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ABSTRACT We developed a crowd sensing application to estimate road conditions (CRATER). CRATER
is a smartphone application that opportunistically measures acceleration when it finds itself on the road in
order to map and measure the locations of potholes and speedbumps. It does not require input from users,
but can report detected potholes and speedbumps to a cloud-hosted application engine, which stores partially
processed data received from smartphones of participating users and jointly processes it to obtain a better
estimate of road conditions. The information is published in map form on the web. This map allows both
citizens and municipal authorities to localize potholes, road segments in need of repair, and imbalances
in infrastructure maintenance efforts across cities. Road tests demonstrate that CRATER succeeds in
correctly detecting roughly 90% of potholes and 95% of speedbumps, while generating false alarms only
about 10% and 5% of the time, respectively.

INDEX TERMS Application of wireless sensor networks, smartphone applications, pattern recognition,

mobile systems, crowd sensing.

I. INTRODUCTION
A. BACKGROUND AND MOTIVATION
Road conditions in Pakistan vary from excellent conditions to
dilapidated conditions. Urban infrastructure funds are limited
and are spent without giving the public any visibility. Every
year, the monsoon season brings torrential rain which pushes
bad conditions to worse, and sometimes, to intolerable levels.
Some governments try to improve the road network through
efforts to build new roads, flyovers and underpasses; such
efforts are limited to urban areas and the major cities of
Pakistan. Furthermore, these efforts generally involve ripping
up the old most-frequented routes and cordoning off these
sections of the road network until the repair work is finished.
On occasions that authorities are held accountable for poor
road conditions in residential areas or in a small locality, their
response often is that citizens need to report the locations with
poor conditions in the road network so that the municipality
can act. In addition to suffering from disrepair, people some-
times construct illegal speedbumps on public roads to slow
down traffic near their homes and businesses. The lack of
reporting of such illegal speedbumps means that sometimes it
can be years before such speedbumps are actually removed.
If the municipality has the data of legally constructed speed-

bumps, it can identify all others as illegally constructed.
Municipalities can use this information to allocate more funds
to areas that are desperately in need of repair. Conversely, the
public can keep an eye on how efficiently the authorities work
to repair road across the city.

At the same time, Pakistan is a country with a growing
population. The number of cars in urban areas has increased
manifold over the last decade, but unfortunately, the road
network has not grown at the same rate. A study by the Texas
A&M Transportation Institute estimates that congestion and
rough roads will cost the average Texas household $6,100 a
year in wasted fuel, vehicle repairs, and time lost sitting
in traffic between now and 2035 [1]. Given the scale of
this problem in the US, in the absence of similar studies in
developing countries, we can only guess what the state of
disrepair of roads is costing citizens there.

Mapping and measuring road conditions season after sea-
son is not a trivial problem — it requires extensive resources
including expertise, manpower, time and transportation. An
approach that the government alone should appoint people
to monitor the state of our roads is not a viable solution.
During the time a team surveys an area, conditions may have
already changed.
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B. PROBLEM STATEMENT

Mapping and measuring road conditions in developing coun-
tries is not a trivial problem. Not only do major segments
of the road network require immediate repair, but the state
of roads needs to be updated regularly to maintain a certain
level of quality year-round. Naive solutions such as creating
government departments to handle the situation are expensive
and are not sustainable. Therefore, the objective is to develop
a low-cost, volunteer driven system that relies on crowd
sensing to develop a reliable estimate of the current state of
road conditions.

C. LIMITATIONS OF PRIOR ART

Kulkarni et al. [2] described a machine learning approach
using accelerometer data from smartphones to detect pot-
holes in real-time. However, instead of aggregating data from
multiple users in a centralized database, they plotted the
accelerometer data only in the app and emailed it to anyone
as a comma separated values (CSV) file.

