
SPECIAL SECTION ON BIG DATA ANALYTICS FOR SMART AND CONNECTED HEALTH

Received August 1, 2016, accepted August 22, 2016, date of publication September 2, 2016, date of current version September 28, 2016.

Digital Object Identifier 10.1109/ACCESS.2016.2605641

AG-MIC: Azure-Based Generalized Flow for
Medical Image Classification
SOHINI ROYCHOWDHURY, (Member, IEEE), AND MATTHEW BIHIS
Department of Electrical Engineering, University of Washington, Bothell-98011, WA, USA

Corresponding author: S. Roychowdhury (roych@uw.edu)

This work was supported in part by a Microsoft Azure Machine Learning Research Award and in part by the University of Washington
Bothell Initiatives Group Research Grant.

ABSTRACT Medical image-based research requires heavy computational workload associated with image
analysis and collaborative device independent platforms to incorporate expert opinions from multiple
institutions. Cloud-based resources such as Microsoft Azure Machine Learning Studio (MAMLS) provide
such a platform that is conducive to the medical-image-based data analysis. This paper fosters the advantages
of the cloud-based computing frameworks (such as MAMLS) and presents a practical work-flow well-
suited for the standard machine learning tasks seen in medical image research viz., binary classification,
multi-class learning, regression and so on. The proposed automated generalized workflow allows medical
researchers/practitioners to focus on data inferencing rather than dealing with the intricate details of
predictive modeling, such as feature and model selection. The scalable architecture of the proposed flow
utilizes the MAMLS framework to processes data sets that require partial core storage space in the virtual
machine to one complete core storage space in a common flow. Also, the proposed flow invokes multiple
feature ranking and predictive models in parallel for automated selection and parameterization of the optimal
data model. The performance of the proposed flow is bench-marked on 14 public data sets and four
local medical image data sets (∼0.12 MB–1.22 GB) using a single common flow, while ensuring better
(∼8% improvement) or atleast similar generalization capability with respect to existing works.

INDEX TERMS Microsoft Azure, machine leaning, medical image, cloud-computing, hyper-parameter
search, feature selection.

I. INTRODUCTION
Cloud computing for medical image-based research has
attained significant attention in the recent years. While the
number of medical image-based studies have grown at a
steady rate of 3%-5% per year, data-storage requirements
have significantly grown at 10%-25% per year [1]. The
advent of major commercial cloud-service providers between
2006 and 2008 such as Amazon web service (AWS), Google
App Engine (GAE) and Microsoft Azure has led to the
development of platforms, software and infrastructure that
promote collaborative research among multiple investigators
at different institutions [2], [3], with the advantage of min-
imal overhead for maintaining the storage and computation
systems. This is particularly useful for medical image-based
studies using computed tomography (CT) or fundus images;
that have been impacted by long wait times for storage and
transfer across workstations [1]. Thus, there is an impend-
ing need for raw medical image data management, image
processing and image-based evaluation systems that have

cloud-based high-volume data storage, computation and
sharable capabilities.

Over the past two decades machine learning algorithms
have been used extensively for detecting underlying patterns
in a variety of data streams, and in gaining insights for
forecasting and prognostic purposes [4], [5]. However, with
the advent of big-data, scalable machine learning solutions
have become a necessity, where the basic idea is to distribute
the computation in cloud to speed up the model building
process [6]. The primary challenge posed by big-data is that
the data does not fit in the memory of a single processing
system [7]. In such situations, standalone physical systems
with limited storage and processing capabilities suffer from
long queuing delays and computational bottlenecks. This
necessitates the need for harnessing the advantages of cloud
computing infrastructures that use scalable machine learn-
ing modules for designing robust, reliable and reproducible
predictive models. In this work, we present such a practical
cloud-based work-flow for tackling typical machine learning
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tasks seen in medical image research viz., binary classifi-
cation, multi-class learning, regression etc. The proposed
cloud-based generalized work-flow allows medical
researchers to focus more on data inferencing than the pro-
cessing system and data modeling constraints.

Cloud platforms have been categorized into three cate-
gories based on the type of services: Infrastructure as a Ser-
vice (IaaS), Software as a Service (SaaS) and Platform as a
Service (PaaS). While IaaS allows several virtual systems to
operate over a singular hardware infrastructure in an inde-
pendent manner, SaaS provides installation, management and
interoperability of software applications without the knowl-
edge of the hardware infrastructure. The primary advantage
of PaaS systems, such as the Microsoft Azure Machine
Learning Studio (MAMLS), for medical research is that they
allow multiple developers to share platform resources with-
out having to install or maintain these resources [1]. Thus,
platforms like MAMLS provide the collaborative medical
research resources using user-end device independent shared
work spaces. Additionally, the MAMLS platform provides
secure data transmission, analytics, and remote visualizations
that are key for maintaining patient data integrity for sensitive
medical data processing [1], [8].

Existing literature surveys [1], [9] have indicated the use-
fulness of cloud-platforms for tomographic image recon-
struction and monitoring applications. Besides, most new
image processing algorithms need to be evaluated in com-
parison with existing algorithms to assess overall clinical
improvements. This requires the development of bench-
marks that allow image processing algorithms to be com-
pared under common standards. In this paper, we present the
comparative assessments of 4 medical image data sets that
can facilitate for future bench-marking. This work motivates
future collaborative research initiatives to further enhance the
medical yield through cloud-based data storage, modeling
and inferencing [1].

