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ABSTRACT This paper proposes a double sample data fusionmethod based on combination rules to improve
the classification of dimensionless indices in petrochemical rotating machinery equipment. This method first
collects the original data and counts themutual dimensionless index as the body of evidence. The reliability of
the body of evidence is then determined using a distance calculation method. Finally, the evidence reasoning
method is used to fuse the mutual dimensionless index data based on reliability, and the type of fault is
detected using the K-S test. A real-time data collection experiment shows that this method can identify the
fault type for mutual dimensionless indices that have the appearance of coincidences or evidence conflicts.
The experimental results also show that this method has a stronger ability to diagnose faults when compared
with the K-nearest neighbor method, and exhibits an accuracy improvement of 9.45%.

INDEX TERMS Data fusion, fault diagnosis, mutual dimensionless index, evidence reasoning, K-S test.

I. INTRODUCTION
Rotating machinery (such as rotary bearings, steam turbines,
compressors, and fans) is playing an increasingly impor-
tant role in key equipment for important engineering sec-
tors, including petroleum, the chemical industry, metallurgy,
machinery manufacturing, and aerospace. This machinery
has been developed to operate well under normal work-
ing conditions within the related industries. However, since
rotating machinery equipment always works for an extended
period of time, some mechanical wear and tear might occur
and result in equipment faults. Therefore, it is very important
to perform fault diagnosis on this type of equipment. Since
the structure and processes of rotating machinery equipment
are usually complex, multiple faults generally occur [1]. The
characteristics of multiple different faults are difficult to dis-
tinguish because there is some uncertainty in the collected
data when multiple faults occur. In other words, the diagnosis
of multiple faults is a complex problem due to the correlation

and uncertainty of faults, and this makes successful multiple
fault diagnosis methods difficult to achieve [2]. When rotat-
ing machinery equipment breaks down, the most important
characteristic is that themachine exhibits abnormal vibrations
and noise. The fault information is reflected in the vibration
signals in the amplitude domain, time domain and frequency
domain [3]. The most basic and original methods operate on
the vibration signal in the time domain, and it can be very
beneficial to maintain the basic characteristics of a signal
if the time domain signal can be used directly for the fault
diagnosis. A probability density function can be used to
derive the dimensional indices (such as the average or root
mean square value) and dimensionless indices (such as the
waveform index, margin index, or pulse index etc.) [4], [5].
The dimensional indices are general characteristics that are
fault sensitive, but they are susceptible to outside interference.
Conversely, the dimensionless indices are not sensitive to
outside interference, but an overlap or coincidence exists
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between the fault coverage. In other words, the dimensionless
indices have ranges with a common overlap for normal and
abnormal equipment, which leads to failures in correctly
diagnosing faults.

To deal with this problem, it is very important to use an
effective data fusion method and fault diagnosis method. Tra-
ditionally, D-S theory is used [6], [7], which can accurately
describe significant concepts including ‘‘uncertain’’ and
‘‘unknown’’ information. However, the sensor may exhibit
mutual interference [8] due to natural or human interference
in the actual information fusion system. Therefore, traditional
D-S theory cannot deal with conflicting evidence effectively.
Jianbin Xiong et al. presented four types of filtering methods
[9] to solve the problem when dimensionless index volatility
is large and the scope is difficult to determine. However, these
methods are not able to resolve highly conflicting evidence
sufficiently. Another method that combines a dimensionless
index, evidence theory, and the K-Nearest Neighbor (KNN)
method [10] to deal with conflicting evidence in fault diag-
nosis has been proposed. However, this method is not suit-
able for multiple fault diagnosis. Additionally, a method has
been proposed that combines a static discounting factor with
KNN [11] for fault diagnosis, and this improves the efficiency
of the fault diagnosis by fusing the conflicting evidence in
order to correct traditional methods. However, this method
does not consider external factors that can have dynamic
effects on the sensor. Therefore, the potential for interference
in the data fusion becomes the key problem for accurate fault
diagnosis.

