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ABSTRACT Recently, a frameworkwas given for linear error-correcting network codes (LENCs) over cyclic
networks on commutative rings. When the alphabet is considered as a rational power series ring, an LENC
is referred to as a convolutional error-correcting network code (CENC). Recently, a metric was introduced
for these codes based on the minimum rank distance. In this paper, a new metric is introduced for ring-based
LENCs over cyclic networks based on the Hamming distance, which is referred to as the network Hamming
distance. Then, some connections between maximum distance separable (MDS) LENCs and classical MDS
codes are obtained. Finally, the network Hamming free distance is given for CENCs, which plays the role of
the free distance for convolutional codes.

INDEX TERMS Linear error-correcting network code, commutative ring, network Hamming distance,
ML decoder, free distance.

I. INTRODUCTION
The channels of a point-to-point communication network are
not in general error-free, and in practice they can be affected
by different types of errors. As a result, error-correction
network coding was introduced. This was first introduced
for acyclic networks in [1]–[3], and the Hamming, Singleton
and Gilbert-Varshamov bounds were extended from classical
coding theory to network codes. It was assumed that the sinks
know the topology of the network, so these codes are referred
to as coherent network codes. There are two well-known
frameworks which have been proposed for coherent network
codes [4], [5].

A framework based on extended coding vectors was pre-
sented in [4]. The minimum rank distance was also intro-
duced which plays the same role as the minimum Hamming
distance in classical coding theory. In [5], the concept of
Hamming distance from classical coding was extended to
network codes over acyclic networks, which is referred to as
network Hamming distance. The error correction capability
of these codes was characterized in terms of this distance.
It was shown that the network Hamming distance of a code
is equal to its minimum rank distance. In these papers, the
refined version of the Singleton bound was independently
derived. A code attaining this bound with equality is referred
to as maximum distance separable (MDS). Algorithms to
construct MDS codes were proposed in [5] and [6].

The frameworks in [4] and [5] are restricted to acyclic
networks and cannot be directly applied to cyclic networks.
By changing the symbol alphabet from a field to a commuta-
tive ring such as a principal ideal domain (PID) or a discrete
valuation ring (DVR), the framework in [4] has recently been
extended from acyclic networks to cyclic networks [7]. The
refined version of the Singleton bound was also given for
ring-based codes over cyclic networks, and the existence of
MDS codes was confirmed.

In general, the concept of time does not exist in a commu-
tative ring, but in a rational power series ring over a finite
field F , denoted by F[(D)], D can play the role of time.
A linear error-correcting network code (LENC) with alphabet
F[(D)] is referred to as a convolutional error-correcting net-
work code (CENC). Similar to classical convolutional codes,
a semi-infinite formulation for these codes was given in [4]
using the concept of time. Based on this, the free distance
for classical convolutional codes was extended to CENCs
and is referred to as the rank free distance. Subsequently,
the generalized Singleton bound was extended to these codes
from classical convolutional codes.

In this paper, we focus on ring-based codes over cyclic
networks. We first extend the concept of network Hamming
distance from field-based LENCs over acyclic networks [5]
to ring-based LENCs. Then we generalize the refined Sin-
gleton bound and the refined Hamming bound from classical
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coding theory. We also establish some connections between
classical coding theory and network codes. The concept of
network Hamming free distance for CENCs is introduced as
a generalization of classical free distance. Finally, we show
that the network Hamming free distance of a code is equal to
its rank free distance given in [7].

The rest of this paper is organized as follows. In Section 2,
we provide some necessary background information and
notation. In Section 3, the concept of network Hamming dis-
tance is extended to ring-based LENCs over cyclic networks.
Then, we derive some bounds and properties of codes over
cyclic networks using results from classical coding theory.
The concept of network Hamming free distance for CENCs
over cyclic networks is introduced in Section 4, and some
properties of this distance are presented. Finally, a summary
of the paper is given in Section 5.

II. BACKGROUND AND NOTATION
In this section, we provide the necessary background, nota-
tion and definitions from [7] that will be used in the remainder
of the paper.

