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ABSTRACT Sensors play a very important role in the Internet of Things. Error correction is of great
significance to achieve sensor precision. Currently, accurately predicting the future dynamic measurement
error is an effective way to improve sensor precision. Aiming to solve the problem of low model accuracy
in traditional dynamic measurement error prediction, this paper employs the support vector machine (SVM)
to predict the dynamic measurement error of sensors. However, the performance of the SVM depends on
setting the appropriate parameters. Hence, the cuckoo search (CS) algorithm is adopted to optimize the
key parameters to avoid the local minimum value which can occurs when using the traditional method of
parameter optimization. To validate the predictive performance of the proposed CS-SVMmodel, the dynamic
measurement error data for two sensors are applied to establish a predictive model. The root mean squared
error and the mean absolute percentage error are employed to evaluate the models’ performances. These
results are also compared with those obtained from the SVM optimized by a grid search and the particle
swarm optimization method. The experiments show that the SVMmodel based on the CS algorithm achieves
more accurate prediction and is more effective in predicting dynamic measurement errors for sensors than
the previous models.

INDEX TERMS Dynamic measurement errors, support vector machine, cuckoo search algorithm, sensors,
prediction.

I. INTRODUCTION
With the development of modern measurement technologies,
increasingly high accuracy is required in precision engineer-
ing [1], [2]. Inaccurate machine measurements can lead to
the failure of entire systems and cause large economic losses.
Real-time error correction of the instrument or sensor is an
effective means to minimize error, and such corrections are
critical for precision measurements because they not only
enhance measurement stability but also improve the accuracy
of the instrument. Building a model of dynamic measurement
error to predict future error values based on existing error
series is one of the basic methods to achieve dynamic mea-
surement error correction. The effect of error correction in
dynamic measurement depends on the accuracy of the model;
therefore, prediction dynamic error modeling for sensors has

become a topic of considerable importance in improving
measurement accuracy [3], [4].

In recent years, several modeling methods for dynamic
error prediction have been presented. These include time
series analysis, gray theory and neural networks, and they
have achieved certain results [5]–[9]. However, the modeling
of time series analysis method is complex and the prediction
accuracy is low. The gray theory method requires regular
data; the neural network method has disadvantages such as
overfitting and falls easily into extreme values, and so on. The
support vector machine (SVM) is a learning technique based
on the structural risk minimization principle as well as a new
regression method with good generalization ability. It can
better solve problems with few samples, nonlinear data, avoid
local minima, and so on. However, the learning performance
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and generalization ability of SVM are dependent on appro-
priate parameter selection. The parameters directly impact
the precision of the model predictions. Therefore, the grid
search method, the particle swarm optimization algorithm,
and the genetic algorithm have been adopted to optimize the
SVM parameters [10]–[13]. However, the grid search method
requires an exhaustive search over the hyper-parameter space,
which is time consuming. The particle swarm optimization
algorithm and the genetic algorithm fall into local extremes
easily. The cuckoo search (cuckoo search CS) algorithm is a
metaheuristic algorithm proposed in recent years [14]; it has
the advantages of fewer parameters, strong global search
ability, and a good search path, and it is powerful when
solving multi-objective problems. In this study, a method of
dynamic measurement error prediction for sensor based on a
CS-optimized support vector machine is proposed.

The rest of the paper is organized as follows. In Section II,
the support vector machine regression is described in detail.
Section III introduces the optimization of SVM parameters
based on the CS algorithm. Section IV reports on a simulation
of the dynamic measurement error prediction model and
provides the analysis results. Finally, Section V concludes
the paper.

II. SUPPORT VECTOR MACHINE REGRESSION
A. SUPPORT VECTOR MACHINE REGRESSION THEORY
Assume (xi, yi), i = 1, 2, · · · , n, xi ∈ Rd , yi ∈ R are the
training data sets, where X is the input vector, yi is the output
value, d is the dimension of sample space and n is the total
number of the sample data. The basic idea of support vector
machine regression is that the samples are mapped to a high
dimensional feature space using nonlinear mapping 8 and
then, SVM carries out the linear regression operations in this
space. The regression function is expressed as follows:

f (x) = [ω ·8(x)]+ b ω ∈ Rd , b ∈ R, (1)

whereω is the weight vector and b is the threshold. Assuming
that all training data can be fitted with a linear function
without error, the optimization equation can be represented
as follows:

min
ω

8(ω) =
1
2
‖ω‖2

s.t.