This paper makes three key contributions. First, a com-
prehensive cloud-based machine learning flow framework
is presented. This is of utmost importance to medical
researchers/practitioners agnostic of the underlying complex
data modeling and feature selection steps. Further, the pro-
posed flow leverages the system hardware-related indepen-
dence of a scalable cloud-based platform. This allows the
medical researchers/practitioners focus on data inferencing
rather than handling the nitty-gritty details of storage or com-
putation requirements for their analysis. Second, we automate
the learning algorithm selection as well as hyper-parameter
search for the underlying models for each algorithm. This
automation is provided for several machine learning tasks
typically seen in medical image research viz., binary/multi-
class classification, regression etc. The efficacy of such an
automation is validated through better (or at least similar)
generalization capability of the overall flow compared to
state-of-art methods on 14 public datasets, and 4 medical
image datasets. Third, we provide comprehensive empiri-
cal results in support of the generalization capability of the

proposed flow (AG-MIC), and the utility of the flow for
deriving insights from medical image data. The proposed
flow is bench-marked for classification and regression tasks
on 14 public data sets with variable data sizes. Till date, such
bench-marking experiments have not been conducted for the
Microsoft Azure platform. Moreover, a very detailed study of
the utility of the flow on 4medical image datasets for deriving
insights and obtaining state-of-art prediction performance is
also provided.

In our prior work [10], we introduced an initial version
of the proposed flow using built-in classifiers for optimal
classification on three public datasets from the University of
California Irvine, Machine Learning Repository [11] and one
local medical image data set. In this work, we have further
fine-tuned the data modeling process to include automated
algorithm selection as well as hyper-parameter search for the
underlying models for each algorithms for linear/non-linear
parameterization. Now, the modified work-flow is bench-
marked on 14 public datasets and 4 real-life large scale
medical image datasets. The proposed AG-MIC has been
tested on different sizes of datasets (∼ 0.12 MB-1.22 GB)
using a single common flow, while ensuring comparable
(or sometimes better ∼ 8% improvement) classification per-
formances when compared to existing state-of-the-art meth-
ods. This improvement in overall classification performances
can be accredited to the variety of data models and fea-
ture selection methods that the proposed scalable work-flow
invokes and the automation involved in the overall optimal
model/algorithm selection. A schematic representation of the
proposed flow is presented in the Fig. 1. As shown in the
schematic flow, the stand alone user-end devices delegates
the computational intensive tasks to the cloud computing
framework. The comprehensive work-flow is completely run
in the cloud. The final results are available as end-reports,
which can be conveniently downloaded and analyzed in the
user-end devices.

The organization of this paper is as follows. In Section II,
prior work on medical imaging and machine learning tasks
using cloud computing is summarized. In Section III, the data
sets under analysis, proposed flow, and its modules are pre-
sented. In Section IV, the experimental results of the proposed
flow are presented. Conclusions and discussions regard-
ing the performance of the proposed cloud-based frame-
work for classification and regression tasks are presented
in Section V.

II. PRIOR WORK
Recent years have witnessed an exponential growth in data
from Business Operations, Healthcare, Trading, Weather Pat-
terns, Geographical phenomenon, PersonalizedMedicine and
Internet of Things (IoT). This drastic increase in volume,
velocity, variety and complexity of data has led to the devel-
opment of data analytic systems that are capable of producing
simple spreadsheet-like end reports for a variety of users [12].
Till date, several cloud-service based data analytic systems
have been introduced such as:
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FIGURE 1. Summary of the steps in the proposed AG-MIC. For standalone physical computers (2.6 GHz and 2 GB RAM), the
processing time per medical image is observed to increase exponentially and eventually run out of memory in certain cases.
To counteract this system hardware dependency, first, medical image sets are pre-processed to produce spreadsheet-like input data
for the cloud-based flow. The input data is split into training and test sets. The training data is used for optimal feature selection
followed by data model parameterization. The optimally parameterized predictive data model is evaluated on the test data set for
classification/regression tasks. The performance evaluation metrics are finally visualized as end-reports that can be downloaded to
the user-end devices.

• Project Daytona that uses iterative MapReduce for opti-
mal data analytics [13],

• The Google Prediction API that is developer-oriented
and provides a selection of algorithms without signifi-
cant user interfaces (UI) [14],

• Amazon Machine Learning that provides a single,
opaque algorithm with which wizard-driven models can
be built [15],

• MAMLS platform that is capable of running predic-
tion modules by making a single web service call in a
full-fledged flowchart-style data flow [16]. Additionally,
MAMLS allows the use of R and Python codes and
packages.

Cloud-based picture archiving and communication sys-
tems (Cloud PACS) have revolutionized medical image
(PET/CT/MRI) transmission, storage and remote visu-
alizations to the point where zero-footprint diagnostic
image quality and browser-based applications are now
feasible [1], [17]. Cloud-based PaaS services have further
enabled device independence and streamlined patient refer-
rals and consultations. The contributions of cloud comput-
ing services in medical research include image archival,
co-operative trials between multiple institutions, quality
assurance certifications and standardized analytical mod-
ules for test repeatability [1], [18]. Additionally, cloud-
based resources support distributed computations on for data
inferencing tasks. For instance, image-based bio-informatics
research has been shown to significantly benefit from dis-
tributed computational analysis, parallelism and large data
set storage capabilities of cloud-based platforms [1], [19].