A. RING-BASED LENC FORMULATION
LENCs on cyclic networks over commutative rings [7] are
formulated as follows. A DVR is a PID with a unique max-
imal ideal. A rational power series ring over a finite field F ,
denoted by F[(D)], is a DVR with a unique maximal ideal
< D >, where < r > denotes the ideal generated by the
element r in F[(D)]. A finite field F is a DVR with a unique
maximal ideal < 0 >. These facts imply that field-based
linear network coding on acyclic networks and convolutional
network coding on cyclic networks can be considered as
special cases of ring-based linear network coding on cyclic
networks.

Consider a graphG = (V ,E), whereV andE are the sets of
nodes and edges, which represent the sets of nodes and chan-
nels of a network, respectively. Every edge is a transmission
channel with capacity one andmultiple channels between two
nodes are allowed. The symbol alphabet is considered to be
a PID P or DVR <. We assume that the network has only
one source node denoted by s. The source node s has rate k
which means it generates a message consisting of k symbols
for transmission through the network per use of the network.
The message is denoted by a vector x of size k . In general,
the source node s has no incoming channels, but we use the
concept of imaginary incoming channels for this node and
assume that these imaginary channels send the message x to
it. Hence, the source node s has imaginary incoming channels
d1′, d2′, . . . , dk ′, i.e. In(s) =

{
d1′, d2′, . . . , dk ′

}
.

By a ring R, we mean a PID or a DVR. A k-dimensional
R-based linear network code C

(
kd,e

)
, or simply C , on a

network is defined by kd,e ∈ R for each pair (d, e) of edges
where d ∈ E ∪ In(s) and e ∈ E , with kd,e = 0 if d and e are
not adjacent, together with the assignment of a column vector
fe of size k over R to each edge e, called the global encoding
kernel or coding vector, such that:

1. the set {fe, e ∈ In(s)} forms a natural basis for the free
module Rk , and

2. fe =
∑

d∈In(v)
kd,efd for every non-source node v and

every edge e ∈ Out(v) [8].

We refer to kd,e as the coding coefficient of pair (d, e). The
matrix Ks =

(
kd,e

)
d∈In(s),e∈E is called the local encoding

matrix at source s. The matrix FC =
(
kd,e

)
d,e∈E is called

the transformation matrix of the code C
(
kd,e

)
. The two

conditions can be combined as follows

(fe)e∈E det(I|E| − FC ) = Ksadj(I|E| − FC ). (1)

The coding vectors for a given code are determined by
solving the system of linear equations given by (1). The dis-
criminant of the system is det(I|E| − FC ). If the discriminant
is zero, either no solution or multiple solutions exist. The
code is said to be nonsingular if it has a nonzero discriminant.
A nonsingular code is said to be normal if it has a unique set
of coding vectors. In this case, matrices G := (fe)e∈E and
Gt := (fe)e∈In(t) are referred to as the information transfor-
mation matrix and the information transformation matrix at
sink t , respectively. For a message vector x, the symbol ye
transmitted on an edge e and the received vector yt at sink t
are given by

ye = xfe, yt = xGt . (2)

We can consider any nonsingular R-based linear network
code as a normal Q-based linear network code, where Q
denotes the quotient field of R. Further, any singular code can
be normalized bymultiplying the local encodingmatrixKs by
det(I−FC ). By linear network code, we mean a normal linear
network code.

Due to information looping, ring-based codes are not nec-
essarily causal on cyclic networks. To solve this problem,
causal DVR-based codes were introduced in [8]. Hereafter,
let < denote a DVR and q the uniformer in it, that is, the
generator of the maximal ideal in <. The uniformer is unique
up to a unit factor. In particular, when < = F [(D)], we
shall take q to be D. A delay function l on a network G
is a nonnegative integer valued function defined over the
set of adjacent pairs such that along every cycle there is at
least one pair (d, e) with l (d, e) > 0. An <-based linear
network code is said to be l-causal if the coding coeffi-
cient for every adjacent pair (d, e) is divisible by ql(d,e)

[8, Definition 13].
A normal ring-based linear network code over a cyclic

network is multicast when rank(Gt ) = k for every sink t with
maxflow(t) ≥ k [8]. An important property of these codes is
that all components of a message vector transmitted through
the network can be recovered from the received word at each
sink. For a given multicast causal <-linear network code, the
matrix Mt over < is referred to as a decoding matrix at sink
t with decoding delay δt when

GtMt = qδt Ik , (3)
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where Ik denotes the k × k identity matrix [8]. Let x be
a message vector and yt the corresponding received vector.
Every sink t decodes yt using qδtx = ytMt .