Similarly, Mohan et al. [3] designed and implemented
Nericell, which is a system to monitor road and traffic con-
ditions. They attempted to detect speedbumps, along with
several other traffic events (stop-and-go traffic and honking)
using a combination of (non-smart) cellphone and external
GPS receiver. GSM was used for coarse-grain localization
and GPS for occasional fine-grain localization. However, all
detection functions were performed in-device, without using
measurements from other smartphones. Whenever smart-
phone use was detected, data collection was suspended.

Mednis et al. [4] used smartphone accelerometers and
integrated GPS to design and develop a real-time pothole
detection system. However, like Nericell, their approach also
used standalone smartphones and lacked a central database,
i.e. it did not benefit from measurements taken by other
phones at the same locations.

Eriksson et al. [5] mapped potholes, manholes, railroad
crossings, crosswalk/expansion joints and smooth roads in
urban areas using an approach that was more similar to ours.
It also collected measurements in a central database and used
them collectively to detect unevenness on roads. However,
unlike our approach, their’s relied on an in-car GPS system
and three dedicated, calibrated in-cabin accelerometer sen-
sors, which added to the system’s cost.

D. PROPOSED APPROACH
While the use of smartphones is already ubiquitous in urban
areas of Pakistan, they are rapidly pervading the rural setting.
On the other hand, with the launch of 3G/4G services in
Pakistan in 2014, more and more people have begun to adopt
mobile broadband connections. Given these combined factors
we were motivated to come up with a sustainable solution to
our problem that leverages the high density of smartphone
users in Pakistan’s urban centers for crowd sense information
about road conditions.

In this paper we present CRowdsensing Application
To Estimate Road conditions (CRATER), a cloud-mobile
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smartphone application that is zero-input, i.e., it does not
require any interaction with or input from users beyond instal-
lation and initial configuration. CRATER uses a centralized
database that aggregates data from multiple users, thus real-
izing the benefits of crowdsourcing; updating measurements
over time as different users pass over different routes every
single day. Another obvious advantage is that as several users
move over the same area over time, we can filter out false
detection results that the in-app classifier may occasionally
produce by using the second in-cloud meta-classifier at the
back end.

We propose that the application should not require any
other piece of hardware than the smartphone itself so that
users can use this kind of application without buying an extra
piece of hardware. While previous works suggest that the
accelerometer sensors should be calibrated and placed in a
fixed position in the car, our proposal allows the user to carry
their device or use it during their journey, so it would increase
the application’s usability.

Our zero-input app serves the purpose of minimizing cog-
nitive load and distraction for drivers by installing this app
on their smartphone. The application runs in the background
while the user is on the road, so it can gather the information
about the shocks and vibrations that a vehicle experiences.
This information is processed to determine what the vehicle
went over and the resultant decision is uploaded to the server.
Thus, a simple in-cloud meta classifier determines whether
a sufficiently significant number of users passing through
the same location have detected the presence of a pothole
or speedbump. The decision of the meta-classifier is stored
in the database, and published to the website. This website
makes the road condition information available to the public.

The benefits of CRATER are as follows: (1) It helps the
public by providing greater transparency, and also the gov-
ernment by providing it the means for making data-driven
decisions. (2) CRATER does away with the need for citizens
to submit official complaints to their local governments. (3)
It removes the need for manual data collection. (4) CRATER
does not require the acquisition, installation, and mainte-
nance of, quite likely expensive, dedicated hardware. (5) The
improved roads allow traffic to flow faster and smoother
with less stop-and-go, leading to less congestion, consequent
stress and road-rage, and also lower overall fuel consumption
and air pollution.

E. RESULTS

CRATER has demonstrated a detection rate of approxi-
mately 90% for potholes and 95% for speedbumps with
false alarm rates as low as 10% and 5%, respectively. Most
importantly, however, it achieves these numbers without
requiring the purchase of addition hardware, any calibration,
installation or placement requirements of the phone while
in a moving vehicle and without any input from users. The
reduced quality of data that inevitably results from collect-
ing data in uncalibrated settings is offset by a second level
classifier that operates on data contributed from multiple
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users and generates the consensus view of locations of pot-
holes and speedbumps.