Also, cloud based neuro-imaging genetic studies [20] have
demonstrated the impact of functional signals in sub-cortical
brain regions with genome-wide genotypes. The Azure PaaS
has been used on large micro-arrays of gene expression
datasets for importance analysis of bio-informatics [12].
Azure machine learning methodologies developed so far
include the following: the work in [21] describes a method for
real-time traffic viewing using data mined from 1100 social
networks feeds from 4 cities; the work in [22] proposes
machine learning experiments for grading sample student
short answers; the method in [23] proposes predictive algo-
rithms against credit card frauds; the method in [24] pro-
poses classification of web proxy usage from captured packet
data.

However, one of the primary concerns regarding the
usage of cloud-based resources for research purposes involve
data/network security, encryption and connectivity band-
width issues. Protection of personal medical records face
ethical and legal limitations. Thus, secure information trans-
mission and reception, cloud-based backup policies and fast
recovery of failed service calls are key to the use of cloud-
based resources in medical image-based research [1]. While
SaaS models such as Google Docs, Dropbox etc. require
the clients to implement standard security and integrity con-
trols, PaaS services primarily focus on protecting data [25].
Encrypted system logs, workspace and user authentication,
user-end system failure logs and resource monitors have
enabled the use of Azure-based PaaS services to maintain
data privacy, integrity and security of web-bases service calls
against data attacks and system failures [26].
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Moreover, recent bench-marking of the Azure cloud plat-
form storage capabilities in [26] demonstrate the stor-
age, availability, scalability and fault tolerant statistics.
Currently, the MAMLS platform supports blob storage rang-
ing from 4 MB to 20 GB of data with cloud resource
availability in the range of 99.9-99.95% service level
agreements (SLA) for computation, search and storage
requirements [27]. Based on the memory size and the
number of virtual machines cores invoked for data stor-
age, data sets under analysis in [26] were typically catego-
rized as: extra small (up to 768 MB, shared cores), small
(up to 1.75 GB, 1 core), medium (3.5 GB, 2 cores), large
(7GB, 4 cores) and extra large (14 GB, 8 cores). However,
from a practical standpoint, whenever the size of data exceeds
the processing unit memory, there is a need for distributed
computing resources with scalable architectures. The Azure
PaaS supports horizontal and vertical scaling for load shar-
ing [27], and presents it as a competitive alternative for such
large-scale analysis. In view of the improved security and its
scalable architecture, MAMLS is a realistic choice for medi-
cal image based research which requires heavy computation
and a secure framework for collaborative research. In this
paper we utilize these advantages of the MAMLS framework
and propose a comprehensive machine learning work-flow on
top of it. The proposed flow has a scalable architecture due
to two reasons. First, the proposed flow utilizes the MAMLS
framework to processes data sets that require partial core stor-
age space in the virtual machine to one complete core storage
space in a common flow without exponentially increasing
the computational time complexities with growing data sizes.
Execution of the proposed cloud based work-flow is indepen-
dent of end-users system configuration. For example, running
the current work-flow for CT Image dataset (∼1.22 GB) or
Blood Vessel Image dataset (∼1 GB), using ‘R’ platform in
a single machine system (2.6 GHz, 2 GB RAM) results in
‘‘out-of-memory’’ error. In contrast, the MAMLS based
work-flow does not run into such memory issues. Second, the
proposed flow invokes multiple feature ranking and predic-
tive models in parallel which further alludes to the scalable
architecture of the overall proposed flow.

Machine learning is an underutilized resource for the
analysis of large medical research and clinical trial data
sets [1]. For most medical data sets, the availability of labeled
training data is rare. In this work, due to sufficient sam-
ple and reasonable balanced outcomes, we use 70/30 data
split, where 70% data samples are used for training and
model parameterization while the remaining 30% test sam-
ples are used for performance evaluation of the trained mod-
els [28]–[30], unless other data splits suggested by data
authors.

III. DATA AND METHOD
The performance of the proposed generalized flow is bench-
marked and analyzed in comparison with existing works for
binary, multi-class, and hierarchical classification and regres-
sion tasks, respectively. The data sets under analysis, method

notation, the proposed flow, and the processing modules are
explained below.

A. DATA
The proposed flow is bench-marked using 14 publicly avail-
able machine learning data sets for classification and regres-
sion tasks and 4 locally generated medical image data sets.
Among the 4 locally generated medical image data sets,
3 data sets of medical fundus images are pre-processed to
extract several features per sample region/pixel in every
image. These compositions of the 4 local data sets and the
outputs from the modules of the AG-MIC are presented in
the supplementary material. Thus, the features per sample are
denoted as ‘X ’ and the sample label is ‘Y ’. For these fun-
dus image based data sets, 4 different categories of features
are extracted: Structural (S), Gaussian coefficient-based (G),
Intensity-based (I), Gradient Intensity-based (GI) and Gra-
dient in image intensity-based (GII). For the fourth locally
generated medical image data set, rawmedical CT images are
down-sampled and every image is converted to a sample row.
Thus, each pixel of the CT images becomes a sample feature
‘X ’ while the CT image quality serves as the class label ‘Y ’.
The data transferred to the MAMLS platform in spreadsheet-
like formats (‘csv’, ‘txt’, ‘libsvm’, etc.) containing the feature
and label information.