Until now, the channels have been considered to be error
free, but in practical networks, channels may create errors in
the transmitted data. After transmission over a noisy chan-
nel e, the channel output is ỹe = ye + ze, where ye is the
channel input and ze ∈ F is the channel error. However,
when multiple channels create errors, the transmission model
is not simple. Let z := (zi : i ∈ E) be a row vector of size
|E| with zi ∈ R for all i ∈ E . The vector z is called the error
vector. An erroneous symbol on edge e can be determined
using the corresponding error coding vector which is denoted
by ge [7].
In [7], it was shown that if C is a normal code, then

the error coding vectors can be determined uniquely as
[ge]e∈E = (I|E| − FC )−1. We call Et := (ge : e ∈ In(t)) the
error transformation matrix at sink t . If a message vector x is
transmitted through the network and an error vector z occurs,
then the corresponding received symbol over a channel e is
re(x, z) = xfe + zge. The received vector at sink t is then
rt (x, z) = xGt + zEt . The reader is referred to [7] for details
on linear error-correcting network codes.

III. NETWORK HAMMING DISTANCE OF LENCs
OVER CYCLIC NETWORKS
The network version of the Hamming distance was given
in [5] for field-based LENCs over acyclic networks. In this
section, we first extend the network Hamming distance to
ring-based LENCs over cyclic networks. Then, we derive
some fundamental properties of these codes using results
from classical coding theory.

A classical [n, k] linear code of length n and dimension
k over a field F is a k-dimensional subspace of Fn. Let
x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) be vectors
of size n. The Hamming distance between x and y is the
number of positions in which they differ. The Hamming
weight of x is the number of its nonzero components and
is denoted by w(x). The minimum Hamming distance of a
classical [n, k] linear code is the minimum Hamming weight
among its nonzero codewords. An [n, k] code of minimum
distance dHmin is denoted as

[
n, k, dHmin

]
. It is well-known

that dHmin ≤ n − k + 1. This is called the Singleton
bound.

A. NETWORK HAMMING DISTANCE
Let C be a k-dimensional ring-based LENC over a network
with information transformation matrix Gt at sink t . The
codeword space at sink t is defined as Ct = {xGt : x ∈ Rk}.
Let rt denote a received word at sink t , and let
φt (rt ) = {z : zEt = rt }. By a ring we mean a PID or a DVR.
Definition 1: For a given ring-based LENC over a net-

work, we have the following.

1) The received network Hamming weight of a received
word rt at a sink t is defined as wRt (rt ) =

minz∈φt (rt ) w(z). The received network Hamming dis-

tance between two received words rt and r′t at a sink t
is defined as DRt (rt , r

′
t ) = wRt (rt − r′t ).

2) The message network Hamming weight of a message
word x at a sink t is defined as wMt (x) = wRt (xGt ).
The message network Hamming distance between two
message words x and x′ at a sink t is defined as
DMt (x, x′) = wMt (x− x′).

We now define the minimum Hamming distance of a ring-
based LENC.
Definition 2: The minimum network Hamming distance

of a ring-based LENC C at a sink t is defined as
dNmin,t := min

x1 6=x2
DMt (x1, x2) := min

y1 6=y2∈Ct
DRt (y1, y2).

Since Ct , the codeword space of a LENC C at sink t , is a
linear space, we always have that dNmin,t = min

0 6=yt∈Ct
wRt (yt ) =

min
0 6=x

wMt (x). Similar to [5], we can define the minimum net-

work Hamming distance decoder as follows. The decoder
maps a received word rt to codeword ŷt ∈ Ct by the function
defined as ŷt := arg max

yt∈Ct
DRt (rt , yt ). The error correction

capability of an LENC can be interpreted in terms of its
minimum distance. In fact, an LENC at a sink t can correct

any error vector z with wRt (zEt ) ≤
dNmin,t−1

2 . The proof of this
fact is similar to that in [5] and so is omitted.