A data fusion method based on evidence reasoning (ER)
can solve the problem of interference in information fusion.
Yang [12] performed research on quantitative and qualitative
information distributed to a belief structure transformation
problem, and proposed a conversion technology based on
rule and utility information. Another study [13] improved
the ER by defining general rules that information fusion
methods need to satisfy, and Yang and Xu [14] analyzed
the nonlinear characteristics of ER. Xiaosheng Si et al. [15]
improved the reliability calculation method and built a new
prediction model based on a reliability rule base. Changhua
Hu et al. [16] proposed a reliability prediction model based
on dynamic evidential reasoning that considered the time
influence on reliability. This experiment showed that ER
can accurately process the interference information. In 2014,
Aisong Qin et al. used ER in rotating machinery equip-
ment [17] and effectively improved the recognition rate
for fault diagnosis. Until now, the ER algorithm has been
the best nonlinear data fusion method for handling inac-
curate, incomplete, or ambiguous data or random data.
It has been widely used in fault forecasting, reliability
prediction, multi-attribute decision analysis, environmental
impact assessment, and pipeline detection. However, since
the ER algorithm requires the use of reliability and weight
and the formulas used in counting are flexible, the data
fusion will be influenced when the counting formula is
unsuitable.

For the method proposed in this paper, the mutual dimen-
sional indices are first calculated. These include the mutual
waveform index, the mutual peak index, the mutual pulse
index, the mutual margin index, and the mutual kurtosis
index. By obtaining a relatively accurate body of evidence, we
can then identify theweight of differentmutual dimensionless
indices based on the body of evidence. Finally, the ER com-
bination rule and the K-S test are used for fault diagnosis.
In this paper, the creative combination of the K-S test with
the ER method exploits the advantages of both methods to
obtain a new data fusion method.

The remainder of this paper is organized as follows.
Section II introduces the mutual dimensionless index,
K-S test, ER, and builds an algorithm model. In section III,
details of the experimental environment, steps, and results are
given. In section IV, we summarize our main findings and
provide conclusions.

II. RELATED DEFINITION AND CONSTRUCTION
OF DIAGNOSIS MODEL
A. RELATED DEFINITIONS
1) NON-DIMENSIONAL INDEX DEFINITION
Since traditional dimensionless indices exhibit significant
overlap between normal operation and abnormal operation,
we propose a new method to calculate the mutual dimen-
sionless index. This method can narrow the distance between
the dimensionless internal structures of the index, and reduce
the overlap of dimensionless indices of different fault types.
Therefore, the fault diagnosis accuracy can be improved by
using this mutual dimensionless index. The index calculation
method can be described as follows:
Assumption 1:There is a set of observed signals z(k), which

consists more than one thousand signals. We can use for-
mula (1) to separate the set into three discrete parts s(k − k0),
x(k), and v(k)

z(k) = c[s(k − k0)+ x(k)+ v(k)] (1)

Let

y(k) = x(k)+ v(k) (2)

The observed signal sample can be defined as:

z(k) = c[s(k − k0)+ y(k)] (3)

Definition 1:Random variables s and y have the probability
density functions p(s) and p(y), respectively, and the general
equation of the mutual dimensionless index is:

MXSFR =
[
∫
<|y|lp(y)dz]1/l

[
∫
<|s|mp(s)dz]1/m

=

l
√
E(|y|l)

m
√
E(|s|m)

(4)

where SFR is the Signal Fault Ratio.
If l = 2,m = 1, the mutual waveform indexMSSFR can be

defined as:

MSSFR =
[
∫
<|y|2p(y)dz]1/2

[
∫
<|s|p(s)dz]

=

√
E(|y|2)
E(|s|)

(5)
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If l → ∞,m = 1, the mutual pulse index MISFR can be
defined as:

MISFR = lim
l→∞

[
∫
<|y|lp(y)dy]1/l

[
∫
<|s|p(s)ds]

=

lim
l→∞

l
√
E(|y|l)

E|s|
(6)

If l →∞,m = 1/2, the mutual margin indexMCLSFR can
be defined as:

MCLSFR = lim
l→∞

[
∫
<|y|lp(y)dy]1/l

[
∫
<|s|1/2p(s)ds]2

=

lim
l→∞

l
√
E(|y|l)

[E(
√
|s|)]2

(7)

If l → ∞,m = 2, the mutual peak index MCSFR can be
defined as:

MCSFR = lim
l→∞

[
∫
<|y|lp(y)dy]1/l

[
∫
<|s|2p(s)ds]1/2

=

lim
l→∞

l
√
E(|y|l)√

(E|s|2)
(8)

The mutual kurtosis index MKSFR can be directly defined
as:

MKSFR =

∫
<y4p(y)dy

[
∫
<|s|2p(s)ds]2

=
E(|y|4)

[E(|s|2)]2
(9)

2) BASIC DEFINITION OF K-S TEST
Assumption 2:There are two independent signals: a test signal
ψ(x(i)) and a reference signal φ(x(j)). Using an i, j description,
the two signals of the original time series are arranged in
ascending order. The statistical distance d between the two
signals can be calculated by [18]:

d = max
i,j
|ψ(x(i))− φ(x(j))| (10)

Definition 2: Under assumption 2, the probability similar-
ity of the two signals can be defined by µ(ν):

µ(ν) = φ(d
√

η1η2

η1 + η2
) (11)

Formulas (12), (13), and (14) are used to calculate the φ,
λ, and ηe:

φ(λ) = 2
∑∞

i=1
(−1)i−1e2j

2λ2 (12)

λ = d(
√
ηe + 0.12+

0.11
√
ηe

) (13)

ηe =
η1η2

η1 + η2
(14)

Here η1, η2 are the representative data points of the test
signal and the reference signal, respectively. ηe represents the
effective points, and it has been proven that the result will
be more accurate and reliable if there are enough effective
points [18]. From formula (11), the probability similarity
value µ(d) will tend towards one when the two signals are
similar. In contrast, if the two signals are different, the prob-
ability similarity value µ(d) will tend towards zero.

3) ER BASIC DEFINITION
According to reference [14], for a fault diagnosis question q,
it can be assumed that there are N basic properties which can
be expressed as αi(i = 1, · · · ,N ). In this paper, the basic
properties are all mutual and dimensionless. These N basic
properties of the collection can be defined as a source of
evidence: E = {α1, · · · , αN }. Assuming that the weight of
the properties is ξ = {ξ1, · · · ξi, · · · , ξN }, and ξi shows the
relative importance of the ith position property αi, the weight
can be normalized as follows:

0 ≤ ξi ≤ 1,
∑N

i=1
ξi = 1 (15)

The fault diagnosis question q corresponding to the fault
type can be delimited, and ε satisfies the requirements of the
evidence reasoning recognition framework (a complete set of
mutually exclusive properties). This can be shown by:

ε = {ε0, · · · , εM−1} (16)

Where εm expresses the nth position of the fault.
For each property αi(i = 1, · · · ,N ), the evaluation result

can be listed using the reliability distribution formula:

0(αi) = {εm, (θi,m(αi)),m = 0, · · · ,M−1}, i = 1, · · ·N .

(17)

Let θi,m(αi) ≥ 0,
∑M−1

m=0 θi,m(αi) ≤ 1, where θi,m(αi)
expresses the reliability that property αi is evaluated as a
fault εm. If

∑M
m=1 θm,i = 1, the assessment of property αi is

complete, otherwise it is incomplete. The characteristics of
properties ei(i = 1, . . . ,L) determine how θm,i is calculated.
For example, numerical expressions are used for the quanti-
tative property data and form the distribution that expresses
this data. In order to handle quantitative and qualitative data
within a unified reliable framework, YANG proposed an
equivalent information conversion technology which con-
verts numerical data, random data, and qualitative informa-
tion into a reliable form.

Let θn express the reliability of question q diagnosing εm,
and fuse all of the properties αi(i = 1, · · · ,N ) to obtain εm
and describe the evidence reasoning fusion information [11].

Let βm,i donate the basic probability assignment value that
the ith basis property, αi, supports question q diagnosing
fault εm. βε,i expresses the basic probability assignment value
which has not been assigned to any type of fault, and its
size expresses the degree of uncertainty. The basic probability
assignment value can be obtained in the following manner:

βm,i = ξiθm,i, m = 0, 1 · · · ,M − 1.

βε,i = 1−
M∑
m=1

mm,i = 1− ξi
M∑
m=1

θm,i

β̄ε,i = 1− ξi, i = 1, 2, · · · ,N .

β̃ε,i = ξi(1−
M∑
i=1

θm,i).