For certain data sets the training and test data split is
specified by the data set authors. For comparative analysis,
the existing data split for such data sets are preserved. For
example, the MNIST handwriting recognition data set [31]
is defined with 60,000 samples for training and 10,000 sam-
ples for testing, and these data proportions are used in the
proposed flow.

1) PUBLIC DATA FOR BENCH-MARKING
For bench-marking purposes, the proposed generalized flow
is tested on 8 binary classification, 2 multi-class classification
and 4 regression data sets obtained from the UCI Machine
Learning database [11]. Although, the final goal of the pro-
posed flow is medical image classification, the methods and
modules used by the proposed flow include machine learning
algorithms. Since the first step of all medical research is
system/algorithm bench-marking [1], 14 standard publicly
available machine learning data sets are chosen for bench-
marking the proposed machine learning work-flow. Another
reason for work-flow bench-marking using the public data
sets is that most existing MAMLS experiments published in
the Cortana Intelligence Gallery are analyzed using a sub-
set of the public data sets presented in Table 1. Thus, the
AG-MIC work-flow bench-marking will enable comparative
assessment of incremental advances made in the MAMLS
modules in the near future. The description of all the data
sets including their class frequency distribution, storage size
and the classification/regression tasks associated with these
data sets are described in Table 1. Here, the Annealing data
set uses 75/25 data split [32].

5246 VOLUME 4, 2016



S. Roychowdhury, M. Bihis: AG-MIC: Azure-Based Generalized Flow for Medical Image Classification

TABLE 1. List of data sets under analysis.

2) NPDR LESION DATA SET
This local medical image data set for multi-class classifi-
cation data set of size 8.04 MB is constructed from fundus
images of the human retina from patients with varying sever-
ities of Non Proliferative Diabetic Retinopathy (NPDR) that
can cause manifestations in the retina in the form of bright
and red lesions [10]. Each fundus image is pre-processed by
filtering operations described in [33]. Next, several lesion
regions are isolated in each image. Thus, 15,495 different
lesion regions with 66 region-based features per region are
extracted as X from 89 images in the DIARETDB1 [29]
image data set. Examples of the 6 classes of lesion regions
that are extracted in this data set are shown in Fig. 2. The
class frequencies for this highly imbalanced data set are: 4.9%
class 0, 0.18% class 1, 2.6% class 2, 69% class 3, 13% class
4, 10% class 5, respectively.1 In class imbalanced data sets
for multi-class classification tasks, hierarchical classification
strategies have been shown to be effective [33]. Based on
the structural and intensity-based features of the bright and
red lesions, the sample classification can be achieved by the

1Available at https://sites.google.com/a/uw.edu/src/useful-links

FIGURE 2. Pre-processing fundus images for NPDR lesion data creation.
Green plane of each fundus image (left) is filtered to extract 3 classes of
bright lesions (top right) and 3 types of red-lesion regions (bottom right).

following sequential or hierarchical levels of binary classi-
fication in 5 levels, representative of easy to tough sample
partitioning, respectively.
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• Level 1: Classification of bright lesions from red lesions
(class 0,1,2 vs. class 3,4,5).

• Level 2: Separation of false positive bright lesions
(class 0 vs. class 1,2).

• Level 3: Separation of false positive red lesions
(class 3 vs. class 4,5).

• Level 4: Classification among bright lesions
(class 1 vs. 2).

• Level 5: Classification among red lesions (class 4 vs. 5).

3) BLOOD VESSEL IMAGE DATA SET
This locally generated medical image data set of size 1 GB
is developed for binary classification, where the task is to
separate the blood vessel regions (class 1) from the false
positive non-vessel regions (class 0) [34]. Accurate classifica-
tion of blood vessels is crucial for detecting abnormal retinal
vessel patterns that can be indicative of severe proliferative
DR (PDR). The blood vessel image data represents fine vessel
pixels that constitute fine vessel fragments, also called minor
vessels [34] that are difficult to distinguish from small red
lesions and non-vessels. This data set is created from hand
annotated images of retinal vessels from the 20 STARE data
set [35], 40 DRIVE data set [36] and 28 CHASE_DB1 [37]
images, respectively. The pre-processing steps of extracting
the fine blood vessel pixels is shown in Fig. 3. This data
set contains 1,274,978 blood vessel pixel-based samples with
98 features per sample in X , with 229,386 samples from
STARE,1 180,619 samples from DRIVE and 864,973 sam-
ples from the CHASE_DB1 data set, respectively.2 The class
label (Y ) frequency distribution of this data set is: 67.05%
class 0, 32.95% class 1.

FIGURE 3. Pre-processing fundus images for blood vessel image data
creation. The major vessels are removed while the fine vessel pixels are
subjected to binary classification.

4) PDR IMAGE DATA SET
This local data set of size 9.13 MB is created using 57 fundus
images where 30 images are normal and remaining 27 images
have some degree of neovascularization, which in turn is
a manifestation of PDR [38]. There are two kinds of neo-
vascularizations that manifest in the human retina, namely

1Available at https://sites.google.com/a/uw.edu/src/useful-links
2Available at https://sites.google.com/a/uw.edu/src/microsoft-azure-

machine-learning-research

neovascularization of the disc (NVD) and neovasculariza-
tion elsewhere (NVE). While NVD manifests as a mesh of
tortuous fine vessels in the optic disc (OD) region of the
retina, NVE manifest as fine vessel-like region away from
the OD. This data set is created by removing the major blood
vessel regions and classifying the non-vessels and red lesion
regions (class 0) from NVD vessels (class 1) and NVE vessel
regions (class 2). This data set is more specialized than the
blood vessel image data set to detect NVD and NVE as
manifestations of PDR.

