript but these were ignored
because they were mostly unreliable and gave inconsistent
or false values across different browsers. Moreover, some
parameters like ‘““screen.updatelnterval, screen.buffer” were
browser specific.

We utilized the geo-location feature available in the
HTML 5 to improve the accuracy of our fingerprinting algo-
rithm. A lot of finger printable parameters can be gathered
from “navigator.geoLocation.getCurrentPosition ()’; they
include, latitude, longitude, altitude, accuracy, altitude accu-
racy, heading, speed. We only utilized two of those param-
eters, namely latitude and longitude in our fingerprinting
algorithm. During the course of our work, it was found
that these two parameters are readily available in almost
all machines which supports HTMLS5 as compared to other
parameters, which requires constant monitoring and in some
cases specific equipment at the client’s side. After accu-
rately determining the location, Google Application Program
Interface (GoogleAPI) is used to identify the actual country
name based on latitude and longitude. The country name
from GoogleAPI is compared with that obtained from the
date object. The country names must be same, but if there
is a mismatch it means the client’s “navigator.date’’ object is
intentionally giving misinformation or the client’s device is in
another time zone, either way in case of country name mis-
match, the date parameter from our fingerprinting algorithm
is ignored.

A client’s device specific screen parameters will remain
constant over time, Moreover, a client device’s time zone
and country name is unlikely to change unless they travel

5779

IEEE Access

A. C. Jose et al.: Improving Home Automation Security; Integrating Device Fingerprinting Into Smart Home

outside the country or changes time zones. Even when that
happens, by analyzing their geo-location and date object the
real country name and time-zone can be obtained and com-
pared. So when device specific parameters are unavailable
the security and device identification capability of the device
fingerprinting algorithm decreases.

The table given below, Table 3, shows the Flash parameters
used in our fingerprinting algorithm. There are about 38 Flash
parameters considered excluding Regular and Non-Regular
device fonts. All of the parameters except system fonts are
obtained from the ‘Capabilities’ class in flash. Even though,
most of these parameters returned Boolean values with less
identifiable qualities, lion share of them were device specific
parameters, which when considered as a whole provides reli-
able information about a device’s configuration.

The OS name obtained from flash is compared with those
obtained from the “navigator.userAgent.” Ideally, the two OS
names should match but if they are different it implies the user
is using some user agent spoofing techniques even though
it is counterproductive in protecting user identity as demon-
strated by Nikiforakis et al. [29]. So in such a case, user
agent and its associated parameters are ignored from the
device fingerprinting algorithm. Similarly screen maximum
width and screen maximum height obtained from the ‘“‘nav-
igator.screen” object are compared with the screenResolu-
tionX and screenResolutionY to determine the validity of the
“navigator.screen’” object. If they are mismatched, it means
screen parameters available from JavaScript are not reliable,
so all the screen parameters obtained from ‘“naviga-
tor.screen” object can be ignored in the algorithm.

The system fonts installed in a device is mostly unique,
it depends on user preferences and the presence of different
browser plug-ins and software; both regular and irregular
device fonts were considered for our fingerprinting algo-
rithm. These fonts and the order in which these font names
are retrieved in flash provide highly identifiable informa-
tion which aids our fingerprinting algorithm as demonstrated
by Eckersley [27]. Another method for extracting device
fonts is by using JavaScript side channel font detection, this
technique requires the names of the fonts to be checked be
included in the fingerprint script, this limits font checking to
only well-known system fonts. Moreover, it will not allow us
to determine the order of fonts in a client’s device. So, side
channel font detection is not implemented in our algorithm.
When some of these parameters mentioned in Table 1, 2 or 3
are unavailable the ability of our algorithm to distinguish
between similar machines decreases and the entropy of the
generated fingerprint goes down.

Our work tried to detect a client’s history to see if he/she
has visited a particular Universal Resource Locator (URL)
through the vulnerability in Cascading Style Sheets (CSS) as
exploited by Jang [55]. The URL checked was not indexed
in any search engines and will only be visited by a legitimate
user, as he visits his home from a device; it is used as a mech-
anism to identify a legitimate returning user. This attempt
failed and confirms the researcher’s notion that, history detec-

5780

TABLE 3. Device fingerprinting parameters using flash.