{
yi − ω · x − b ≤ ε
ω · xi + b− yi ≤ ε, i = 1, 2, · · · , n.

(2)

Considering there are errors in practice, the equation
introduces slack variables and a punishment coefficient.
According to the principle of construction risk minimization,
Equation (2) can be rewritten as follows:

min
ω,ξ

8(ω, ξ ) =
1
2
‖ω‖2 + C

n∑
i=1

(ξi + ξ∗i )

s.t.


yi − ω · xi − b ≤ ε + ξi
ω · xi + b− yi ≤ ε + ξ∗i
ξi, ξ∗i ≥ 0,

(3)

where ξi and ξ∗i are slack variables,C is the punishment coef-
ficient, and ε is a parameter of the insensitive loss function.
The first term in equation (3) is a model complexity term and
the second item is an empirical error term determined by the
loss function. The punishment coefficient is used to adjust the
balance of these two items.

Lagrange multipliers are introduced in equation (3). The
corresponding dual problem can be expressed as follows:

max
n∑
i=1

yi(α∗i − αi)− ε
n∑
i=1

(αi + α∗i )

−
1
2

n∑
i=1

n∑
j=1

(αi−α∗i )(αj − α
∗
j )(xi · xj)

s.t.


n∑
i=1

yi(αi − α∗i ) = 0

0 ≤ αi, α∗i ≤ C, i = 1, 2, · · · , n,
(4)

where αi and α∗i are Lagrange multipliers. Finally, the linear
function takes the following form:

f (x) =
n∑
i=1

(αi − α∗i )(xi · x)+ b. (5)

For the nonlinear regression, the dot product operation
can be directly replaced by computing a so-called kernel
function K (xi, xj). When a K (xi, xj) satisfies the Mercer con-
dition, it corresponds to the inner product of a transform
space according to functional theory. Therefore, the nonlinear
regression function can be determined:

f (x) =
n∑
i=1

(αi − α∗i )K (xi · xj)+ b. (6)

B. KERNEL FUNCTION AND PARAMETERS OF SVM
When dealing with nonlinear problems, SVM avoids com-
puting an inner product in the high dimensional space by
introducing a kernel function to solve the dimension disaster
problem. According to SVM theory, the kernel function is the
key technology in SVM. Selecting different kernel functions
will construct different regression models. The common
kernel functions are listed below:

1) POLYNOMIAL KERNEL FUNCTION

K (xi, xj) = ((xi · xj)+ 1)q (7)

2) SIGMOID KERNEL FUNCTION

K (xi, xj) = tanh(ν(xi · xj)+ t) (8)

3) RBF KERNEL FUNCTION

K (xi, xj) = exp

{
−

∣∣xi − xj∣∣2
2σ 2

}
, (9)
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where σ is the width coefficient of the kernel function.
Compared with other kernel functions, the RBF kernel func-
tion has the advantages of fewer parameters, few numerical
restrictions and good performance. Therefore, the RBF kernel
function is used in this study.

The SVM parameters determine both its learning abil-
ity and generalization ability. Two major RBF parameters
applied in SVM are C and σ . C controls the equilibrium
between the complexity of the model and empirical error.
If C is too large, the model’s complexity will be increased
and it may easily fall into the ‘‘over-fitting’’ phenomenon.
Conversely, when C is too small, the model’s complexity
is too low and it may fall into the ‘‘under-fitting’’ problem.
The parameter σ affects the complexity of the sample data
distribution in the feature space. At present, most of the
SVM parameters are determined through trial and error, or
selected by an intelligent algorithm. Here, the CS algorithm
is applied to find the optimal SVM parameters within specific
limits.