B. UPPER BOUNDS FOR RING-BASED LENCs OVER
CYCLIC NETWORKS
Let C be a normal k-dimensional R-based LENC over
a network. Recall that the codeword space at sink t is
Ct = {xGt : x ∈ Rk}. Since the code is normal, i.e.
rankt (Gt ) = nt , we can also consider Ct as a classical
[nt , k] linear error-correcting code. We denote the minimum
network Hamming distance and the minimum Hamming
distance of Ct by dNmin,t and dHmin,t , respectively. If x =
(x1, x2, . . . , xn) and y = (y1, y2, . . . , yn), then we denote the
vector (x1, x2, . . . , xn, y1, y2, . . . , yn) by (x, y). Hereafter by
saying a LENC, we mean a normal LENC.
Theorem 1: Let P denote a PID. For a given k-dimen-

sional multicast P-based LENC over a network, we have for
every sink t

dNmin,t ≤ d
H
min,t . (4)

Proof: It suffices to consider the statement for a field
because every P-based linear network code can be considered
as a Q-based linear network code. Assume that the incoming
edges of a sink t are labelled from 1 to nt and the other edges
are labelled from nt+1 to |E|. Hence, there exists a codeword
yt = (yi : i ∈ In(t)) of weight dHmin,t in Ct . Now suppose
that the zero message vector is transmitted from the source
and the error vector z = (yt , 0) occurs, where 0 denotes the
zero vector of length |E| − nt . Then an edge i ∈ In(t) may
be affected by the error symbol yi and the other edges are
error-free. Since C is a linear network code and any edge
which is not in In(t) is error-free, the edge i ∈ In(t) receives a
zero symbol as the input. On the other hand, since there is no
intermediate node between edge i and sink t , edge i transmits
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the corresponding error symbol yi to sink t . Hence, sink t
receives the vector yt = (yi : i ∈ In(t)), i.e. the effect of the
error vector z at sink t is yt , so then zEt = yt and therefore
z ∈ φt (yt ). This implies that dNmin,t ≤ wRt (yt ) ≤
w(z) = dHmin,t . �
In the following, the refined Singleton bound for ring-

based LENCs over cyclic networks is given. The proof is
similar to that in [7] and so is omitted.
Theorem 2: For a given multicast PID-based LENC,

dNmin,t ≤ nt − k + 1 for every sink t with maxflow(t) ≥ k .
We refer to codes attaining the refined Singleton bound

with equality as maximum distance separable (MDS). Ring-
based MDS LENCs were characterized in [7]. It was also
shown that a ring-basedMDSLENC exists over a given cyclic
network if the symbol alphabet is sufficiently large.
Theorem 3: Let C be a multicast PID-based LENC over a

network. If C is an MDS LENC, then Ct is a classical MDS
code for every sink t .

Proof: Since C is an MDS LENC, we have that
dNmin,t = nt − k + 1. Inequality (4) implies that dHmin,t ≥
nt − k + 1. On the other hand, we have dHmin,t ≤ nt −
k + 1 from the Singleton bound. These facts imply that
dHmin,t = nt − k + 1. �
The following corollary follows from classical coding

theory and Theorem 3.
Corollary 1: Let C be a multicast PID-based LENC over

a network with information transformation matrix Gt at a
sink t . If C is an MDS LENC, then every k columns of Gt
are linearly independent for every sink t .

It can easily be shown that the converse of the above
theorem is not true.
Example 1: Consider the field F4 = {0, 1, α, α2} where

α is a root of the primitive polynomial p(x) = x2 + x + 1
over F2. The [3, 1, 3] code C over F4 with generator poly-
nomial g(x) = (x + α)(x + α2) = x2 + x + 1 is a
Reed-Solomon (RS) code and the corresponding generator
matrix is G = [1 1 1].