F. CONTRIBUTIONS
The contributions of this study are as follows:

1) Creating a labeled dataset consisting of potholes,
speedbumps and smooth road segments. !

2) Designed and developed a zero-input smartphone
application that employs crowd sensing to map and
measure road conditions.

Il. RELATED WORK

Erikkson et al. [5] proposed a system called ““Pothole Patrol”
(P?), that used the inherent mobility of participating vehicles,
opportunistically gathered data from accelerometer and GPS
sensors, and processed it to assess road surface conditions.
Using a simple machine-learning approach, it showed that
potholes and other severe road surface anomalies could be
identified from accelerometer data. However, the system
required calibrated three-axis acceleration sensors and GPS
devices deployed on embedded computers in cars. Our pro-
posed scheme can work only with smartphones that users
already possess and would not have to purchase separately
for the purpose of this application.

Mohan et al. [3] designed and implemented “‘Nericell”’:
a system to monitor road and traffic conditions in chaotic
settings. The system performed sensing on smartphones using
the accelerometer, microphone, GSM radio, and an external
GPS receiver to detect potholes, bumps, vehicle braking, and
honking. As in the case of ‘““Pothole Patrol”’, we would like
to avoid the purchase of extensive hardware to motivate as
many users as possible to install and use the application.
“Nericell” was also a standalone application that lacked a
central database and did not exploit the benefits of crowd
sensing.

Mednis et al. [4] described a mobile sensing system for
road irregularity detection using Android OS based smart-
phones. However, ground truth data was collected for training
classifiers through specialized hardware (Tmote Mini sensor
node with Texas Instruments micro-controller MSP430F1611
and Analog Devices 3-axis accelerometer ADXI.335) and
not smartphones. Furthermore, the smartphone was placed in
a controlled position when gathering data. We do not wish
users to forfeit use of their phones when using CRATER, and
collect data opportunistically whenever a phone is not in use.

The “Pothole Detection System” by Kulkarni et al. [2] did
not make use of dedicated hardware and used an algorithm
to monitor pothole conditions on the road. The system used
accelerometer sensors on Android smartphones to detect pot-
holes, GPS data to geotag them and plotted their locations on
Google Maps. Accelerometer data and pothole data could be
mailed to any email address in the form of a CSV file. While
designing the pothole detection algorithm, some threshold
values on x-axis and z-axis were assumed. These threshold

IWe shall release this dataset to the public on our website after the
acceptance for publication of this manuscript.
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values were justified using a neural network technique which
reported an accuracy of 90-95%. However, [2] did not take
into account the benefits of crowd sensing: by gathering data
from multiple users, it is likely that a larger road network
could be covered much faster and the aggregated data would
be more accurate. Additionally, speedbumps were not classi-
fied as features on the road.

Commissioned by the Mayor’s Office in Boston,
“StreetBump” [15] was an app that tracked bumps and
potholes using smartphones’ accelerometer data. Although
the system did use a crowd sourcing approach to map the
city’s road conditions, it required users to record their trips
by opening the app and pressing a button. Similarly, it asked
users to place their device in a stable position and ensure that
the app is running in the foreground while the trip is recorded,
decreasing the application’s usability.

Another application, “Waze” [6] is presently the world’s
largest community-based traffic and navigation app, although
it is principally used on the West coast of the United States.
It invites drivers to help each other share real-time local
traffic data. However, the application does not focus on map-
ping road conditions and is not well-known in developing
countries. It asks users to share updates on traffic accidents
and police traps which distracts drivers during their journey.
While we would like to map road conditions, we would
prefer to do it without creating a driving hazard for our
users.