βε,i = β̄ε,i + β̃ε,i, i = 1, 2, · · · ,N . (18)
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It can be found that the unassigned basic probability βε,i
can be divided into two parts: β̄ε,i and β̄ε,i. β̄ε,i is due to
the relative weight properties αi(i = 1, · · · ,N ), and β̃ε,i is
due to properties ei(i = 1, . . . ,L), which are the incomplete
assessment information.

Since fault types of question q satisfy the requirements of
the evidence theory recognition framework, the ER algorithm
and the Dempster combination rule can be used to obtain the
final evaluation result shown in formula (19):

{εm} : βm = KN [
∏N

i=1
(βm,i + β̄ε,i + β̃ε,i)

−

∏N

i=1
(β̄ε,i + β̃ε,i)]

{ε} : β̃ε = KN [
∏N

i=1
(β̄ε,i + β̃ε,i)−

∏N

i=1
β̄ε,i]

{ε} : m̄ε = KN
∏N

i=1
β̄ε,i

KM = [
∑M

m=1

∏N

i=1
(βm,i + β̄ε,i + β̃ε,i)

− (M − 1)
∏N

i=1
(β̄ε,i + β̃ε,i)]−1 (19)

{εm} : θm =
βm

1− β̄ε

{ε} : θm =
β̃ε

1− β̄ε
Here, θm and θε denote that question q is diagnosed

with εm and ε fusion reliability, respectively. There-
fore, the overall assessment result can be shown to be
q = {(εm, θm), (ε, θε),m = 1, 2, · · · ,M}.

4) ER RELIABILITY CALCULATION AND
WEIGHT CALCULATION
During the ER process, a method of calculating the reliability
and weight is necessary. In this paper, the following calcula-
tion method is used.

If the range of the jth fault’s mutual dimensionless index
Pi is [ai,j, bi,j], the median is used to replace the range.
The actual calculation of the index’s mutual dimensionless
distance from the center is then calculated to obtain the
reliability. In other words, the nearer to the center it is, the
greater the reliability of the distribution will be. This method
avoids mutual dimensionless coincidences of different faults
to a certain extent.

For a composite fault diagnosis of two faults, a recognition
framework ε = {ε0, ε1, ε2, ε3} is created, where ε0, ε1, ε2,
and ε3 express the normal behavior, fault A, fault B, and the
combination of fault A and B, respectively. An example of
the detailed process involved in reliably transforming pi will
be used for illustration. It will be assumed that the mutual
dimensionless index is pi, and the ranges of the jth fault’s
mutual dimensionless index Pi is [ai,j, bi,j] (here j includes
ε0, ε1, ε2, ε3, i.e. j = 1, 2, 3).
From the above description:

ϑi,j =
ai,j + bi,j

2
means εj, i = 1, · · · ,N ; j = 0, 1, 2, 3

(20)

Each pi can then be transformed in the following manner:

0(αi) = {(εj, θi,j(αi)), i = 1, · · · ,N ; j = 0, 1, 2, 3} (21)

Each θi,j(αi) can be calculated using the following
formulas:

θi,j(αi) =
ϑi,j+1 − αi

ϑi,j+1 − ϑi,j
if ϑi,j ≤ αi ≤ ϑi,j+1,

j = 0, 1, 2, 3 (22)

θi,j+1(αi) = 1− θi,j(αi) if ϑi,j ≤ αi ≤ ϑi,j+1,

j = 0, 1, 2, 3 (23)

θi,s(αi) = 0 for s = 0, 1, 2, 3, s 6= j, j+ 1 (24)

After solving the equation 0(αi) = {(εj, θi,j(αi)),
i = 1, · · · ,N ; j = 0, 1, 2, 3}, ER fusion data and fault
diagnosis can be used.