Let C be an F4-LENC on the network N depicted in
Figure 1, with all coding coefficients equal to 1. The corre-
sponding information transformation matrix at sink t , Gt , is
equal toG. It can easily be determined that ge6 = (10000000),
ge7 = (11011010), and ge8 = (00100000). FromTheorem 2,
we have that dNmin,t ≤ nt − k + 1 = 3. In the following, we
show that there exists an error pattern of weight one which
cannot be corrected by sink t . This implies that the code C is
not MDS.

Suppose that the zero word 0 is transmitted through the
network and the error vector z = (10000000) matching the
error pattern ρ = {e1} occurs. The corresponding received
word is [1 1 0]. Sink t decodes the received word using
the minimum rank distance decoding algorithm given in [4].
For any error pattern, the decoder solves the corresponding
decoding problem and then if all solvable error patterns cor-
respond to the same message, the decoder claims that the
received word is correctable and gives this message as the
output.

FIGURE 1. An acyclic network N with sink t .

Now, suppose that the decoder has selected the error pat-
tern ρ1 = {e3}. The corresponding decoding equation is

(x, z3)G
ρ1
t = (1 1 0), where Gρ1t =

[
1 1 1
0 0 1

]
. The solution

of this equation is (1, 1), while the correct message is 0, so
the error pattern is ρ1 = {e1}, or equivalently the received
word (1 1 0) cannot be corrected by the decoder at sink t ,
which implies that the code C at sink t is not an MDS LENC.

In [5], an algorithm was proposed to construct MDS
LENCs over acyclic networks from classical MDS codes.
Extending this algorithm to cyclic networks is left as an
open problem. We now give the refined version of the Ham-
ming bound for cyclic networks. Recall that if C denotes a
k-dimensional LENC, then the codeword space at sink t is
Ct = {xGt : x ∈ Rk}. Let |Ct | denote the cardinality of the
set Ct .
Theorem 4: Let C be a multicast k-dimensional LENC

over a cyclic network on the finite field F of size q. For every
sink t , we have

|Ct | ≤
qnt∑rNmin,t

i=0

(
nt
i

)
(q− 1)i

,

where rNmin,t =
⌊
dNmin,t−1

2

⌋
.

Proof: Since Ct is a multicast code, it can be considered
as an

[
nt , k, dHmin,t

]
classical code. Then from the classical

Hamming bound we have

|Ct | ≤
qnt∑rHmin,t

i=0

(
nt
i

)
(q− 1)i

,

where rHmin,t =
⌊
dHmin,t−1

2

⌋
. On the other hand, from

Theorem 4 we have dNmin,t ≤ dHmin,t , so that rNmin,t ≤ rHmin,t ,
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which implies

|Ct | ≤
qnt∑rHmin,t

i=0

(
nt
i

)
(q− 1)i

≤
qnt∑rNmin,t

i=0

(
nt
i

)
(q− 1)i

.

�
A PID which is not a field has infinite size, so in this case

Theorem 4 clearly holds for PIDs.

IV. NETWORK HAMMING DISTANCE FOR
CONVOLUTIONAL ERROR-CORRECTING
NETWORK CODES
When rational power series rings are considered as symbol
alphabets, LENCs are referred to as convolutional error-
correcting network codes (CENCs). The rational power series
ring over a finite field F , denoted by F[(D)], is the set of all
rational functions of the form p(D)

1+q(D) where p(D) and q(D)
are finite polynomials over F . In general, there is no concept
of time in commutative rings, but in a ring F[(D)], D is a
dummy variable which can be used to denote a unit delay.
In [7], a semi-infinite formulation was presented for CENCs
using the concept of time. With this formulation, the concept
of rank free distance was introduced for CENCs which plays
the role of the free distance in classical convolutional codes.
In this section, the concept of networkHamming free distance
for CENCs is derived as a generalization of the free distance.
We then obtain some properties of this distance. In particular,
we show that the rank free distance of a code is equal to its
network Hamming free distance.

A. NETWORK HAMMING FREE DISTANCE
AND ITS PROPERTIES
The coding coefficients of a CENC are generally of the
form p[D]

q[D] , but one can assume they have a polynomial form,
as without loss of generality, all coding coefficients can be
multiplied by their least common multiple. By a CENC C ,
we mean a normal code with polynomial information trans-
formation matrices for all sinks.

