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ABSTRACT Traditional wireless sensor networks (WSNs) face the problem of a limited-energy source,
typically batteries, resulting in the need for careful and effective utilization of the energy source. However,
inevitable energy depletion will eventually disturb the operation of a WSN. Energy harvesting (EH)
technology is acquiring particular interest, because it has the potential to provide a continuous energy
supply in battery-powered WSNs. Solar energy is the most effective environmental energy for EH-WSNs
because of its high energy intensity, which comes from a non-controllable source. Therefore, the prediction
of future energy availability is a critical issue, as the amount of the harvestable energy may vary over time.
In this paper, a novel solar energy prediction algorithmwith Q-learning, called Q-learning-based solar energy
prediction (QL-SEP), is proposed. Q-learning is an effective way of predicting future actions based on past
observations. The distinctive feature of QL-SEP is that not only past days’ observations but also the current
weather conditions are considered for prediction. The performance of QL-SEP is simulated in this paper
using real-world measurements obtained from a solar panel in comparison with the state-of-art approaches.

INDEX TERMS Energy harvesting, prediction algorithms, solar energy, wireless sensor networks.

I. INTRODUCTION
Wireless sensor networks (WSNs) are an emerging and
rapidly growing research area with a wide spectrum of poten-
tial applications including environmental monitoring, indus-
trial, military and medical systems [1]. The importance of
WSNs lies in a practical and economic approach to enabling
continuous observation of real-world conditions within harsh
and mostly inaccessible locations with no human activity for
long periods of time. In order to limit the overall cost of
the devices which form a WSN, a large number of resource-
constrained sensor nodes which are capable of sensing, pro-
cessing and communicating collaborate to perform a common
task. A distinctive property of WSNs is random deployment
without access to external resources. A typical sensor node
relies on the finite capacity of an energy supply from an
initially full battery. A replacement or recharging of depleted
batteries is often impractical, which renders nodes with
exhausted energy non-operational. Emphasis has, therefore,
been critically placed on energy efficiency, thereby maximiz-
ing the lifetime of WSNs. To achieve this, the capacity of the
power source must be utilized effectively. Energy efficiency
is the priority in the design of WSNs with traditional perfor-
mance metrics forming the secondary criterion.

It is well-known that the mechanism of wireless com-
munication consumes more energy than computation and
sensing. Efficient utilization of radio capability is there-
fore of paramount significance. The main sources of energy
wastage in a sensor network include overhearing, idle lis-
tening, control packet overhead and retransmissions. Over-
hearing means that a node receives packets which are not
directed to itself. Sensor nodes spend a major amount of
energy listening to an ideal channel for possible incoming
packets. Before actual packet transmission starts, the sensor
nodes exchange control packets to ensure successful trans-
mission. It is commonly assumed in simulation and analytical
models that when more than one packet arrives at a receiver
simultaneously, these packets collide either fully or partially.
The collided packets are believed to be corrupted and lost
and they must be re-transmitted. However, a recent practical
study proved that the first-arriving packet among the collided
packets could be received with success through the capture
effect [2]. As a result, these causes of energy wastage could
be minimized in an efficient manner.

Medium access control (MAC) protocols determine the
rules of channel access in order to avoid the unneces-
sary energy wastage described above. The prime role of
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MAC protocols is to provide successful operation for packet
transmission while achieving a good level of energy effi-
ciency. Many MAC protocols specifically designed for
resource-constrained WSNs have been proposed in order to
enhance the performance of theWSNs in terms of energy effi-
ciency, channel throughput and overall delay [3]–[5]. These
protocols have provided significant performance improve-
ments, in particular impacting on overall energy consump-
tion. Unfortunately, the performance of most protocols has
only been evaluated using simulation tools which makes the
feasibility of the protocols in practical scenarios questionable.
Therefore, the complexity and overheads of the protocols
must be smoothly arranged in order to meet the resource
constraints of the sensor node, such as limited memory and
transmission range. Although MAC protocols do extend the
lifetime of WSNs by assigning intelligent and efficient trans-
mission policies, inevitable energy depletion will eventually
interrupt the operation of the sensor node, gradually degrad-
ing the lifetime of the entire WSN. This opens a new research
direction for the long-term, maintenance-free operation
of WSNs.

FIGURE 1. Structure of an EH node harvesting solar energy.

Energy harvesting (EH) from the surrounding environ-
ment has recently come to be regarded as a superior way
of prolonging the lifetime of WSNs, in that an energy har-
vesting unit is employed to remove the burden of having
to replace/recharge exhausted batteries. Recent studies in
EH technology have revealed the development of new types
of sensor node which have the capability of harvesting ambi-
ent energy [6], as illustrated in Fig. 1. The fundamental
concept of exploiting environmental energy is the conversion
of the harvested energy into electricity in order to ensure the
energy burden of the sensor nodes. A storage component,
typically a rechargeable battery or super-capacitor, is often
used to accumulate the harvested energy.