FIGURE 4. Pre-processing fundus images for PDR image data creation.
The vessel regions in the OD are classified to find NVD vessels and vessel
regions away from the OD are classified to find NVE vessels.

This data set contains 12,695 samples with 40 features per
sample in X .2 This imbalanced data set has the following
class label (Y ) frequencies: 88.61% class 0, 0.053% class 1,
0.061% class 2. The pre-processing steps for extracting the
vessel regions with neovascularization are shown in Fig. 4.
For this class imbalanced data set for multi-class classifica-
tion task, 2 levels of hierarchical classification can be set up
as follows:
• Level 1: Classification of non-vessels from neovascular-
ization regions (class 0 vs. class 1,2).

• Level 2: Separation of neovascularization regions
(class 1 vs. class 2).

Since NVD and NVE manifest in non-overlapping retinal
regions, NVD and NVE must be perfectly classifiable from
one another.

5) CT IMAGE DATA SET
This locally generated medical image data set of size 1.22 GB
comprises of raw dicom images of size [512 × 512] each,
corresponding to CT image stacks of the chest CT scans
from a phantom. Six levels of CT image quality (CTIQ,
class 1 through 6) are obtained as shown in Fig. 5. Prior
work suggests that CT image quality can be detected from
the variation of pixels in a relatively homogeneous image
region [39]. Since the phantom images represent relatively
uniform tissue regions, without loss in information, each
image is pre-processed and downsized to [128 × 128]
using bi-cubic interpolation to reduce data dimension-
ality. Thus, the resulting data contains 486 samples
(81 images × 6 tube current settings), where each sample

2Available at https://sites.google.com/a/uw.edu/src/microsoft-azure-
machine-learning-research
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FIGURE 5. Raw CT images from phantom scans for the 6 classes of image
qualities (CTIQ) are gathered for the CT image data set.

comprises of 16384 (128× 128) columns in X . This data set
is balanced with each class label having a sample frequency
of 16.67% in Y . Since this data set has more features than
samples and balanced class label frequencies, this data is
subjected to 70/30 split to ensure more samples for training
and learning.

B. METHOD NOTATION
The input data stream for each data set uploaded to the
proposed flow is in the form: [X[n×d],Y[n×1]], where ‘X ’
represents ‘d’ features from ‘n’ samples and ‘Y ’ represents a
vector of sample class labels, respectively. ∀x ∈ X , the data is
scaled in the range of [0,1]. Alphanumeric features are either
converted to numeric forms or discarded for classification and
regression tasks. The multi-class labels are denoted by i and
the number of classes is nκ , such that for binary problems
nκ = 2. A description of the mathematical notations used in
the proposed flow is given in Table 2.

The performance of the proposed flow is evaluated based
on the output metrics given in Table 3. Based on the task,
i.e., binary classification, multi-class classification and
regression, the performance metrics vary. For evaluation of
these performance metrics, the number of test data samples
is ‘nT ’. In multi-class classification tasks, the number of
samples in test data belonging to each class i is denoted as
ni, i ∈ [1, ..nκ ],

∑nκ
i=1 ni = nT .

C. THE PROPOSED FLOW
The MAMLS platform supports request response ser-
vice (RRS) that is a low-latency, high-scale web service used
to deploy themodules from the experimentation environment.
The default endpoint is provisioned with 20 concurrent RRS
requests per end point, while executing up to 4 modules
in parallel in an experiment. Thus, the parallel processing
capabilities of the MAMLS platform make it suitable for
several decision making and parameterization steps to ensure

TABLE 2. Table of notations.

TABLE 3. Performance evaluation metrics visualized in end-reports.

high overall accuracies for classification and regression tasks.
Fig. 6 shows the steps in the proposed generalized flow.

First, each input data set is subjected to feature selec-
tion, where a subset of all the features that are highly

VOLUME 4, 2016 5249



S. Roychowdhury, M. Bihis: AG-MIC: Azure-Based Generalized Flow for Medical Image Classification

FIGURE 6. Block diagram of the proposed flow (AG-MIC) in MAMLS.
The 2 significant data processing modules include: feature selection
module and data modeling module.

discriminating in nature for classification purposes are
selected and retained. Thus, the input data set [X[n×d],Y[n×1]]
is reduced to [X[n×ρ],Y[n×1]], where ρ ≤ d . Next, the
Decision 1 module directs the input data set to either clas-
sification or regression data models, based on the specified
problem setting. Several predictive datamodels, are estimated
by optimally tuning the model parameters using 5-fold cross
validation over a grid of parameter values [40].

For regression tasks, a suite of predictive data models are
parameterized and performance of the best parameterized
model (i.e., one with lowest RMSE and highest CoD) on the
test data set is visualized as user-end reports. For classifica-
tion tasks, the feature reduced data set reaches Decision 2
checkpoint, where data sets for multi-class classification
(nκ > 2) are separated from binary classification data sets
(nκ = 2). For binary classification tasks, several binary clas-
sification data models are parameterized and performance of
the best parameterized model (i.e., one with highest ACC) on
the test data is visualized as user-end reports.