We can write Gt = (gi,j(D))k×nt , where gi,j(D) is a finite

polynomial. Then Gt (D) =
j=m∑
j=0

Gt,jDj, where Gt,j is called

the information transformationmatrix of sink t at time index j.
Any element of the rational power series F[(D)] can be
expressed as

∑
j≥0

ajDj, where aj ∈ F [7]. Then the error trans-

form matrix at sink t can be written as Et (D) =
∑
j≥0

Et,jDj,

where Et,j is the error transformation matrix of sink t at time
index j.

The semi-infinite matrix representation of Gt (D) is
given by

Ḡt

:=


Gt,0 Gt,1 . . . Gt,m 0 0 0
0 Gt,0 Gt,1 . . . Gt,m 0 0
0 0 Gt,0 Gt,1 . . . Gt,m 0

. . .
. . .

. . .

,
(5)

and the semi-infinite representation of Et (D) is

Ēt :=


Et,0 Et,1 · · · Et,n Et,n+1 . . .

0 Et,0 · · · Et,n−1 Et,n . . .

0 0 Et,n−2 Et,n−1
...

. . .
...

. . .

 .
Let x̄ := (x0, x1, . . .) and z̄ := (z0, z1, . . .), where
xj = (x1,j, . . . , xk,j) and zj = (z1,j, . . . , z|E|+k,j) are the
message and error vectors at time index j, respectively. The
received word at sink t is r̄t (x̄, z̄) = x̄Ḡt + z̄Ēt , where r̄t is
the semi-infinite representation of the received word.

In theory, the coded sequences of CENCs have infinite
length, but in practical applications finite sequences are
employed. In the following, we formulate the truncated form
of CENCs over cyclic networks. Corresponding to x̄ and z̄,
we have x̄[n] := (x1, . . . , xn) and z̄[n] := (z1, . . . , zn), and
for Ḡt and Ēt define

Ḡ[n] :=


G0 G1 . . . Gn

0 G0
. . . Gn−1

0 0 0
...

0 0 0 G0

 , (6)

Ē[n] :=


E0 E1 . . . En

0 E0
. . . En−1

0 0 0
...

0 0 0 E0

 . (7)

A received word from time index 0 to time index n is given
by r̄t (x̄[n], z̄[n]) = x̄[n]Ḡt [n]+ z̄[n]Ēt [n].
Define φt (r̄t ) :=

{
z̄ : z̄Ēt = r̄t

}
and φt (r̄t [n]) :={

z̄[n] := z̄[n]Ēt [n] = r̄t [n]
}
, where r̄t is the received word

at sink t . The generalized received Hamming weight of
a received word r̄t at sink t is defined as wGRt (r̄t ) =
min

z̄∈φt (r̄t )
w(z̄). Similarly, we can define the generalized mes-

sage network Hamming weight, the generalized message
network Hamming distance, and the generalized received
network Hamming distance at sink t by wGMt (.), DGMt (.,.),
and DGRt (.,.), respectively.
Definition 3: For a CENC over a network we have the

following.
1) The network Hamming free distance of the code at a

sink t is defined as

dGNfree,t := min
ȳ1 6=ȳ2∈C̄t

DGRt (ȳ1, ȳ2)

:= min
0̄ 6=ȳt∈C̄t

wGRt (ȳt ).

2) The minimum generalized network Hamming distance
of the code at a sink t of order n is defined as

dGNmin,t [n] := min
ȳ1[n] 6=ȳ2[n]∈C̄

DGRt (ȳ1[n], ȳ2[n])

:= min
0̄ 6=ȳt [n]∈C̄t [n]

wGRt (ȳt [n]).

The minimum Hamming distance decoder at a sink t
maps a received word r̄t to the codeword ˆ̄yt ∈ C̄t defined
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as ˆ̄yt := arg max
ȳt∈C̄t

DGRt (r̄t , ȳt ). Similarly, we can define

the minimum distance decoder of order n at sink t as
ˆ̄yt [n] := arg max

ȳt [n]∈C̄t [n]
DGRt (r̄t [n], ȳt [n]). The error correction

capability of a code can be interpreted in terms of its free
distance. In fact, a code at sink t can correct any error vector z̄

with wGRt (z̄Ēt ) ≤
dGNfree,t−1

2 . The proof is similar to that in [5]
and so is omitted.