III. SVM PARAMETER OPTIMIZATION BASED ON CS
A. THE CS ALGORITHM
Inspired by the special lifestyle of the cuckoo species and
Levy flight, Xin-She Yang and Suash Deb proposed the
CS algorithm in 2009 [14]. Cuckoos lay their eggs in other
birds’ nests when the host birds leave the nest unguarded.
In the process, some of these eggs, which are similar to the
host bird’s eggs, hatch and grow into adult cuckoos. If the
host birds discover the eggs are not their own, they will
expel the alien eggs or abandon their nest and find another
place to build a new nest. Each egg in a nest represents a
solution, and a cuckoo egg represents a new solution. The
aim of the CS algorithm is to use the new and potentially
better solutions (cuckoos) to replace the not-so-good solu-
tions in the nests. The CS algorithm has the following three
rules [15], [16]:

1) Each cuckoo only lays one egg (one solution) at a time,
and it places the eggs in a randomly chosen nest;

2) In these nests, the best nest, with high quality eggs,
(solutions) will carry over to the next generation;

3) The total number of available host nests is fixed. A host
bird can discover an alien egg with probability. In this
case, the host bird may either expel the egg or leave and
establish a new nest in a new location.

Based on the above three rules, the CS algorithm updates
the bird nest locations. Its search path can be expressed as
follows:

X t+1i = X ti + α ⊕ L, (10)

where X ti represents the location of the ith nest at iteration t .
The product ⊕ means entry-wise multiplication, and α is the
step size, which is subject to a normal distribution. L is
the Levy random search path, which can be expressed as
follows:

L = 0.01×
µ

|ν|1/β
× (gbest − X ti ), (11)

where gbest represents the current best nest. When µ, ν is
subject to a normal distribution, µ ∼ N (0, δ2µ, ν ∼ N (0, δ2ν ),
and δµ =

{
0(1+ β) sin(πβ/2)
0[(1+ β)/2]β2(β−1)/2

}1/β
δν = 1,

(12)

where β = 1.5.
The CS algorithm has two advantages compared with other

meta-heuristic algorithms [14]. The first is that the CS algo-
rithm can more effectively maintain the balance between
the local search strategy and the efficient exploration of the
entire search space. The second is that the CS algorithm has
only two parameters (population size, N , and the probabil-
ity of egg detection, pa). After N is fixed, pa alone con-
trols the balance between random and local search. Because
the CS algorithm has fewer parameters, its universality is
better [14].

B. SVM PARAMETER OPTIMIZATION BASED ON CS
The general procedure of CS-SVM is illustrated in the
flowchart in Fig. 1. The CS algorithm is applied to optimize
the SVM parameters C and σ as follows:

1) Initialize the cuckoo search algorithm and set the
number of nests, N , the probability parameters, pa, the
maximum iterations, tmax, and the ranges of C and σ .

2) Randomly generate nest positions using q0i = [x01 , x
0
2 ,

. . . , x0n ]
T . Each nest corresponds to a set of parame-

ters (C, σ ). The fitness evaluation function is defined
as follows:

I =
n∑
i=1

(Ŷi − Yi)2/n, (13)

where Y (i) is the actual value and Ŷ (i) is the prediction
value of the model, and n is the number of training
samples.

3) Evaluate the fitness value of each nest, discover the
current best solution, and record the minimum fitness
value and its corresponding position.

4) Keep the best solutions from the previous genera-
tion, and update the position of the other nests using
Formula (10). Then, evaluate the fitness value of the
new position.

5) Replace the best solution of the previous generation if
the fitness value of the new generation is better than
that of the previous generation, and record the position
of the best nest.

6) Set a random number (random) as the probability of
egg detection. Compare it with pa. If random > pa,
change the position of the nest randomly to obtain a
new set of positions.

7) Find the best nest position in Step 6). Stop searching
when the maximum iteration limit is reached, and out-
put the best position to achieve the optimal parameter
value; otherwise, return to Step 3).
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FIGURE 1. Flow chart of CS algorithm for SVM parameter selection.