For the multi-class classification tasks, several multi-
class data models are optimally parameterized followed by
Decision 3. The Decision 3 checkpoint is used to detect if
the best multi-class classification accuracy can be further
improved. The underlying assumption here is that if a data set
is heavily unbalanced, then a trivial classifier will classify all
test samples as the class with the highest frequency. Hence, at
Decision 3, shown in (1)-(3), a simple check is performed to
determine if the estimated multi-class model performs worse
than such a ‘trivial’ classifier. If invoked, the hierarchical

binary classifiers perform sequential partitioning of samples,
starting from the easiest partition to the toughest partition.

Trivial Classification: ωρ ← arg max
i∈[1,..nκ ]

ni (1)

PRωµ← ωρ .

Best Multi-class classification: PRcM ← νρ . (2)

Decision 3 Module: (3)

If (PRωµ > PRcM )

Hierarchical Classification.

Else

Multi-class classification retained.

End

D. FEATURE SELECTION
One significant contribution of this work is the selection
of a discriminating set of features that aid classification/
regression tasks. In our previous work [10], we demonstrated
that feature reduction can often lead to increased accuracy in
classification tasks. In this work, we have developed a robust
5-fold double cross validation (CV) module that utilizes a
suite of feature ranking strategies for optimal feature set
selection in 2 steps followed by feature voting. This feature
selectionmodule incorporates scalable feature ranking/voting
and selection mechanisms motivated by existing works
in [34] and [38]. This module can be modified according
to the user-end needs to provide f−fold double CV, where
f can be varied as [5, 10, 20]. Here, we use a stratified 5-fold
double CV [40] where the training data, with n′ samples, is
partitioned into f = 5-folds, such that each fold comprises
of 80% training and 20% validation samples with similar
sample class frequencies maintained in each fold. The folding
operation ensures that each sample is used for validation at
least once. In step 1 of CV (4), for every fold, the full feature
set of the training data (F) with dimension: Dim(F) = d , is
ranked and the ranked features are sorted in ascending order
(RdS (F)). As the number of top ranked features are varied,
l = [1, ..d], the set of the top l ranked features are selected
for classification of the validation samples in each fold (5).
The accuracy of validation sample classifications using top l
ranked features in each fold (Alf ) is averaged across all f folds
in (6) and the number of features for which this averaged
classification accuracy is maximized is l1 in (7). Now, top l1

features can be different across the f folds, hence top l1

features from all folds are gathered and a unique combination
of all the selected features is F1 in (8).

In step 2 of CV, for every f−fold, the reduced set of F1

features are re-ranked and rank-order sorted in (9) followed
by classification of the validation samples using top l ranked
feature combinations in (10). Next, the average classification
error across all folds is computed in (11) and the number
of features that maximize this average validation sample
accuracy is computed as l2 in (12). A set of unique top ranked
l2 features across all f folds is selected as F2 in (13). Finally,
the vote of each feature in F2 per fold is computed in (14).

5250 VOLUME 4, 2016



S. Roychowdhury, M. Bihis: AG-MIC: Azure-Based Generalized Flow for Medical Image Classification

All features in F2 that appear in the top l2 ranked features per
fold repeatedly are considered to be discriminating and they
are assembled in the final feature set 8 (15) with ρ number
of reduced features.

Step 1: For every f-fold, (4)

Full Feature Ranking and Sorting:

[R(F),RdS (F)]← (X[1:n′,1:d],Y[1:n′,1]).

Classification:∀l = [1, ..d], j ∈ [1 : n′], (5)

νl(xj)← X[1:n′,RlS (F)]

Evaluation: Mean accuracy across folds = Âl ← (νl,Y )

(6)

l1 = arg max
l=[1,...d]

Âl (7)

Feature set of unique top l1 features from f -folds: (8)

F1
= unique(Rl

1

S (F), f ),Dim(F
1) = m, l1 ≤ m ≤ d .

Step 2: For every f-fold: (9)

Feature Ranking and Sorting:

[R(F1),RmS (F
1)]← (X[1:n′,1:m],Y[1:n′,1]).

Classification:∀l = [1, ..m], j ∈ [1 : n′], (10)

νl(xj)← X[1:n′,RlS (F1)]

Evaluation: Mean error across folds = Âl ← (νl,Y ) (11)

l2 = arg max
l=[1,...m]

Âl (12)

Feature set of unique top l2 features from f -folds: (13)

F2
= unique(Rl

2

S (F
1), f ),Dim(F2) = q, l2 ≤ q ≤ m.

Feature Voting for every f-fold:∀l = [1, ...q], (14)

vlf = [1, if feature l belongs to Rl
2

S (F
2).

= [0, otherwise.

Top voted features across f-folds:∀l = [1, ...q] (15)

8← If (sum(vlf , f ) ≥ f /2),Dim(8) = ρ.

An example of the 2-step CV approach for feature reduc-
tion on the NPDR lesion image data set is shown in Fig. 7.
In the proposed flow, the following 3 types of built-in fea-
ture ranking strategies are used: F-score, chi-squared and
mutual information [10]. Also, the multi-class k-nearest
neighbor (kNN) classifier is used for classification of the
validation samples. This module can be expanded to sup-
port additional feature ranking strategies and other classifiers
based on user needs. The kNN classifier was selected for its
computational simplicity and speed. For the feature selection
operation in regression data sets, the class label values are
re-scaled in the positive range and rounded off using the
floor function bc as y′j =

⌊
10log(1+ yj)

⌋
. This operation is

motivated by the prior work [41] that uses the logarithmic
scaling operation on the public data of Forest Fires [42].