EH sensor nodes continuously harvest an ambient source
of energy in order to avoid the depletion of energy,

resulting in a perpetual lifetime for a battery. This has,
of course, changed the fundamentals of MAC protocols as
energy is now potentially infinite, leading to the development
of new MAC protocols for EH-WSNs. The main task of
such protocols is to maximize energy utilization efficiently.
A number of MAC protocols have been proposed for
EH-WSNs with the aim of maintaining the perpetual oper-
ation of EH-WSNs [7]. To achieve a perpetual lifetime, the
existing protocols follow the condition of energy neutral
operation (ENO). The nodes satisfying the ENO condition
harvest more energy than they consume within a specified
time duration. One of the main challenges is the time-variable
and space-dependent environment which limits the amount
of available energy to be harvested. The level of ambient
energy depends highly on the current environmental condi-
tions which can exhibit significant fluctuations. Therefore,
the time-varying nature of environmental energy poses a new
challenge because of the uncertainty of the availability of
ambient energy. Many of the current MAC protocols check
the residual energy level in order to coordinate the commu-
nication. However, predicting future energy availability as
accurately as possible is an important property for reconciling
a varying energy source with a fixed demand. It is believed
that an accurate estimation of future energy level should be
integrated in the design of MAC protocols. With accurate
energy prediction, nodes can save some parts of current
energy for future use. This avoids facing temporary energy
shortages when the energy falls below a critical level nec-
essary to transmit important information. Therefore, careful
prediction of future energy levels at specific time durations
opens a new perspective.

The majority of the proposed prediction algorithms have
attempted to predict solar energy because of its advantages
over other forms of environmental energy [8]. Solar energy is
the most effective energy source for EH-WSNs because it has
the highest power intensity. Another key distinction of solar
energy is that it has a periodic cycle which makes its pre-
diction possible, subject to prediction errors. Fig. 1 presents
an example architecture of an EH sensor node with the sun
as the energy source, a solar panel to produce energy from
the sun, and a super-capacitor to store the harvested energy.
A popular way of predicting solar energy is to exploit the
historical summary of an energy harvesting profile. Energy
generation patterns from past days are observed to predict
the current energy generation rate. Not only the past days’
energy generation pattern but also the current weather condi-
tion are vital to minimizing prediction errors in particular in
frequently changing weather conditions.

In this paper, a new solar energy prediction algorithm
which considers the current weather conditions to accurately
predict the available energy is proposed. The Q-learning
method is employed to determine the accuracy of current
weather conditions [9]. We therefore call the algorithm
‘Q-learning based solar energy prediction’ (QL-SEP).
In order to demonstrate the performance of QL-SEP, we
evaluated it using real measurements obtained from a solar
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panel in 2015 [10]. The performance results show that
QL-SEP makes more accurate prediction than other state-of-
art approaches. The rest of this paper is organized as follows.
Existing work on MAC protocols for EH-WSNs is summa-
rized in section II. Section III presents detailed descriptions of
solar energy prediction algorithms. The underlying basics of
QL-SEP are presented in section IV. The performance outputs
are presented in Section V. Finally, Section VI concludes the
paper and possible directions for future work are discussed.

II. MEDIUM ACCESS CONTROL FOR EH-WSN
The majority of the MAC protocols proposed for traditional
battery-powered WSNs have focused on the concept of a
duty-cycle in order to effectively arrange the sleep and active
times of radio with the aim of reducing energy consumption.
EH technology has revealed a new perspective in the field
of WSNs and has attracted increasing significant attention.
Designing new MAC protocols for EH-WSNs appeals to
researchers in a few of the proposed schemes. These schemes
are summarized next with their operating principles and
underlying features.

SensorMAC (S-MAC), perhaps the most popular andmost
studied MAC scheme, introduced the concept of a duty cycle
which inspired the design of many MAC protocols centering
on the theme of S-MAC [11]. It has a fixed duration duty-
cycle period. Emphasis has been therefore placed on the
design of new schemes which are designed to adaptively
adjust the nodes’ active and sleep periods. The throughput
performance of S-MACwith energy harvesting has been stud-
ied in a solar-based, energy-harvesting environment [12]. The
achievable throughput is derived from an analytical model of
an energy harvester based on the impact of the duty cycle of
sensors. A suitable range for choosing the duty cycle was also
discussed in order to provide the desired network lifetime
depending on application-level requirements. The relation-
ship between the average energy level and the duration of
the duty cycle was developed by a queueing model. As a
result, it was shown that the average energy level is a function
of the duty cycle. In [13], two dynamic duty-cycle schedul-
ing schemes were proposed to shorten nodes’ duty cycles
and provide a good balance of energy consumption among
sensor nodes. The current residual energy level is the only
criterion for calculating the duty cycle in the first scheme.
Due to the fluctuations in energy-harvesting opportunity, the
second scheme improved the first scheme by including the
prospective increase in residual energy. With the estimation
of such prospective energy increases, the duty cycle can be
reduced more quickly. This is achieved by estimating the
difference between the energy-harvesting rate and the energy-
consumption rate at the beginning of every duty cycle.