The method for confirming the property weight ξ =
{ξ1, · · · ξi, · · · , ξN } will be described next. According to the
body of evidence 0(αi) = {εm, (θi,m(αi)),m = 0, · · · ,
M − 1}, i = 1, · · ·N ., each mutual dimensionless index and
minority subordinate can be transformed using the majority
principle. We can then identify the property weight vector
as ξ = {ξ1, · · · ξi, · · · , ξN }. The details are described as
follows:
Step 1: The body of evidence 0(αi) = {(εm, θi,m(αi)),

n = 0, · · · ,M − 1} is converted into vector form, such as
βi = (θi,0(αi), θi,1(αi), · · · θi,M−1(αi)).
Step 2: The distance lij between bodies of evidence is

calculated from 0(αi) = {(εm, θi,m(αi)),m = 0, · · · ,M − 1}
and0(αj) = {(εm, θj,m(αj)),m = 0, · · · ,M−1}, and then the
evidence distances are built from the matrix LN×N = [lij]:

LN×N =


l11 l12 · · · l1N
l21 l22 · · · l2N
...

...
...

...

lN1 lN2 · · · lNN

 (25)

Each lij can be calculated by using:

lij =

√
1
2
(βi − βj)(βi − βj)T (26)

where lij should satisfy 0 ≤ lij ≤ 1.
Step 3: The similarity rij between evidence 0(αj) =
{(εm, θi,m(αj)),m = 0, · · · ,M − 1} and 0(αj) =

{(εm, θj,m(αj)),m = 0, · · · ,M − 1} is calculated based on
the evidence distance lij, and then a matrix is built using the
evidence 0N×N = [rij] as:

LN×N =


r11 r12 · · · r1N
r21 r22 · · · r2N
...

...
...

...
rN1 rN2 · · · rNN

 (27)

Each rij can be calculated from:

rij = 1− lij = 1−

√
1
2
(βi − βj)(βi − βj)T (28)

where rij should satisfy 0 ≤ rij ≤ 1.
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FIGURE 1. The double sample data fusion model based on combination rules.

Step 4: The total level of support, 0i of evidence 0(αi) =
{(εm, θi,m(αi)),m = 0, · · · ,M − 1}, is calculated using the
following formula:

0i =
∑N

j=1
rij (29)

Step 5: The base on total weight of support properties ξi is
as follows:

ξi =
0i∑N
j=1 0i

(30)

ER can be used to fuse data based on the calculation
methods of reliability and weight.

5) SUMMARY RELATED DEFINITION
The K-S test can be used as a type of goodness of fit test
to evaluate the similarity between two data samples. This
method mainly uses ordered samples of a random variable
to build a sample distribution function, and makes it possible
to guarantee that a certain probability distribution function
of another sample falls within a certain range. However, this
method cannot resolve evidence conflicts effectively, and ER

is needed to solve this problem. ER can fuse conflicting
evidence and obtain the body of evidence, which is the easier
test.

B. DOUBLE SAMPLE DATA FUSION METHOD BASED ON
THE COMBINATION RULES OF MODEL BUILDING
The proposed method is divided into two parts: the first
part collects fault data and the second part performs the
experiments. Fault data collection is a basic step and, in this
paper, equipment fault data of chassis vibration acceleration
is obtained from real-time acquisition. 49 groups of data are
used and each group contains 1024 vibration accelerations.
The experimental process can be described as follows: first,
a relatively accurate body of evidence is obtained by trans-
forming the fault data into a mutual dimensionless index.
Secondly, the mutual dimensionless index is used to calcu-
late the reliability and weight of five mutual dimensionless
indices. The reliability and weight are combined such that
data fusion can be performed, and the different fault types are
distinguished by using the K-S test. This process is shown in
detail in Figure 1.
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FIGURE 2. Petrochemical large rotary equipment fault diagnosis experiment platform and data Collector. It mainly consists of (1) electric motor,
(2) gearbox, (3) base platform, (4) coupling, (5) oil pipe, (6) fan, (7) platform operation switch, (8) EMT390 sensor data acquisition probe,
(9) EMT390 sensor data acquisition.

TABLE 1. Each number and each fault type for the bodies of evidence.

III. EXPERIMENTS
A. EXPERIMENTAL ENVIRONMENT
This experiment was performed using a multistage centrifu-
gal blower fault diagnosis unit at the Guangdong Provincial
Key Laboratory, which diagnoses petrochemical equipment

faults within a large petrochemical rotating machinery fault
diagnosis test platform. The unit combines an 11kW 5-stage
centrifugal blower with transmission, a torque sensor, an
inverter motor, a standard plate, as well as various failure
shafts, gears and bearings parts, as seen in Figure 2. The
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TABLE 2. The results after evidence resoning form.

machine can simulate common faults that occur in multi-
stage centrifugal blowers and their transmission. We use the
EMT390 collector, developed by Beijing Yi Maite Tech-
nology Co., Ltd., to collect the various faults. The data is
then saved in a data management system and an algorithm
to calculate the dimensionless indices is implemented using
MATLAB.