IV. DYNAMIC MEASUREMENT ERROR
PREDICTION MODEL
A. DATASET
To verify the validity of the method proposed in this
study, the dynamic measurement error data of a goniome-
ter (Case 1) and a diffraction grating encoder (Case 2)
were used to evaluate the performance of the proposed
CS-SVM model. The data for Case 1 is the measuring error
of the goniometer with anticlockwise rotation (speed 2 r/min)
based on standard value interpolation under room temper-
ature; the error sequence contains a total of 240 samples.
In Case 2, the resolution of the grating encoder is 20 µm
and the sampling interval is 2 mm. The error sequence
for the grating encoder contains a total of 77 samples.
Because the two datasets are one-dimensional and restricted
by unicity, to achieve better prediction results, we mine
the relationship between them to obtain more infor-
mation by transforming the one-dimensional forms into
a multi-dimensional form. Let p be the dimension of
the input vector. The reconstructed samples are shown
in Table 1:

TABLE 1. Sample construction.

B. MODEL PREDICTION
The steps of dynamic measurement error prediction based on
CS optimized SVM are as follows:

1) Select the training data and testing data. After a series
of experiments with different dimensions, the study
employs the dimensions that can obtain good predic-
tion results in the two Cases. In Case 1, based on the
construction method shown in Table 1, the dimension
is set to p = 14; therefore, the number of reconstructed
samples is 226. We selected 126 samples as training
data and 100 samples as testing data. In Case 2, the
dimension is set to p = 12, and we selected 48 samples
as training data and 20 samples as testing data. We pre-
processed the sample data to normalize it.

2) Perform parameter optimization and train the model.
We used the CS algorithm to determine the punishment
coefficient, C , and the kernel width, σ , for SVM by
selecting RBF as the kernel function. We trained the
SVM model based on the training samples and using
the optimized parameters in advance of prediction, so
that it could achieve the highest accuracy.

3) Model prediction. After training, the testing samples
were input to the trained model to obtain the predictive
values.

4) The prediction data were re-normalized to obtain the
actual dynamic measurement error prediction data.

C. RESULTS AND DISCUSSION
After using the above steps to establish the model, we
obtained the prediction results from Case 1, as shown in
Fig. 2. The parameters for CS were set as follows: number
of nests: N = 25; nest discovery rate: pa = 0.25; and
the maximum number of iterations: tmax = 100. To show
the efficiency of the proposed method, the particle swarm
optimization (PSO-SVM) and grid search (GS-SVM) models
were also trained and implemented. The prediction results for
these models are shown in Fig. 3 and Fig. 4. The predicted
residuals of the threemodels were compared, and the compar-
ison results are shown in Fig. 5. The parameters for PSOwere
set as follows: the initial population: N = 25; local search
parameters: C1 = 1.5; global search parameters: C2 = 1.7;
and the maximum number of iterations: tmax = 100.
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FIGURE 2. Prediction results of CS-SVM for Case 1.

FIGURE 3. Prediction results of PSO-SVM for Case 1.

Figs. 2–4, show that the CS-SVM model has the best
prediction results among the three methods. Although the
PSO-SVM model exhibits good prediction performance, the
CS-SVM model prediction curve is closer to the real curve
than the PSO-SVM prediction curve. The prediction curve of
the GS-SVM model deviates greatly from the actual curve.
From Fig. 5, the prediction residual curve for GS-SVM is
large, ranging from −18 arc sec to approximately 12 arc
sec. The prediction residual of PSO-SVM model is smaller
than that of GS-SVM, but its curve is still relatively large,
ranging from −9 arc sec to approximately 8 arc sec. The
predicted residual curve of CS-SVM is gentler, ranging from
−6 arc sec to approximately 5 arc sec. The overall results are

FIGURE 4. Prediction results of GS-SVM for Case 1.

FIGURE 5. Comparison of the predicted residuals of the three models for
Case 1.

that the dynamic measurement error prediction ability of the
CS-SVM model is better than both the PSO-SVM and
GS-SVM models, which indicates that the CS is an effective
method for parameter optimization. To further evaluate the
performance of CS-SVM the dynamic measurement error
model, we use the mean absolute percent error (MAPE)
and root mean square error (RMSE) measures as evalua-
tion indices of model performance. Their definitions are as
follows:

MAPE =

n∑
i=1

∣∣∣Y (i)− Ŷ (i)∣∣∣/Y (i)
n

× 100% (14)
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RMSE =

√√√√1
n

n∑
i=1

(Y (i)− Ŷ (i))2, (15)

where Ŷ (i) is the modeling value, Y (i) is the actual value, and
n is number of testing samples. Table 2 lists the comparison
results between the CS-SVM, PSO-SVM, and GS-SVM
prediction models for these performance indices.