Let dHmin,t [n] denote the minimum Hamming distance of
the code at a sink t of order n. We then have the following
theorem.
Theorem 5: For a given CENC over a cyclic network we

have:
1) dGNmin,t [n] ≤ d

GN
min,t [n+ 1],

2) dGNmin,t [n] ≤ d
H
min,t [n],

3) the sequence dGNmin,t [n] is upper bounded, and
4) dGNmin,t [n] does not change when n is increased.
Proof:

1) It follows from Definition 3 that there exists a code-
word ȳt such thatwGRt (ȳt [n+1]) = dGNmin,t [n+1]. Hence,
there exists an error vector z̄ such that w(z̄[n + 1]) =
dGNmin,t [n+1] and z̄[n+1]Ēt [n+1] = ȳt [n+1]. It is obvi-
ous that z̄[n]Ēt [n] = ȳt [n], so wGRt (ȳt [n]) ≤ w(z̄[n]) ≤
dGNmin,t [n+ 1]. Therefore, dGNmin,t [n] ≤ d

GN
min,t [n+ 1].

2) The proof is similar to that of Theorem 1 and so is
omitted.

3) The proof follows from 2) and the fact that dHmin,t [n] is
upper bounded [9, Th. 3.2].

4) This follows from 1) and 3). �
In [7], the concept of minimum rank free distance was

introduced for CENCs over cyclic networks. Let ρ̄j denote
the set of all erroneous edges ej at time index j. The set
ρ̄ = ∪j≥1ρ

j is called the generalized error pattern. Define
Wt (ρ̄) = {r̄t (0̄, z̄) : z̄ ∈ ρ̄∗} where ρ̄∗ is the set
of all error vectors matching error pattern ρ̄, and define
¯rank t (ρ̄) = rank(Wt (ρ̄)). The rank free distance of a CENC

at a sink t is defined as dfree,t = min{|ρ̄| : Wt (ρ̄) ∩ C̄t 6= ∅}.
These definitions can be extended to truncated CENCs.
Denote the minimum generalized rank distance of a code at a
sink t of order n by dmin,t [n].
Theorem 6: Let C be a CENC over a network G. Then

dGNfree,t = dfree,t for every sink t , and dGNmin,t [n] = dmin,t [n]
for every sink t .

Proof: It follows from Definition 3 that there exists a
codeword ȳt such that wGRt H (ȳt ) = dGNfree,t , so there exists
an error vector z̄ with w(z̄) = dGNfree,t such that z̄Ēt = ȳt .
Let ρ̄ be the error pattern of weight dGNfree,t matching the
error vector z̄. It is obvious that W̄t (ρ̄) ∩ C̄t 6= ∅, so
dfree,t ≤ | ¯rank t (ρ̄)|.We have ¯rank t (ρ̄) ≤ dGNfree,t , and therefore
dfree,t ≤ dGNfree,t . Then there exists an error pattern ρ̄ with
¯rank t (ρ̄) = |ρ̄| = dfree,t such that W̄t (ρ) ∩ C̄t 6= ∅. Hence,

there exist a codeword ȳt ∈ C̄t and an error vector z̄matching
the error pattern ρ̄ such that ȳt = z̄Ēt . Thus, dGNfree,t ≤
wGRt (ȳt ) ≤ w(z̄) = dfree,t , which completes the proof of the

first part. The proof of the second part is similar to that of the
first, and so is omitted. �

V. SUMMARY
The focus of this paper was on ring-based LENCs over
cyclic networks. In [7], a metric was introduced for these
codes based on the minimum rank distance given in [4].
The network Hamming distance for field-based codes over
acyclic networks given in [5] was extended to ring-based
codes over cyclic networks. Further, the Hamming bound was
extended from classical codes to field-based codes over cyclic
networks. It was shown that if C is an MDS network code,
then Ct is a classical MDS code at each sink. The Hamming
free distance for CENCs was presented as a generalization of
the free distance of classical convolutional codes. Finally, it
was proven that the rank free distance of a code is equal to its
network Hamming free distance.
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