B. EXPERIMENTAL STEPS
Step 1: Some of the large petrochemical mechanical rotating
equipment is replaced (e.g., the normal inner ring, outer ring,
and big gear are replaced with a worn inner ring, a worn outer
ring, and a big gear with teeth missing, respectively).
Step 2: To fix the data acquisition position, a label with a

small circle that is the same size as the EMT390 sensor data
acquisition probe is affixed to the equipment chassis.

Step 3: The EMT390 collector is used by two people to
collect data twice, where each collection contains 49 groups
of data and each group has 1024 vibration accelerations.
Step 4: MATLAB is used to read the collected data, and

save it to the corresponding folder.
Step 5: MATLAB is used to calculate five dimensionless

indices: the mutual waveform index, the mutual pulse index,
the mutual margin index, the mutual peak index, and the
kurtosis index. This data is then saved as the evidence source
E = {α1, · · · , αL} for the ER.
Step 6: The center value of each mutual dimensionless

index interval [ai,j, bi,j] is found, and the reliability θi,j(αi)
base is identified using the distance between each mutual
dimensionless index and the center value.
Step 7: The weight ξ = {ξ1, · · · ξi, · · · ξL} of each evidence

source is obtained using.
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TABLE 3. The experimental results after evidence reasoning form.

Step 8: The composite formula of ER is used to calcu-
late βm,i, βε,i, β̄ε,i, β̃ε,i, βε,i. The ER algorithm proposed by
YANG is used, and the Dempster combination rule is applied
to obtain the values of βm, β̃ε, β̄ε,Ki, θm, θε. The fusion result
is obtained from:

q = {(εm, θm), (ε, θε),m = 1, 2, · · · ,M}

Step 9: The 0 fault and the 1, 2, and 3 fault for the K-S test
are selected (here 0, 1, 2, 3 denote the fault type or the order
of the group in the ER) to obtain the test result and judge
whether or not the diagnosis result is true.

C. THE EXPERIMENTAL CONTRAST
In this experiment, two collectors are used to collect fault
data at different time points. The data collections include the
first and second inner ring wear, the outer ring wear, teeth

missing on the big gear, a combination of teeth missing on
the big gear teeth and inner ring wear, and a combination of
teeth missing on the big gear teeth and outer ring wear in
the same machine. Each collection has 49 groups and each
group has 1024 numerical values. During the experiment, the
collected data used to calculate the dimensionless indices is
used as the evidence source for the ER. Therefore, 20 bodies
of evidence are obtained. Alphanumeric codes are used to
conveniently express the bodies of evidence, and these are
detailed in Table 1.

Two data collectors are defined as the first step, and then
the faults are collected including fault A, fault B, and fault
A and fault B. These are combined to give twelve bodies
of evidence that make up the associated body of evidence.
For example, in Table 1, a1, a2, c1, c2, d1, d2, f1, f2, g1,
g2, i1, and i2 comprise one associated body of evidence.
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TABLE 4. The non-dimensional experimental results combined with the KNN algorithm.

Within this set, inner ring wear is fault A, teeth missing in
the big gear is fault B, and the combination of teeth missing
in the big gear and inner ring wear is the combination of

faults A and B. As Table 2 shows, three fault data points
are selected according to certain rules including fault A,
fault B, and faults A and B combined in the associated body
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TABLE 5. The non-dimensional experimental results combined with the KNN algorithm.

of evidence. These data points correspond to fault 1, 2, and 3
in the ER. One of the bodies of evidence is selected
for the remainder of the associated body of evidence.

The experimental steps described above are completed one
by one. The experimental results in Table 2 use the inner
ring wear, teeth missing in the big gear, and a combination of
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inner ring wear and teeth missing in the big gear as the three
fault types. Results from an additional fault set are shown in
Table 3, which uses outer ring wear, teeth missing in the big
gear, and a combination of outer ring wear and teeth missing
in the big gear as the three fault types.