ODMAC, an on-demand MAC protocol, was proposed to
support individual duty cycles letting nodes operate in the
ENO state by exploiting the maximum harvested energy [14].
It exploits the fact that sensor nodes often have low traffic
in order to remove the burden of idle listening by Carrier
Sensing. Therefore, sensor nodes will turn their radios off

most of the time, which reduces the energy wastage par-
ticularly at the transmitter end. The receiver sends out a
beacon packet periodically to broadcast its availability to
accept possible incoming packet transmissions. This is to
eliminate idle listening at the receiver end. Nodes which
have packets to be transmitted listen to the channel to hear
an appropriate beacon to start transmission. Upon reception
of the beacon, the associated transmitter attempts to trans-
mit its packets to the source of the beacon. The duration
of the carrier sensing and beacon is dynamically decided
according to the current energy-harvesting rate. The concept
of an opportunistic forwarding technique is incorporated to
reduce the long waiting time of the beacon when a receiver
has a high duty-cycle period. In this way, packets without
a beacon are opportunistically transmitted to the sender of
first beacon received which has woken up first. A drawback
of ODMAC is the lack of retransmissions, so the successful
reception of packets is not acknowledged, which might result
in discarding all the packets involved in collisions.

EH-MAC is an ID-polling-based MAC protocol proposed
for multi-hop EH-WSNs and it achieves high channel perfor-
mance in terms of network throughput and fairness [15]. The
distinctive feature of EH-MAC is that it uses a probabilistic
polling mechanism in which the polling packet contains a
contention probability, pc, in order to alleviate the likelihood
of packet collisions. Instead of broadcasting the ID of a
sensor, the contention probability is sent in the polling packet.
Then, the nodes receiving the polling packet decide whether
to transmit or not. These nodes generate a random number
in the range from 0 to 1 and compare pc with the generated
number to make the decision. The nodes with a pc greater
than the generated number start transmission. One node out
of all the nodes is ideally expected to send its packet suc-
cessfully. The value of pc is dynamically adjusted depending
on the response of the nodes. In particular, the pc reduces
collisions and it remains at its current value with successful
reception. If the sink detects nothing after sending the polling
packet on the channel, it increases the pc. It has been shown
that the optimum pc that maximizes throughput is 1/nactive,
where nactive represents the total number of estimated active
nodes that are able to receive the polling packet.

ERI-MAC is a receiver-initiated MAC protocol for
EH-WSNs designed to dynamically adjust the duty cycle
of the nodes considering the energy-harvesting condition
of the network [16]. It uses a carrier sensing multiple
access/collision avoidance (CSMA/CA) scheme to avoid col-
lisions. ERI-MAC has a similar packet transmission schedule
to that of ODMAC and EH-MAC. When a transmitting node
receives the expected beacon, it immediately transmits a data
packet. The tiny beacon packet contains the address of its
source node to announce the node’s availability. Successful
packet transmission is confirmed by a small acknowledge-
ment (ACK) packet which is also used as a new beacon.
ERI-MAC employs a packet concatenating scheme to aggre-
gate several small packets into a bigger packet. The purpose
of this is to reduce the cost of overheads of exchanging
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control packets as well as to improve the latency and energy
efficiency. It is assumed that the energy-harvesting rate is
a constant, so the performance of the protocol with a time-
varying energy-harvesting profile is realistically unknown.
Also, the latency is only considered for performance metrics
which do not reflect the actual performance in terms of net-
work throughput.

III. SOLAR ENERGY PREDICTION APPROACHES
In this section, state-of-the-art solar energy prediction algo-
rithms are reviewed and their operating principles and under-
lying properties are described. The characteristic of the solar
energy model for EH-WSNs is also described in order to
enable further understanding of the design trade-offs of the
approaches.

FIGURE 2. Repeating time slots with 24-slots.

A. FUNDAMENTALS OF THE SOLAR ENERGY
MODEL FOR EH-WSNs
Studies into renewable energy generation for solar-powered
systems often refer to predicting the total amount of
energy harvested in a large-scale implementation, typically
a year [17]. In a WSN’s domain, accurate prediction of short-
term energy, from a fewminutes to a few hours, is particularly
important for avoiding short-term energy shortages as sensor
nodes are required to operate whenever an environmental
feature is sensed. Therefore, current prediction algorithms
for EH-WSNs focus mainly on the estimation of the near
future energy availability with as small a prediction error as
possible. Solar energy, because of the rotation of the earth, has
a diurnal cycle in which consecutive days are likely to exhibit
similar weather conditions. Existing approaches exploit the
diurnal cycle of solar energy by dividing a complete day into
equal-length time slots as depicted in Fig. 2. The prediction
of energy for each slot is derived at the onset of the associated
slot. The length of a time slot depends on the application
requirements and resources. It is typically set to one hour, so
that each day is composed of 24 slots of one-hour duration.
The purpose of splitting a day into slots is to observe the
energy generation profile of past days in each slot and to
record it in order to predict the current energy level accurately.

B. EXPONENTIALLY-WEIGHTED MOVING
AVERAGE (EWMA)
EWMA is the most popular and used algorithm and has
inspired the development of many prediction approaches
in the literature benefiting from the diurnal cycle in solar
energy [18]. It assumes that the energy generation profile

at a particular time slot of the day exhibits similar behavior
within the same slot to that of previous days. The fundamental
principle of EWMA is to adapt to seasonal variations by
maintaining the amount of harvestable energy in each time
slot as a weighted average of energy available over a set
of previous days. Therefore, EWMA considers the histori-
cal information of an energy generation profile combining
the energy estimated and the energy harvested as presented
in Equation 1.