“Potholes Hunter” [7] is an app that tracks potholes (avail-
able on the Google Play store for free) intended for use in
Hungary. Users take photos and rank the “worst potholes in
the country”. The app also places these potholes on a layer on
amap. Usability is reduced because users are reluctant to stop
and actually record the potholes location. Another app like
“Potholes Hunter,” “Fill That Hole’’ [8] focuses on bicyclists
for its target user base. Again, users must photograph and
fill out forms about certain potholes on their own. However,
much like “Potholes Hunter”” usability of this app relies on
its users taking time to actually record the potholes in their
area. This points out the most critical aspect of our project:
minimizing user input. This will ensure that users actually
use the app.

The city of Seattle is currently offering “‘Find It, Fix It” [9]
for city residents to report potholes, along with other items
such as graffiti and abandoned vehicles. The reports go
directly to the city, and then they are processed by the appro-
priate departments. There is no way for residents to see
potholes that others have submitted, so they know what areas
to avoid.

To sum up, the previously proposed systems suffer
from at least one or multiple limitations in the following
list:

o Lacked crowd sensing feature.

o Required user participation in reporting potholes.

« Required dedicated hardware.

o Provided incomplete coverage of road anomalies,

e.g., speedbumps were ignored.
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FIGURE 1. Architectural diagram.

o Limited availability to commercial use. In some cases,
mapped information was not made available on a public
platform.

o Required calibration and specific placement of data col-
lection device during data collection.

Ill. SYSTEM DESIGN

Figure 1 is a high-level architectural diagram of the system
that depicts its major components. Figure 2 describes the flow
of data between them. The following subsections describe
each of these components and their working.

A. SMARTPHONE APPLICATION

The mobile app is developed for the Android OS and starts
running two background processes after the user has logged
in; one to gather and process data from sensors, and another to
upload data. The application runs in the background unless a
user explicitly chooses to close it. We used Google’s Activity
Recognition API for Android [16] to detect whether the
user is in a moving vehicle. While the user is traveling in
a car, the app tracks the phones location and collects raw
data from the phones accelerometer at the highest frequency
possible to get a smooth set of readings (with Android’s
minimum delay: SENSOR_DELAY_FAS TEST).2 The effec-

2We chose SENSOR_DELAY_FASTEST after trying lower sensor sam-
pling rates of SENSOR_DELAY_GAME, SENSOR_DELAY_NORMAL after
they proved insufficient for capturing a time series usable for further pro-
cessing and use.
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. The public can view the
results of the analysis
on the website

tive sampling rate to which SENSOR_DELAY_FASTEST
produces varies from one phone to another phone.
In our case, the resultant sampling rates ranged between
200 — 250Hz. The app then determines the phone’s ori-
entation and performs coordinate transformation [10] to
align accelerometer measurements with the downward direc-
tion (named z-axis), the direction of travel (named y-axis),
and direction of lateral motion (named x-axis). We used
the SensorManager.getRotationMatrix methodin
Android for linear coordinate transformation [11]. Each set
of samples we collect contains the sensor readings shown
in Table 1.

TABLE 1. A record stored in the file.

Timestamp

Linear acceleration along x-axis
Linear acceleration along y-axis
Linear acceleration along z-axis
Latitude

Longitude

Speed (estimated)

Rotation around x-axis

Rotation around y-axis

Rotation around z-axis

The data collection algorithm running in the app may be
understood as described in Algorithm 1.

This yields a time series signal of the acceleration the
phone experiences. This signal is processed to detect potholes

VOLUME 4, 2016
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FIGURE 2. Dataflow diagram.

Algorithm 1 Data Collection

while phone has storage space do
if phone is in a moving vehicle AND GPS available

then
turn on sensors.

while phone in moving vehicle AND GPS

available do
log 40,000 samples (15 — 20sec of data).
transform phones coordinate axes.
apply low and high pass filters.
perform feature extraction.
perform classification.
end

turn off sensors.
end

wait for 15 minutes.
end

and speedbumps and estimate their locations. We used binary
classifiers for detecting both potholes and speedbumps that
were implemented in the open source WEKA library [12]
which we imported into the app. The details of the design
of these classifiers will be discussed in the subsequent
section.