TABLE 2. Comparison of performance index among the three models
in case 1.

As shown in Table 2, the GS-SVM model predicts the
dynamic measurement error with a MAPE of 0.4041 and an
RMSE of 0.5610, whereas PSO-SVM results in a MAPE
of 0.1874 and an RMSE of 0.3710. Compared with the
GS-SVMmodel, theMAPE of the CS-SVMmodel is reduced
by 0.2685, and the RMSE is reduced by 0.2743. Compared
with the PSO-SVM model, the MAPE and RMSE of the
CS-SVM model are reduced by 0.0518 and 0.0843,
respectively.

FIGURE 6. Predicted results by CS-SVM for Case 2.

Fig. 6 shows the prediction results of Case 2. A series
of comparative experiments with other predictive models
are also given. The parameters of each algorithm are the
same as in Case 1. Fig. 7 and Fig. 8 present the prediction
results for Case 2 for the PSO-SVM and GS-SVM methods,
respectively. Fig. 9 presents the comparison of prediction
residuals by CS-SVM, PSO-SVM and GS-SVM for Case 2.
The assessments of the prediction results acquired by the

FIGURE 7. Prediction results of PSO-SVM for Case 2.

FIGURE 8. Predicted results by GS-SVM in case 2.

three models of the dynamic measurement error are presented
in Table 3.

In Figs. 6–8, compared with GS-SVM and PSO-SVM,
the simulation prediction results show that the CS-SVM
prediction curve has is clearly superior. As Fig. 9
shows, the predicted residuals of GS-SVM range between
−10 µm ∼ 17 µm, while the PSO-SVM and CS-SVM
predicted residuals are between −7 µm ∼ 10 µm and
−5µm∼ 5µm, respectively. As Table 3 shows, the GS-SVM
model has theworst performance, while the PSO-SVMmodel
has a good performance, acquiring MAPE and RMSE values
of 0.2770 and 0.7942, respectively, reducing the MAPE and
RMSE by 0.3483 and 0.7160, respectively, compared to
GS-SVM. The CS-SVM model achieves an even better per-
formance, outperforming the PSO-SVM model and reducing
the MAPE and RMSE by 0.0451 and 0.2683, respectively,
compared with PSO-SVM.
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FIGURE 9. Comparison of the predicted residuals of the three models
for Case 2.

TABLE 3. Comparison of performance index among the three models
in case 2.

The results of these two cases indicate that the proposed
CS-SVM provides better prediction performance than the
other two methods. This occurs because the CS method
finds the global optimal solution for cases with large search
intervals and small step distance. The adjustment of the
position and velocity of the particles in the convergence of
the PSO algorithm are excessively dependent on the cur-
rent optimal particle, which leads to premature convergence
and failure to find the global optimal solution. Because the
CS algorithm introduces the Levy flight search mechanism,
it can jump out of local optimal solutions to obtain the global
optimal solution.

V. CONCLUSION
In this study, a method of dynamic measurement error pre-
diction based on CS-optimized SVM parameters is proposed.
The CS algorithm is employed to select the appropriate SVM
parameters to effectively avoid the ‘‘overfitting’’ or ‘‘under-
fitting’’ phenomenon of SVM, thus enhancing the prediction
accuracy. The simulation experiments show that the proposed
model performs well in all tested cases. The results of the
CS-SVMmodel were compared with those of the PSO-SVM
and GS-SVM in terms of MAPE and RMSE, with the results
that the CS-SVM has higher accuracy and a better effect than
either GS-SVM or PSO-SVM. The proposed method may

provide a new modeling method for dealing with dynamic
measurement error and has definite value for application in
error correction. However, the probability parameter in CS
is fixed, which can affect the convergence of the algorithm.
We will study the more effective method to improve the
prediction results.
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