E(d, n) = αE(d − 1, n)+ (1− α)H(d − 1, n) (1)

FIGURE 3. EWMA energy prediction in January 2015.

Where d represents the current day and n is the slot number.
EWMA sums the last amount of harvested energy (H) and
estimated energy (E) with a weighting factor, 0 < α < 1,
arranging the importance of the R and E. Small values of α
correspond to higher importance of last-harvested energy and
vice-versa. An accurate choice of α value would have a sig-
nificant influence in adapting to seasonal weather variations.
It was set to a constant value in all the algorithms described.
The main drawback of EWMA is its vulnerability in fre-
quently changing weather conditions. In particular, EWMA
produces significant prediction errors when there is a mix
of sunny and cloudy days. EWMA can be considered as
a baseline scheme which takes seasonal solar energy into
consideration, resulting in high levels of incorrect predic-
tions with frequently changing solar conditions. In order to
reduce the prediction error rate for non-consistent weather
conditions, the current solar conditions should be integrated
into the estimation of energy. In order to demonstrate the
prediction behavior of EWMA in frequently changing solar
conditions, Fig. 3 presents the prediction accuracy of EWMA
in January 2015 and we shall discuss the prediction results for
the whole year in detail later on.

C. ACCURATE SOLAR ENERGY ALLOCATION (ASEA)
ASEA uses the foundations of EWMA in order to provide
optimal allocation of the periodically harvested solar energy
in sensor nodes [19]. It is designed to reserve an adequate
amount of energy for future use in case the environmental
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energy is insufficient or unavailable. Operating a sensor node
perennially at a constant level requires an accurate prediction
of future energy availability. This minimizes the variations in
allocated energy in each time slot. To do this, it modifies the
EWMA to cope with the drawback of EWMA. ASEA intro-
duces a new parameter, ψ , into Eq. (1) reflecting the current
solar conditions. The modified equation can be given as:

Ē(d, n) = E(d, n) · ψ where ψ =
H (d, n− 1)
E(d, n− 1)

(2)

Whereψ represents the ratio between the actual amount of
energy harvested and the energy estimated by EWMA based
on the previous slot. The expected energy, Ē , is calculated by
multiplying the energy expectation by EWMA with the ψ .
The value of ψ is calculated at the beginning of each time
slot. ASEA considers only the condition in the previous
slot, which might result in significant prediction errors for
short-term varying weather conditions. A temporary weather
change in the current slot would lead to inaccurate prediction
for the next slot. The performance of ASEA was evaluated
over a period of ten days in the month of July. It is clear that
the weather does not change very frequently in the summer.
It is believed that a ten-day evaluation might not reflect the
actual performance of the scheme. Although the key proper-
ties of ASEA have been tested sufficiently, the scale of the
experiments has been rather small.

D. WEATHER-CONDITIONED MOVING AVERAGE (WCMA)
WCMA is another algorithm designed to handle the deficien-
cies of the EWMA and considers both current and past day
solar conditions [20]. It collects the energy values of past
days and store them in a matrix, E(i, j), where j is a sample
on the ith day. Instead of maintaining a weighted-average as
in EWMA, WCMA incorporates the energy harvested in the
previous slot into the prediction equation. The average of a
number of energy values also contributes to the prediction
equation. The prediction equation for a particular slot is
therefore related to the energy in the previous slot, and the
mean value of the corresponding slot for a number of days
and current solar conditions is given in Equation 3.

E(d, n) = αH+ (1− α)M(d, n)GAP(d, n,K) (3)

Here, M represents the average value of the sample,
H is the actual harvested energy in the last slot and GAP is
the new weighting factor which reflects the solar condition in
the present day. The average value of the nth sample on the
dth day is calculated for D past days:

M(d, n) =

d−1∑
i=d−D

E(i, n)

D
(4)

The GAP value is a measurement of the current solar
conditions, basically observing how the behaviour of a solar
energy generation profile in relation to previous days varies
for K number of past slots. To compute the GAP value
for the past K samples, a vector V with a size of K,

V = [V1, V2, . . . ,VK], is defined to indicate each value
of the past K samples. Each sample denotes the ratio of the
harvested energy to the mean value:

Vk =
E(d, n− K + k)
M(d, n− K + k)

(5)

Once the elements of the V vector are calculated, these val-
ues are weighted according to their distance from the actual
sample. This is to give more importance to closer samples
and less importance to far samples. To do this, a vector,
P = [p1, p2, . . . , pK], is defined as follows:

pk =
k
K

(6)

Each element in the P vector is actually inversely propor-
tional to the distance from the current value pk. Therefore,
GAP value is finally calculated as:

GAP =
V · P∑

P
. (7)

E. THE PROFILE ENERGY PREDICTION
MODEL (PRO-ENERGY)
Pro-Energy also exploits past days’ energy harvesting profile
in order to forecast future energy intake. Pro-Energy consid-
ers the amount of energy harvested in the previous slot as in
WCMA. Similarly, a matrix, E(i, j), maintaining the energy
harvested in the past of D days is derived. The distinctive
feature of Pro-Energy is that the most similar day to the
current day in terms of energy generation is obtained from
the E matrix. Therefore, a combination of energy observed
in the previous slot and the energy from the most similar
day contribute to predicting the current energy as presented
in Equation 8.