The results of the detector are temporarily stored in a
file until it is uploaded to an SQL database hosted in the
Azure cloud. Since road conditions are slow to change,
and in order to save user’s cellular Internet usage, uploads
are performed opportunistically whenever a WiFi connec-
tion becomes available. The app is allocated a maximum
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of 100 MB of memory to buffer data for upload.> When the
buffer is full, the app stops collecting data until the buffer is
emptied. Once the data file has been transmitted, it is removed
from the users device and the app can resume logging when
needed.

TABLE 2. RESTful services per table.

[ Table Name [ Table Description [ Services |
Classified Data | Insert data received from the applica- | Get, Post
tions classifier into the database and
retrieve it
Voting Results Classified data retrieved from database | Get, Post
for meta-classifier; results stored in the
database

B. APP ENGINE
The app engine is deployed on the Microsoft Azure cloud.
The app engine consists of custom scripts and Azure’s mobile
services: an abstraction that enables developers to easily
upload data to an SQL database from a smartphone applica-
tion, and retrieve the data from a web or mobile platform.
We configured our mobile service to perform two essential
functions:
« Upload data from the app to the database.
« Provide RESTful APIs (Table 2) that allow easy access
to data for display on the website and maps in the app.
o Provide user authentication through Facebook and
Google+.

31f the app detects an SD card installed on the phone, the app stores this
data file in SD card memory, else it defaults to the phone’s inbuilt memory.
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The SQL database buffers data output by the in-app clas-
sifier. The meta-classifier that is executed periodically by
the app engine in the Azure cloud uses this data to update
speedbump and pothole locations, and then deletes it to
conserve space.

The app engine is a server that periodically runs the fol-
lowing processes:

o Delete all old processed data from the smartphone-

classified data to make room for new information.

o Get data from the classified data table, process it using
the meta-classifier and push the results back. This pro-
cessing involves:

— Getting all classified data available from different
users for a particular location across the map

— For each location on the map, analyzing the data
available, and computing the consensus value that
describes the speedbump/pothole location and road
condition. The in-cloud meta-classifier calculates
whether the individual votes from the mobile appli-
cations for each category (i.e. pothole or speedbump
or nothingness) are in a majority and meet a partic-
ular threshold value or not. If the threshold is met
for a particular category, the location is updated to
have that particular road feature.

C. THE WEBSITE

The website provides a map interface overlaid with informa-
tion that is a consensus view of user reported road conditions,
i.e., locations of potholes and speedbumps [13]. The same
view is also provided inside in a screen inside the app as an
additional feature without the need for users to switch to a
browser, which serves as an additional motivation for users
to install the mobile app.

D. DATABASE DESIGN
The database contains tables that store:

o User Contributed Data: This table contains data pro-
duced by the in-app classifier and contributed by all
users’ phones.

« Voted Consensus View: This table contains data that
describes the consensus view of locations of potholes
and speedbumps after processing by the app engine’s
in-cloud classifier. This data is then published on the
website.

Mobile Devices Classified Data Voting Resulis
PK D PK ID PK D
Latitude Latitude
Longitude Longitude
Classification Decision
FK  Device ID Timestamp
Version Number

Timestamp

FIGURE 3. Database design.

Figure 3 shows the database architecture. The field names
are all very self-explanatory. The version number field in the
classified data table is significant as it tracks the version of the
app that uploaded the data to the database. As the application
is updated, we may evolve the way we process data received
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from various versions of the app by the app engine. Tracking
the version of the app contributing data will let us process the
data appropriately.

IV. DETECTOR DESIGN

A. TRAINING SET AND PRE-PROCESSING

We employed a supervised learning approach to develop the
in-app classifier. This necessitated the collection of a labeled
training set, which in turn required the development of a
separate Android app, which we will refer to as the data
collection app. This data collection app was designed with
simplicity in mind. It lets a user start and stop collecting data
by the press of a button. Specifically, the app stores readings
from the three accelerometers and GPS in the background the
moment it was switched on, and periodically writes them to
a file. In addition, it provides two buttons to let the user mark
the moment the vehicle goes over a speedbump or through a
pothole. At the button press the timestamp and location of the
user is stored in a file.