Obtained from Return
No. Parameter flash.system.Capabilities
Type
1 AV Hardware Disabled avHardwareDisable() Boolean
2 CPU Architecture cpuArchitecture() String
3 Has Accessibility hasAccessibility() Boolean
4 Has Audio hasAudio() Boolean
5 Has Audio Encoder hasAudioEncoder() Boolean
6 Has Embedded Video hasEmbeddedVideo() Boolean
7 Has IME hasIME() Boolean
8 Has MP3 hasMP3() Boolean
9 Has Printing HasPrinting() Boolean
10 Has Screen Broadcast hasScreenBroadcast() Boolean
11 Has Screen Playback hasScreenPlayback() Boolean
12 Has Streaming Audio hasStreamingAudio() Boolean
13 Has Streaming Video hasStreamingVideo() Boolean
14 Has TLS hasTLS() Boolean
15 Has Video Encoder hasVideoEncoder() Boolean
16 Is Debugger isDebugger() Boolean
17 Is Embedded in Acrobat isEmbeddedInAcrobat() Boolean
18 Language Language() String
19 Local File Read localFileReadDisabled() =~ Boolean
Disabled
20 Manufacturer Manufacturer String
21 Max Level IDC maxLevelIDC() String
22 Operating System 0s() String
23 Pixel Aspect Ratio pixelAspectRatio() Number
24 Player Type playerType() String
25 Screen Color screenColor() String
26 Screen DPI screenDPI() Number
27 Screen Resolution X screenResolutionX Number
28 Screen Resolution Y screenResolutionY Number
29 Support 32 Bit Processes ~ Support32BitProcesses() Boolean
30 Support 64 Bit Processes Support64BitProcesses() Boolean
31 Touch Screen Type touchScreenType() String
32 Flash Player Version version() String
33 Dolby Digital Audio hasMultiChannelAudio Boolean
Enabled (flash.media.AudioDeco
der.DOLBY DIGITAL)
34 Dolby Digital Plus hasMultiChannelAudio Boolean
Audio Enabled (flash.media.
AudioDecoder.
DOLBY DIGITAL PL
us)
35 DTS Audio Enabled hasMultiChannelAudio Boolean
(flash.media.
AudioDecoder.DTS)
36 DTS Express Audio hasMultiChannelAudio Boolean
Enabled (flash.media.
AudioDecoder.DTS_EX
PRESS)
37 DTS HD High hasMultiChannel Audio Boolean
Resolution Audio (flash.media.AudioDeco
Enabled der.DTS_HD_HIGH_RE
SOLUTION_AUDIO)
38 DTS HD Master Audio hasMultiChannelAudio Boolean
Enabled (flash.media.
AudioDecoderDTS_HD
_MASTER_AUDIO)
39 Regular Device Fonts Using Action Script in Array
Flash
40 Non-Regular Device Using Action Script in Array

Fonts

Flash

tion using CSS vulnerability in modern web browsers is
not possible. Various attempts to exploit this vulnerability
in Mozilla Firefox version 44 and 45, Google Chrome ver-
sion 48 and 49 and Microsoft Internet Explorer version 11
failed and did not produce the desired result.

VOLUME 4, 2016

A. C. Jose et al.: Improving Home Automation Security; Integrating Device Fingerprinting Into Smart Home

IEEE Access

The above mentioned fingerprinting parameters are mainly
classified into 9 categories; Parameters from User Agent
String, Screen Parameters, Lesser Bit Parameters (cookie
enabled, java script enabled, local storage enabled, flash
enabled), MIME Parameters, Plugin Parameters, Parame-
ters from Date object, Geo-Location Parameters [56], Flash
Parameters and System Fonts. Our device identification pro-
ceeds by identifying, verifying, comparing and analyzing
various device specific features associated with each of these
9 parameters.

IV. IMPLEMENTATION

A. DEVICE FINGERPRINTING PROCESS

The figure given below, Fig. 1 shows the Device Finger-
printing process in the proposed system. When a user wishes
to access the home over the internet, he requests the login
page from the server, the server then returns the login page
along with the fingerprint java script. The user provides the
login credentials along with the fingerprint of the device he
is using. The login credentials are verified, if the verification
is passed, then the gathered device fingerprint is analyzed
to see if there are enough device fingerprinting parameters
available to provide a comprehensive fingerprint of the user
device. If not, the client is requested to enable his Flash,
JavaScript and Geo-location for accurate fingerprinting at the
login page again.

There are two fingerprint lists in our database, whose
entries are accumulated over time. The ‘whitelist’ is a list of
approved or authorized device fingerprints belonging to legit-
imate users. Client devices with fingerprints in the whitelist
are allowed access to the home after login credential verifi-
cation. The ‘blacklist’ is a list of unauthorized or malicious
device fingerprints belonging to potential attackers who tried
to gain access to the home. Client devices with fingerprints in
the blacklist are denied access to the home even if their login
credentials are correct.

If the login credential are matched and there are sufficient
fingerprinting parameters and the Device Fingerprint is not
in our ‘whitelist’ and ‘blacklist’, then the client should be
verified by some other more direct method in order to assure
legitimacy. A simple and safe method would be make contact
with the client using a phone call to the registered mobile
number of the client and verify it is him trying to login to his
home. Another alternative is, the server generates a One Time
Password (OTP) and sent it to the legitimate user’s registered
mobile number via Short Message Service (SMS), which the
user enters in the website and thus the legitimacy of the user
is verified. When a new device