Ê(d, n) = αH+ (1− α)EMS (8)

Where H represents the amount of the energy harvested in
the previous slot and EMS is the energy observed in slot n
in the most similar day. In order to determine the similarity
level of D previous days to the current day, the mean abso-
lute error (MAE) in each stored day for K previous slots
up to current slot is computed. The day with the lowest
MAE is selected as the most similar day. Pro-Energy keeps
track of a pool of D typical previous profiles, each of which
represents a different solar condition. The stored profile is
dynamically updated for the adaptation of predictions against
changing seasonal patterns. Pro-Energymakes the decision to
update the pool to the present day according to two criteria:
(1) a stored profile is allowed to stay in the pool up to A days;
the current day profile can be substituted for a day which was
stored for longer than A days, and (2) if two similar profiles
are detected, the current day is replaced with the one that is
most similar to it.

In order to further improve the accuracy of predictions,
Pro-Energy suggests combining multiple profiles instead of
extracting the value from the most similar day. The purpose
of this is to consider potential variations in weather by which
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a single profile might result in poor performance. To achieve
this, the elements of E are sorted with respect to their MAE.
The sorted list can be given as Es1, Es2 . . . ,EsP including
P profiles. A weighted profile (WP) is then computed to
replace the EMSin Equation 8:

WP =

P∑
j=0

wj · Esj

P− 1
(9)

Where

wj = 1−
MAE

(
Esj,C

)
P∑
j=1

MAE
(
Esj,C

) (10)

Therefore, the final energy prediction equation with the
multiple profile is:

Ê(d, n) = αH+ (1− α)WP. (11)

IV. QL-SEP: A SOLAR ENERGY PREDICTION
ALGORITHM WITH Q-LEARNING
In this section, a new solar energy prediction approach
is introduced for EH-WSNs which exploits the historical
information of past-days’ energy generation and the most
recent weather conditions in the present day. The pro-
posed approach, a solar energy prediction algorithm with
Q-learning (QL-SEP), relies on the assumption that solar
energy exhibits a cycle as a periodic energy source in which
the time domain is split into equal-length slots repeated daily.
This motivates the performance of energy predictions at the
onset of each slot. It is believed that EWMA is an efficient
way of observing long-term seasonal conditions with no
mechanism for adapting to relatively short-term (hourly or
daily) variations. QL-SEP takes advantage of the properties
of EWMA in that a feature acquiring the status of the current
solar condition is employed. To do this, QL-SEP updates
Equation 1 with a new parameter, called the daily ratio (DR),
as presented in Equation 11.

EQL-SEP = EEWMA · (1+ DR) (12)

FIGURE 4. QL-SEP energy prediction architecture.

The DR represents the trend in the current solar energy
generation, particularly investigating the behavior of the solar
energy in the most recent slots. The increase/decrease ratios
(either positive or negative) in the harvested energy of pre-
vious slots determine the value of DR. In order to sim-
plify this, DR can be considered as the average of energy
increase/decrease ratios in the previous slots. For example, if
there is an increase of 20% in the previous slots on average,
the DR becomes 0.2. The simplified architecture of QL-SEP
is shown in Fig. 4.

When forecasting energy in a particular slot, the prediction
accuracy in the previous slots is important information. The
question of how accurate a prediction is in a previous slot
ideally gives us a direction not to only consider the equal
contribution of previous slots (the increase/decrease ratio)
in relation to the prediction of the current slot. Therefore,
each slot in QL-SEP maintains a level of prediction accu-
racy which represents the reliability of prediction in the slot.
This leads to combining the increase/decrease ratios and
the reliability of prediction in order to significantly endow
the predictions with high reliability. This is achieved by
Equation 13:

DR =

N∑
i=1

Pe (i) · R (i)

N
(13)

Where Pe indicates the prediction error and R is the relia-
bility level. In order to give greater importance to the closer
time slots as the most recent slots would carry the most
recent information, this multiplication, similar to WCMA,
is weighted by the increasing index (i). Eventually, the daily
ratio, DR, is computed as:

DR =

N∑
i=1

Pe (i) · R (i) · i∑
i

(14)

It is obvious that the choice of reliability (R) is a funda-
mental challenge. It basically represents the goodness level
of the prediction and should be explicitly explored in order
to identify the best choice. Therefore, exploitation of long-
term experience of predictions would sufficiently provide a
robust level of R. On the other hand, the mechanism for R
is required to respond quickly in non-stationary conditions.
Q-learning is an efficient way of exploring the current behav-
ior of an action based on the experience already obtained [22].
It allows determination of an optimum solution using a
reward function represented by a numerical value. The solu-
tion indicates the desirability of the action in the form of
numerical values, referred to as Q-value which is calcu-
lated as:

Qt+1(s) = Qt (s)+ γ (r − Qt (s)) (15)

Where s indicates the slot identifier, r is the current reward
function and γ is the learning rate. The R signal typically
takes a value of+1 for positive feedback and−1 for negative
feedback. Consecutive positive feedback will increase the
Q-value to converge to a value very close to +1, whereas a
sequence of negative feedback reduces the associatedQ-value
to −1. The learning rate, γ , has a similar task to that of
the weighting factor, α, controlling the speed of Q-value
increase/decrease. It is often set at a small value, impacting
critically on the Q-value update. The impact of the varying
learning rate on the behavior of the Q-value update is pre-
sented in Fig. 5. The Q-value of an action is usually set at 0
as a default. The results tell us that it takes longer to con-
verge to +1 whereas the Q-value reduces to 0 more quickly.
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FIGURE 5. Q-value updates in two cases: (a) best case: all positive and
(b) worst case: all negative.