Note that data gathered from sensors cannot be used
directly for feature extraction and classification without pre-
processing first. Recall that we do not require the smartphone
to be placed in a particular (calibrated) position during data
collection. Therefore, we rotate the axes of the accelerometer
sensors to realign them in a standard direction. Axes reorien-
tation aligns the direction of greatest variance in accelerom-
eter readings with the ‘z-axis’, which points downwards on
the ground (due to the acceleration due to gravity). The direc-
tion of the second largest variance of accelerometer readings
orthogonal to the z-axis is aligned with the ‘y-axis,” which
is usually the direction of forward motion of the vehicle.
With the directions of the z and y-axes determined, the ‘x-
axis’ is aligned with the only remaining orthogonal direc-
tion, usually sideways to the direction of a forward moving
vehicle. As subsequent exploration showed, it is primarily the
features of the reoriented z-axis, and to a lesser degree the y-
axis, which provide useful features for detecting speedbumps
and potholes. Computationally, this step involves determin-
ing the covariance matrix of accelerometer sensor readings,
performing its eigen-decomposition. Each vector sample of
accelerometer readings can then be rotated to align with the
z, y and x-axes by performing a matrix-vector multiplication
[10].

Furthermore, the Android API does not directly provide
the speed of the user. To calculate the speed from succes-
sive changes in latitude and longitude, we first converted
differences in geographical coordinates to distance (in km)
using the Haversine formula [14]. Once we have the distance
between two consecutive locations of the user, we simply
divided this value by the time difference between when
the user was at these two locations to approximate speed.
By taking the timestamp of when a pothole/speedbump was
encountered, and also studying the accelerometer and speed
functions around that time, we could begin to understand
what features may be worth further exploring for potential
use in classifying potholes and speedbumps.

VOLUME 4, 2016



F. Kalim et al.: CRATER: A Crowd Sensing Application to Estimate Road Conditions

IEEE Access

B. LABELED DATA

Ground truth gathering involved some field work — moving
over the city in a car with the data collection app turned
on and collecting data while marking the locations of pot-
holes/speedbumps, as described earlier. Figure 4 is a pho-
tograph of a once paved road that is currently in a state
of disrepair outside our campus that we used, among other
roads, to collect data for use in the development phase.

FIGURE 4. Photograph of a road in very bad condition outside NUST
campus, Islamabad, located at 33.657722° N 73.001049° E.

Table 3 lists some basic properties of the data set we
collected for the development of pothole and speedbump
detectors. This data set was collected over many trips, driving
over various roads across Islamabad and Rawalpindi cities.

TABLE 3. Distribution of labeled data.

Labeled potholes 254

Labeled speedbumps 177

Smooth road 6446
| Total | 6877

C. FEATURE EXTRACTION

The pothole and speedbump detectors in the app execute at
one-second intervals. Each time one of them executes, it uses
accelerometer readings collected in the preceding 12sec, i.e.
the detectors execute on a sliding window of accelerometer
samples. Figure 5b and Figure 5a are plots of accelerometer
readings along x, y and z-axes over time, after performing the
coordinate system rotation described in the preceding section,
for a vehicle driving over a speedbump and through a pot-
hole, respectively. As these figures show, without any further
processing, this signal is quite noisy, with significant high-
frequency components. We discovered during data collection
that this high-frequency noise in signals is caused by two
different sources.

1) The regular frequency component is vehicle vibrations
due to the running engine and is present whenever the
engine is running, whether or not the vehicle is moving.

VOLUME 4, 2016
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FIGURE 5. Plots of raw and low-pass filtered accelerometer readings
collected while driving through a pothole and over a speedbump.

(a) Raw pothole data. (b) Raw speedbump data. (c) LP filtered pothole
data. (d) LP filtered speedbump data.