Since the K-S test is based on the similarity probability
between two bodies of evidence, the similarity probability
will tend towards 1 if the two bodies of evidence are closer.
In this paper, the test result is judged to be true or not
by comparing the probability similarity value. For example,
when fault 0 is a2 then a1, c1 or d1 can be selected as fault 1,
2, or 3. If the K-S test result shows that the fault 0 and fault
1 test results are bigger than fault 0 and fault 2 or fault 0 and
fault 3, it is judged that the diagnosis result is correct, but if
not, the result is incorrect. In the table, we use ‘C’ and ‘IC’
to represent whether the result is ‘correct’ or ‘incorrect’.

Another experiment was performed to compare with the
above experimental results. The dimensionless index and
KNN combination were used for fault diagnosis [10] and the
same experimental data from the experiment above was used.
The experimental results are shown in Table 4 and Table 5.
In these tables, the practicing fault group refers to the five
fault types which are known (such as the first collection of
49 groups of faults A, B, C, D, and E). However, the fault
type being tested is unknown. Additionally, the tested fault
type is one of the five fault types, but the data has been
collected by different data collectors at a different time (such
as the second collection of 49 groups of fault A). A correct
judgment is obtainedwhen the type of test failure corresponds
to the position of the fault type in the training results. For
example, when the tested fault type is B, the second number is
compared with the other four numbers. If the second number
has the biggest value, the diagnosis result is judged to be
correct.

1) EXPERIMENTAL DISCUSSION
Tables 2 and 3 show that there were 26 experiments with
a correct diagnosis out of a total of 72 experiments using
the double sample data fusion method based on combination
rules. This translates to a fault diagnosis accuracy rate of
36.11%.

Tables 4 and 5 show that there were 16 experiments with
a correct diagnosis out of a total of 60 experiments using
the mutual dimensionless index and KNN combination. This
translates to a fault diagnosis accuracy rate of 26.66%.

Analyzing the 72 experiments in Tables 2 and 3, it is
found that the same number is shown twice or more for
the 26 correct diagnoses in the experimental results. This
shows that ER is good at fusing the fivemutual dimensionless
indices, but at the same time, it eliminates the characteristics
of each index. This may be occurring due to a large flaw in
how the reliability is calculated. In this paper, the arithmetic
mean is obtained from a group of data and then the reliability
is identified by calculating the distance between each data
element in the group using the arithmetic mean. Although this
method makes it convenient to obtain reliability, it ignores

FIGURE 3. Old dimensionless and new dimensionless each data after
using evidence reasoning fault diagnosis accuracy comparison chart.

FIGURE 4. Old dimensionless and new dimensionless each data after
using evidence reasoning fault diagnosis accuracy comparison chart.

the distribution of each data element. The reliability may
be incorrect when each group’s distribution is not evenly
distributed.

Comparing the fault diagnosis accuracy rate between ER
with the dimensionless index and the KNN combination
method shows that ER has a greater ability to handle conflict-
ing evidence. Currently, the accuracy of these two methods
is not high enough to allow their use in practical situations.
This suggests that there is a large external interference when
the data is collected, which means that the original fault
data does not represent the real characteristics for each fault
type.

To further review the algorithm, the old dimensionless
index and mutual dimensionless index are compared in this
paper and the fault diagnosis accuracy rate is plotted, as
shown in Figures 3 and 4. It is found that the mutual
dimensionless index can correct weaknesses that are blurred
or difficult to discern when using the old dimensionless
index.
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IV. CONCLUSION
Due to the fact that fault data is easily influenced by vari-
ous external factors during data collection, some blurring or
highly conflicting evidence may appear and lead to errors
in the fault diagnosis results. In this paper, a double sample
data fusion method is proposed for fault diagnosis, which is
based on combination rules. This method uses a new pro-
posed mutual dimensionless index as the body of evidence
in the ER. The reliability is calculated and fused with the
mutual dimensionless index of each fault type to reduce the
effect of uncertainties. The experimental results show that
this method can fuse the mutual dimensionless indices and
accurately determine different fault types. However, some of
the data fusion results are blurred. After analysis, it was found
that the reliability calculation method is inadequate for this
experiment because it does not consider the distributed nature
of the body of evidence.
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