This property, the rapid decline of the Q-value, enables a
fast response to long-term change. However, this issue may
degrade the level of robustness against infrequent changes.
For a learning rate of 0.1, only seven consecutive negative
feedbacks cause the Q value to return to 0, but there should be
fifty sequences of positive feedback to maintain the Q-value
at +1.
QL-SEP employs a Q-learning approach in which each slot

is initiated with a Q-value independently to denote the relia-
bility level of this slot. The Q-value of each slot is initialized
to +1 on start-up as each slot has had no action so far and
has the same reliability. Therefore, the value of R for a slot
in Equation 13 is assigned to the Q-value of the slot. The
next step is to define the conditions for updating the Q-value,
either positive or negative. The Q-value of a slot is updated at
the end of the slot in association with the overall prediction
error ratio (OPER) in 24 slots. A prediction error ratio (PER)
in a slot is compared with OPER. If PER is lower than OPER,
R takes a positive value (+1), otherwise r takes a negative
value (−1). Therefore, a PER higher than OPER is accepted
to be a poor prediction. Another important parameter to set
is the learning rate, which is typically set at a constant value.
However, this is not a practical solution because errors occur
at different extents. We therefore introduced a new dynamic

modification of the learning rate value. The main motivation
behind this modification was to reduce the Q-value more
aggressively when the PER is high. In this strategy, the
modified learning rate is obtained by multiplying the initial
learning rate by the PER, if r has taken the negative value. For
example, let the γ be 0.1 and the PER be 0.5: the modified
learning rate will be 0.05 (0.1∗0.05). Another example with
a γ of 1 results in a modified learning rate of 0.1. Therefore,
increasing the PER will produce more rapid reduction of the
Q-value. The PER for a single slot is calculated as:

PER =

∣∣∣∣H − PP

∣∣∣∣ (16)

Where H is the actual harvested energy in the slot and P is the
predicted energy value from QL-SEP. Finally, the DR can be
calculated as:

DR =

N∑
i=1

(H−P
P

)
· Q (i) · i∑
i

. (17)

V. PERFORMANCE EVALUATION
The performance of QL-SEP in comparison with that of
EWMA, ASEA and Pro-Energy was evaluated using real-life
solar data obtained over a one-year period in order to establish
the ideal performances of the schemes [10]. WCMA was not
considered in the performance comparisons as Pro-Energy
already outperforms it. Previous experiments on ASEA per-
formance only covered a period of ten days in July 2008
which may not reflect the actual performance of the scheme.
Pro-Energy used the same datasets as in QL-SEP, consisting
of 90 days solar data. Therefore, this section also extends the
implementations of the schemes by testing their behaviour
in all months. Performance evaluations over longer periods
would strengthen the accuracy of the schemes.

It was important to set appropriate experiment settings to
allow all schemes to achieve their optimum performance. The
total number of time slots in a day was set at 24 so that a
whole day was represented by 24 time slots each of which
corresponded to a one-hour duration. In Pro-Energy, D (the
number of previous energy profiles stored), K (the number of
previous slots for comparing the stored energy profiles) and
P (the number of combined profiles) were set at 10, 7 and 5
respectively, as suggested in the original paper. In QL-SEP,
N (the number of previous slots up to the current slot) and
γ (the learning rate in Q-learning) were set at 3 and 0.1
respectively. The parameter N had to be carefully assigned
in order to balance the effect of past samples in which the
effect of earlier slots was lowered. For example, the energy
generation pattern during the morning should have no effect
in the afternoon.

It is worth noting that the weighting factor has a high influ-
ence on prediction accuracy. As the results presented in Fig. 6
show, the performance of all schemes depends deeply on the
choice of the weighting factor value. We can see that EWMA,
ASEA and QL-SEP exhibited similar curves because they
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FIGURE 6. Prediction error ratios under various weighting factors.

applied to the same architecture. ASEA improved the per-
formance of EWMA slightly by observing the energy gen-
eration in only the last slot. QL-SEP further improves the
prediction accuracy of EWMA and ASEA as well as that
of Pro-Energy with an exception of the weighting value
of 0.2. The results show us that high and low values of α in
EWMA, ASEA and QL-SEP provide inaccurate predictions,
whereas medium values of α, 0.4 < α < 0.9, ensure more
accurate predictions. In EWMA and ASEA, therefore, the
estimated average energy (E) and the harvested energy (H)
should contribute closely to achieving accurate predictions.
In general, QL-SEP had a superior performance because it
carefully observes the current solar conditions. Pro-Energy
had opposite performance results as it relies on the energy
harvested in the previous slot and the energy trends observed
in previous days. Small values of α ensure performance
enhancements meaning that low values of α mean a low
contribution of energy in the previous slot. Increasing α leads
to performance degradations as Pro-Energy does not adapt to
current weather conditions, with a reduced contribution of the
typical previous profiles in such settings. Therefore, one of
the main conclusions of this study in terms of highly accurate
energy prediction is to reconcile the past energy generation
profile with the current energy pattern.