Itis more generated when the vehicle is stopped and can
be found in accelerometer signals along all three axes.
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2) The high-frequency noise may also have an irregular
component which is due to unevenness of the road
surface and varies depending on how fine or coarse
the carpeting of the road is. Obviously, this component
is present only when the vehicle is in motion and its
frequency depends on the vehicle’s speed. This compo-
nent is most pronounced along the z-axis accelerometer
signal

Since neither high-frequency components are use-
ful for our objective, we remove them from the
signal(s) by passing them through low-pass (LP) filters.
Figure 5(d) and Figure 5(c) plot the LP filtered signals for
the examples in Figure 5(b) and Figure 5(a), respectively.

We extracted the following set of features from the
LP filtered signals and assessed their usefulness for speed-
bump and pothole detectors. The most significant features
included:

o Average, minimum and maximum speed

o Standard deviation of accelerometer readings across
x/y/z-axis

o Mean of accelerometer readings across x/y/z-axis

o Standard deviation of low-pass filtered accelerometer
readings across x/y/z-axis

« Mean of low pass filtered accelerometer readings across
x/y/z-axis

e Number of minimas and maximas one/two standard
deviation(s) away from the mean on x/y/z-axis

o Number of points one/two low pass filtered standard
deviation away from the low pass filtered mean on the
X axis

o Number of points one/two standard deviation(s) away
from the mean on x/y/z-axis of low-pass filtered signal

o Maximum/minimum value on x/y/z-axis

We trained and considered five different types of classi-
fiers using a supervised learning approach, which included
naive Bayes, C4.5 decision tree, SVM, decision tables and
supervised clustering. The SVM classifier was trained using
sequential minimal optimization (SMO).

V. RESULTS

A. IN-APP DETECTORS

The app gathers data, rotates the phone sensors’ axes to
conform with the direction of motion of the vehicle, pre-
processes it by filtering, extracts features and and uses them
to detect speedbumps/potholes on the road segment. In this
section we describe our design choices and decisions for
these detectors. The results of the classifiers serving as speed-
bump/pothole detectors and the timestamp of when the mea-
surments were recorded and their geolocation, were stored
in a file. The app opportunistically uploads this data to the
app database in the cloud whenever it connects to a WiFi
network. Table 4 and Table 5 show the performance of the
speedbump and pothole detectors, respectively. These results
were generated using the labeled training set described in
Section IV-B and using 10-fold cross validation.
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TABLE 4. In-app speedbump classifier performance.

Classifier | TP FP Precision| Recall | F- ROC
rate rate measure | Area

SVM 58.8% | 4.0% 81.3% 58.8% | 68.2% 88.7%

Naive 88.1% | 89.6% | 21.9% 9.6% 88.1% 17.4%

Bayes

C4.5 60.5% | 0.8% 66.5% 60.5% | 63.3% 72.4%

Decision | 63.8% | 3.8% 30.6% 63.8% | 41.4% 86.8%

Table

Sup. 0.0% 0.0% 0.0% 0.0% 0.0% 50.0%

Cluster-

ing

TABLE 5. In-app pothole classifier performance.

Classifier | TP FP Precision Recall | F- ROC
rate rate measure | Area

SVM 575% | 4.0% 83.4% 57.5% | 68.1% 90.1%

Naive 69.3% | 86.9% | 14.3% 15.6% | 69.3% 25.5%

Bayes

C4.5 63.8% | 1.2% 67.8% 63.8% | 65.7% 80.5%

Decision | 46.5% | 0.2% 88.7% 46.5% | 61.0% 84.4%

Table

Sup. 791% | 232% | 11.6% 79.1% | 20.2% 78.0%

Cluster-

ing

1) CLASSIFIERS FOR SPEEDBUMP DETECTOR

Since speedbumps are relatively rare occurrences on the road,
we chose to remove any classification algorithms with high
false positives (FP) rates from further consideration. Based
on the FP rates in Table 4, this disqualified naive Bayes.
Supervised clustering was dropped because it delivers a true
positives rate of 0%, making it completely useless. This
leaves us with SVM, C4.5 decision tree and decision table
which all have very similar performance in terms of TP
and FP rates. Of these three, SVM clearly outperforms C4.5
decision tree and decision table in terms of precision.