E. DATA MODELS
Once the discriminating feature set is selected, a suite of clas-
sification and regression predictive data models are invoked.

FIGURE 7. The 2 steps in 5-fold double CV for feature selection on the
NPDR Lesion Image data set. At the end of step 1, out of 66 input
features, the number of unique identified features in feature set F 1 are
42, 55 and 56 using the F-score, chi-squared and mutual information
ranking methods, respectively. At the end of step 2, F 2 with 42 unique
features result in highest average validation accuracy using the F-score
ranking method. All these features are the top ranked 42 features in
atleast 3 out of the 5 folds. Hence 8 contains ρ = 42 features.

A description of the data models used in the proposed flow
and their respective parameters that are optimally trained are
presented in Table 4. Each data model is optimally param-
eterized using the ‘sweep parameters’ module in MAMLS
that performs a grid search for parameters in 5-fold CVmode.
The significance of each classification parameter is discussed
in [43]. The performance of each data model is evaluated in
terms of the output metrics defined in Table 3. For binary and
hierarchical classifications, the Receiver Operating Charac-
teristic (ROC) curves [33] are generated and the area under
the ROC curves (AUC) are evaluated for classification robust-
ness. Higher AUC implies robust data model to classification
thresholds.

IV. EXPERIMENTS AND RESULTS
Three categories of experiments are performed to analyze the
contributions of the proposed flow. First, the performance of
the AG-MIC on 14 publicly available machine learning data
sets is comparatively analyzed with existing state-of-the-art
methods. Second, the selected set of highly discriminating
features for the medical image data sets are analyzed for data
inferencing. Third, the performance of the proposed flow is
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TABLE 4. Data models under analysis.

analyzed for the local medical image data sets in comparison
with existing state-of the-art methods.

A. FLOW BENCH-MARKING WITH PUBLIC DATA SETS
In Table 5, the public classification and regression data sets
from [11] are used to bench-mark the proposed flow. The
classification data set of Direct Marketing [44] has been
previously bench-marked on the MAMLS platform. For this
data set, the experiment designed in [45], built uplift and
response models for population of customers who were sent
women’s email, or those who were not sent any email.
This MAMLS experiment was shown to better uplift (7.3%)
when compared to the existing response model (6%) in [44].
On the Direct Marketing data set, the proposed AG-MIC
results in [ACC,PR,RE,AUC] = [0.8623, 1, 0.062, 0.6],
respectively. From Table 5, we observe that the proposed
flow has similar to superior performance of classification
and regression on all the public data sets. Additionally, the
scalable architecture of the proposed flow allows automated
model selection across a wide range of optimally tuned mod-
els, thereby ensuring high classification accuracies and low
regression errors using a common flow.

B. DISCRIMINATING FEATURE SETS
In this experiment, we analyze the selected set of features in
comparison with existing works to identify the new features
that contribute towards increasing classification accuracies
for the local medical image data sets. For the 3 medical
image data sets generated by pre-processing fundus images,

the categories of features in the full feature set (F) and
the reduced feature set (8) in comparison with the features
identified in existing works is shown in Table 6. In this exper-
iment, we assess the importance of certain feature categories
for medical image classification tasks.

For the NPDR lesion data set, ρ = 42 unique fea-
tures, or 63.6% of the original features are identified as
highly discriminating using the proposed flow. In the existing
work [33], 30 features are extracted per lesion region using
AdaBoost [40] for feature ranking. From Table 6, we observe
that when compared to [33], the proposed flow extracts
9 lesser S-category features and additional 12 G-category,
10 GI-category features. Since the proposed flow relies on
several ranking strategies and selects only the top voted
features, it has superior classification performance for the
significantly tougher sample partitioning problems such as
hierarchical classification level 3,4,5 as shown in Table 7.

For the blood vessel image data set, ρ = 85 unique
features, or 86.7% of the original features are selected by
the AG-MIC. In the existing work [34], 8 pixel-based fea-
tures are used for vessel/non-vessel pixel classification. From
Table 6, we observe that the 77 additional region-based fea-
tures belonging to S, G, I, GI, GII-categories extracted by
the AG-MIC are significantly important across vessel image
data sets for very fine vessel/non-vessel classification tasks
as shown in Table 7.

In the PDR image data set, ρ = 33 unique features,
or 82.5% of the original features are selected by the pro-
posed flow. When compared to the existing work in [38],
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TABLE 5. Bench-marking the proposed flow for classification and regression tasks on public data sets [11].

21 additional features belonging to the I-category are rec-
ognized as significant. This leads to ACCµ = 0.917
and ACCM = 0.944 when compared to the existing
ACCM = 0.912 in [38] using for multi-class classification
by the LR model. This classification accuracy is further
enhanced by hierarchical classification on this data set as
shown in Table 7.

For CT image data set, 395 pixel features are retained
by the feature selection module for 2.41% feature retention.
These features primarily constitute the surface of the chair

over which the phantom is placed and the outer edge of the
phantom as shown in Fig. 8. Thus, based on the definition of
the chair over which the patient is imaged, the CT image qual-
ity can be predictedwith 12.6% higher classification accuracy
when compared to standard spatial image segmentation and
quantification method in [39].

C. FLOW PERFORMANCE ON MEDICAL IMAGE DATA SETS
Once the AG-MIC is bench-marked, we analyze its perfor-
mance on all the local medical image data sets in Table 7.
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TABLE 6. Performance of feature selection on medical image data sets in comparison with existing works.