It is well-understood that solar energy has a low intensity
in the morning, increases from morning to afternoon and is
almost absent at night. A small prospective increase/decrease
in the predicted energy can cause a high prediction error ratio,
especially in morning slots. For instance, assume that the
estimated energy is 1 energy unit and the harvested energy is
1.5 units. In this case, the prediction error ratio is 50% (0.5).
In order to demonstrate this variation, Table 1 presents the
average prediction error ratios for four slot ranges. Note
that we did not include the night slots as there is no solar
energy to be harvested at night. We can see that for slots 6-9
the maximum prediction errors occurred due to insufficient
knowledge of past energy generation. ASEA checked the
status of the most recent slot which can increase the error
ratio for the reason described above (morning slots face high
error). QL-SEP had a slightly better performance because

TABLE 1. Prediction error ratios for various slot ranges, α = 0.7.

it considered the status of a number of previous slots, in
particular more accurate predictions could be obtained in
slots 8 and 9 because of the observations in slots 6 and 7.
Pro-Energy was the worst scheme as finding the most similar
circumstances could not be performed effectively because
of an inadequate number of previous slots for comparison.
EWMA generally produced similar results for each range on
average. During the ranges of the 10-12 and 13-15 slots, all
the schemes achieved their best performance as sufficient
knowledge about the current solar conditions was gained.
Pro-Energy was the second best scheme because it explored
the most similar day. It nevertheless experienced a signifi-
cantly wrong energy profile for a particular slot, even if the
most similar day was found with the lowest total prediction
error. QL-SEP was able to adapt to temporal change quickly
as it checks the status of the most recent slots which makes
it the best scheme in all aspects. Similarly, the slot range of
16-20 suffered from the same low solar intensity as in the
morning slots.

TABLE 2. Prediction error ratios for months, α = 0.7.

We next present the overall prediction error ratios for
each month in Table 2. The results clearly show that the
best predictions were achieved in the summer as weather
conditions do not change very often then. EWMA typically
outperformed ASEA and Pro-Energy as seasonal variation
has a lower impact. A temporary change, such as unexpected
cloudy weather for a few slots, would cause high error rates.
In the winter, all of the schemes performed badly because of
the frequently changing weather conditions.

Another important property is the range of prediction error
which can give us an insight and enable us to understandmore
deeply the behavior of the predictions. Table 3 presents the
specifically-ranged prediction errors. QL-SEP andASEAhad
more than half of their predictions below an error ratio of 0.2,
whereas EWMA and Pro-Energy predicted almost half of the
energy below 0.3. The table proves that QL-SEP is the best
scheme and that ASEA comes next. Note that Pro-Energy had
approximately 8% of its predictions higher than an error ratio
of 1, which is why Pro-Energy is prone to finding the wrong
energy profile. It can be concluded that high prediction errors
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TABLE 3. Range of prediction error ratios, α = 0.7.

occur when the solar intensity is very low. For instance, a few
units of energy are harvested in morning slots but hundreds
of energy units can be harvested at noon. Therefore, high
prediction errors in terms of the amount of energy harvested
may not have a significant impact on the operation of sensor
nodes.

VI. CONCLUSION
The energy harvesting (EH) process has the potential to
supplement energy to power sensor nodes and allow them
to operate perpetually. However, solar energy has an uncer-
tainty about the availability of future energy which makes the
optimum use of solar energy a difficult task in sensor nodes.
In order to allocate the optimal energy among the sensor
nodes in a WSN, energy-prediction algorithms are designed
with the aim of maximizing the performance of EH-WSNs.
This paper has presented the design and implementation of
a novel prediction algorithm which has been shown to out-
perform all the current state-of-art algorithms. The proposed
scheme carefully checks the current solar conditions to adapt
to variations in the present day. The performances of the
proposed scheme and of the state-of-art approaches have been
tested using real–life traces of the harvested energy obtained
from the US National Renewable Energy Laboratory. The
performance results validate that our algorithm has better per-
formance in long-term evaluations. The proposed algorithm
can be incorporated into the development of the current and
future MAC protocols in order to forecast the amount of the
energy to be harvested within a particular time slot, thereby
improving the performance of WSNs through managing the
energy level of the sensor nodes intelligently.

REFERENCES
[1] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, ‘‘A survey

on sensor networks,’’ IEEE Commun. Mag., vol. 40, no. 8, pp. 102–114,
Aug. 2002.

[2] S. Kosunalp, P. D. Mitchell, D. Grace, and T. Clarke, ‘‘Experimental study
of capture effect for medium access control with ALOHA,’’ ETRI J.,
vol. 37, no. 2, pp. 359–368, 2015.

[3] I. Demirkol, C. Ersoy, and F. Alagoz, ‘‘MAC protocols for wireless sensor
networks: A survey,’’ IEEE Commun. Mag., vol. 44, no. 4, pp. 115–121,
Apr. 2006.

[4] M. A. Yigitel, O. D. Incel, and C. Ersoy, ‘‘QoS-aware MAC protocols
for wireless sensor networks: A survey,’’ Comput. Netw., vol. 55, no. 4,
pp. 1982–2004, Jun. 2011.