2) CLASSIFIERS FOR POTHOLE DETECTOR

A similar analysis of the same five classifiers for the pot-
hole detector rules out naive Bayes and supervised clus-
tering due to very high FP rates. Of the three remaining
candidates, decision tables have a significantly lower TP rate
than SVM and C4.5 decision tree, thus eliminating it from
further consideration. Between SVM and C4.5 decision tree,
SVM beats C4.5 in terms of recall, F-measure and ROC
area by significant margins. Therefore, we ended up selecting
two SVM classifiers for speedbump and pothole detectors.

B. IN-CLOUD DETECTOR

The app engine in the cloud receives the results of the in-app
speedbump and pothole detectors tagged with timestamps and
GPS coordinates. The in-cloud detector assigns each detected
speedbumps/potholes into a 2m x 2m bin on a map grid.
Presently, we are using a very simple threshold based in-cloud
detector: if more than N users report detecting a speedbump
(pothole) at a grid location, the location is marked as having
a speedbump (pothole). We set the threshold value of N for
Islamabad to 5. Thus, the final determination of whether a
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(b) CRATER app pothole map screen.

FIGURE 6. Screenshot of the app’s map screen showing the locations of
potholes as a heatmap layer on Google maps. (a) CRATER app home
screen. (b) CRATER app pothole map screen.

speedbump (pothole) is to be marked on the map is made
by consensus. In this way, the in-cloud detector filters out
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speedbumps (potholes) detected erroneously by the in-app
detector. The consensus-based results of the in-cloud detector
are then published to a website and also made available
through the app itself. Figure 6 shows the home screen and
the map screen showing locations of potholes as a heatmap
layer in the app. To test the output of the in-cloud detector, we
compared its detection results to manually marked potholes
and speedbumps on a roughly 10km route through the city.
The in-cloud detector yielded detection rates of about 90%
for potholes and 95% for speedbumps and false alarm rates
of about 10% and 5%, respectively. We attribute the 10% false
alarm rate to the poor quality of roads in general, even those
that are carpeted and not visibly in need of repair.

VI. CONCLUSION

In this study, we developed CRATER, an opportunistic
mobile crowd sensing application to estimate road conditions.
The design and development of CRATER was informed by a
number of systems for the same purpose that have been devel-
oped previously. CRATER distinguishes itself from prior
attempts at road condition measurement systems in that it
does not require any hardware beyond an Android phone with
GPS and accelerometers. The Android app that is part of
CRATER has been simplified to the point that contributors do
not need to engage in entering any data into the app. Instead,
we opted for a system design that relies on zero-input from
its users. Very significantly, the system does not require that
phones be placed in any particular location or orientation
inside moving vehicles.

Our findings show that CRATER’s final detection rates
for are approximately 90% for potholes and 95% for speed-
bumps. We attribute the difference in these detection rates
to the greater variety of potholes relative to the variety in
speedbumps which, even with varying lengths and heights,
are nevertheless intentionally built, unlike potholes.

A. FUTURE WORK
We realize that there are several other problems that can be
attacked with the kind of data being collected by CRATER’s
app. First, there is the fact that it may be possible to lever-
age the information in the high frequency components of
accelerometer readings to assess the quality and smoothness
of the surface of roads, i.e., whether a road is paved or not.
This could allow us to classify roads into several sub-types,
i.e., carpeted/paved, unpaved, gravel, dirt roads, etc.
Another problem that could be attempted is the detection of
traffic congestion on roads. Free-flow traffic conditions could
be established by tracking vehicle speeds at low-traffic times
during the day/night. Mobility traces from participating con-
tributors could then be used to identify traffic congestion by
identifying places where vehicle speeds significantly deviate
from earlier established free-flow traffic conditions.
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