TABLE 7. Classification performance of the proposed flow in comparison with existing works.

FIGURE 8. The highly discriminating feature pixels for the CT image
data set correspond to the chair and outer edge of the phantom.
The qualitative analysis of the chair region shows significant variations
that are indicative of CT image quality (y ).

Here, we observe that for all the local data sets, the selected
set of reduced features have superior classification perfor-
mance on the medical image data sets when compared to
existing works.

V. CONCLUSIONS AND DISCUSSION
This paper proposes a comprehensive machine learning
work-flow (AG-MIC) that is developed on a sharable

cloud-computing platform. The proposed flow invokes multi-
ple feature ranking and predictive models in parallel followed
by the selection of the optimal data model for classification
and regression tasks on a variety of machine learning and
medical image data sets. The AG-MIC performs two primary
tasks: data dimensionality reduction by a scalable feature
ranking and feature selection module, and optimal tuning
of binary, multi-class and hierarchical classification models
to ensure high overall classification accuracy. It is notewor-
thy that the end-to-end run-times for the experiments in the
proposed flow ranges between 3-35 minutes to 2-6 hours
of cloud-processing time based on the storage size of the
data sets. The optimal feature set selection step reduces
the classification time complexities from 1-354 minutes
to 0.9-48 minutes as shown in the supplementary material.
The variations in end-to-end processing times is due to the
RRS turnaround times. Each experiment in the cloud is pro-
cessed in a queue, and the wait times can vary significantly
depending on the service traffic load. Since cloud-based plat-
forms such as the MAMLS are capable of parallel processing
of experiment modules, computation time complexities do
not pose as bottlenecks.

Several experiments are performed using the proposed
flow on publicly available data sets and on medical image
data sets for classification and regression tasks. Firstly, on
14 publicly available machine learning data sets, the per-
formance of the AG-MIC is comparatively analyzed with
existing state-of-the-art methods. This helps to validate the
generalizability of the proposed flow for a gamut of real-life
applications. Secondly, on 4 locally created medical image
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data sets, a selected set of features using the AG-MICflow are
found to provide better insights into pathology/image quality
classification tasks when compared to the full feature set.
Such an analysis validates the practical utility of such an
automated feature selection framework, typically well suited
for medical research domains. Finally, the performance of
the proposed flow is analyzed for local medical image data
set classifications in comparison with existing state-of the-
art methods. This analysis demonstrates the adaptability and
robustness of the proposed flow to sample class imbalances
and data storage size variabilities in real-life medical data
sets.

One key contribution of this work is the selection of highly
discriminating set of features that present unforeseen depen-
dencies in the data. For the pre-processed fundus image based
medical data sets, 63-87% of the pixel-based and region
based features are considered useful for classification tasks
by the proposed flow. While the features extracted per pre-
processed fundus image data set are motivated by domain
knowledge, the final reduced feature set aids standardized
data inferencing. We observe that for the NPDR lesion clas-
sification, Gaussian coefficient based and Gradient image
based features are more important than structural features.
For fine blood vessel classification, region based features are
significantly important along with pixel-based features, while
for classification of neovascularization, regional intensity-
based features are significantly important. However, for the
CT image data set, the proposed flow retains only 2.4% of
the raw pixel features, which significantly reduces the com-
putational complexity for image quality classification tasks.
It is noteworthy that the CT image down-sampling operation
significantly improves the image quality-based classification
accuracy. The original CT image data set of size [512× 512]
pixels results in ACCµ = 0.79 since the data set has too
many features when compared to the number of samples.
Sub-sampling the images significantly reduces dimensional-
ity per sample, that leads to stable classification. Thus, the
proposed flow is limited by the input data dimensionality.
In the supplementary material we observe that for training
data sets with low ratio between the number of input fea-
tures and the number of samples d

n′ ≤ 100, the proposed
feature selection module significantly increases the overall
classification accuracy when compared to the full feature
set. Future work will be directed towards combining deep
learning strategies for analyzing high-dimensional medical
image data sets with the AG-MIC. Additionally, the pro-
posed flow and data sets can be used to bench-mark future
scalable methods involving medical data based classification
tasks.

Another significant contribution of the proposed flow is
that for unbalanced data sets, hierarchical classifiers are
invoked to improve the overall classification accuracy when
compared to multi-class classifiers. For the 5 multi-class
classification data sets under analysis, the classification
performances of trivial classifiers (PRωµ) and best multi-
class classifiers (PRcM ), respectively, are shown in Table 8.

We observe that hierarchical classifiers are invoked only for
the NPDR lesion and PDR image data sets, where the trivial
classification is better than multi-class classification. The
hierarchical classifiers further improve the overall classifica-
tion accuracy for these 2 data sets.

TABLE 8. Decision making for hierarchical classification.

The proposed multi-disciplinary and application oriented
flow connects the efficacy of cloud-computing frameworks
with machine learning algorithms for medical image anal-
ysis. The proposed method utilizes the system hardware
independence of a cloud-based platform and builds a sys-
tematic work-flow that further reduces the dependencies of
feature selection and data modeling from medical classi-
fication tasks. The resulting flow ensures low system and
data modeling dependencies, which can lead to vital med-
ical research contributions, such as identification of new
feature sets for personalized medicine and classification
tasks.
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