[5] P. Huang, L. Xiao, S. Soltani, M. W. Mutka, and N. Xi, ‘‘The evolution of
MAC protocols in wireless sensor networks: A survey,’’ IEEE Commun.
Surveys Tut., vol. 15, no. 1, pp. 101–120, 1st Quart., 2013.

[6] S. Sudevalayam and P. Kulkarni, ‘‘Energy harvesting sensor nodes: Sur-
vey and implications,’’ IEEE Commun. Surveys Tut., vol. 13, no. 3,
pp. 443–461, Sep. 2011.

[7] S. Kosunalp, ‘‘MAC protocols for energy harvesting wireless sensor net-
works: Survey,’’ ETRI J., vol. 37, no. 4, pp. 804–812, 2015.

[8] C. Bergonzini, D. Brunelli, and L. Benini, ‘‘Algorithms for harvested
energy prediction in batteryless wireless sensor networks,’’ in Proc. IEEE
Int. Workshop Adv. Sensors Int., Jun. 2009, pp. 144–149.

[9] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction,
vol. 1. Cambridge, MA, USA: MIT Press, 1998.

[10] (2016). NREL: Measurement and Instrumentation Data Center. [Online].
Available: http://www.nrel.gov/midc/

[11] W. Ye, J. Heidemann, and D. Estrin, ‘‘An energy-efficient MAC protocol
for wireless sensor networks,’’ in Proc. IEEE INFOCOM, Jun. 2002,
pp. 1567–1576.

[12] N. Tadayon, S. Khoshroo, E. Askari, H. Wang, and H. Michel, ‘‘Power
management in SMAC-based energy-harvesting wireless sensor net-
works using queuing analysis,’’ J. Netw. Comput. Appl., vol. 36, no. 3,
pp. 1008–1017, May 2013.

[13] H. Yoo, M. Shim, and D. Kim, ‘‘Dynamic duty-cycle scheduling schemes
for energy-harvesting wireless sensor networks,’’ IEEE Commun. Lett.,
vol. 16, no. 2, pp. 202–204, Feb. 2012.

[14] X. Fafoutis and N. Dragoni, ‘‘ODMAC: An on-demand MAC protocol
for energy harvesting—Wireless sensor networks,’’ in Proc. ACM Symp.
Perform. Eval. Wireless Ad Hoc, Sensor Ubiquitous Netw., Nov. 2011,
pp. 49–56.

[15] Z. A. Eu andH.-P. Tan, ‘‘Probabilistic polling formulti-hop energy harvest-
ing wireless sensor networks,’’ in Proc. IEEE Int. Symp. Ad-Hoc Sensor
Netw., Ottawa, ON, Canada, Jun. 2012, pp. 271–275.

[16] K. Nguyen, V.-H. Nguyen, D.-D. Le, Y. Ji, D. A. Duong, and S. Yamada,
‘‘ERI-MAC: An energy-harvested receiver-initiated MAC protocol for
wireless sensor networks,’’ Int. J. Distrib. Sensor Netw., vol. 10, no. 5,
p. 514169, 2014.

[17] F. M. Mulder, ‘‘Implications of diurnal and seasonal variations in renew-
able energy generation for large scale energy storage,’’ J. Renew. Sustain.
Energy, vol. 6, no. 3, p. 033105, 2014.

[18] A. Kansal, J. Hsu, S. Zahedi, and M. B. Srivastava, ‘‘Power management
in energy harvesting sensor networks,’’ ACM Trans. Embedded Comput.
Syst., vol. 6, no. 4, Sep. 2007, Art. no. 32.

[19] D. K. Noh and K. Kang, ‘‘Balanced energy allocation scheme for a solar-
powered sensor system and its effects on network-wide performance,’’
J. Comput. Syst. Sci., vol. 77, no. 5, pp. 917–932, Sep. 2011.

[20] J. R. Piorno, C. Bergonzini, D. Atienza, and T. S. Rosing, ‘‘Prediction and
management in energy harvested wireless sensor nodes,’’ in Proc. IEEE
Wireless VITAE, May 2009, pp. 6–10.

[21] A. Cammarano, C. Petrioli, and D. Spenza, ‘‘Pro-energy: A novel energy
prediction model for solar and wind energy-harvesting wireless sensor net-
works,’’ in Proc. IEEE Int. Conf. Mobile Ad-Hoc Sensor Syst., Oct. 2012,
pp. 75–83.

[22] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
Cambridge, MA, USA: MIT Press, 1998.

SELAHATTIN KOSUNALP received the
B.Sc. degree in electronics and telecommuni-
cations engineering from Kocaeli University,
Kocaeli, Turkey, in 2009, and the M.Sc. degree in
communications engineering and the Ph.D. degree
in electronics engineering from the University
of York, York, U.K., in 2011 and 2015, respec-
tively. He is currently with the Department of Elec-
tricity and Energy, Bayburt University, Turkey.
He is an author of several refereed journal and con-

ference papers and has experience as a Reviewer for a number of conferences
and journals. His research interest lies in wireless sensor networks, medium
access control protocol design, energy harvesting technology, and real-time
embedded systems.

VOLUME 4, 2016 5763


