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ABSTRACT Multi-focus image fusion is an important technique that extracts sharp regions from multiple
images and composites them into a fully focused image. In this paper, a novel spatial domain-based fusion
algorithm for multi-focus images through gradient-based decision map construction and mathematical
morphology is proposed. The contributions of this paper are: 1) a weighted kernel based on image gradient
is proposed to measure focus regions; 2) the boundaries between focus and defocus regions are adjusted by
morphological operations and free boundary condition-based active contour model. Though the weighted
kernel, the focus regions are roughly identified. Moreover, after the morphological operations and the
adjustment of boundaries using active contour model, the true boundaries between the focused and defocused
regions are extracted. The experimental results demonstrate that the proposed algorithm performs better than
the other eight representative fusion algorithms in both the qualitative and quantitative evaluations.

INDEX TERMS Active contour model, decision map, mathematical morphology, multi-focus image fusion.

I. INTRODUCTION
IMAGE fusion is an important technique to extract asmuch as
possible relevant information for image analysis applications,
such as surveillance, target tracking, target detection and face
recognition [1], [2]. Multi-focus image fusion is one branch
of the image fusion, which combines all the focused scenes
in the source images into a single fused image and enriches
the image information. And the fused image is more suitable
for human or machine perception. Multi-focus image fusion
plays an important role in many applications, such as object
recognition, feature extraction and segmentation [3], [4].
Recently, a variety of pixel-level fusion algorithms have
been proposed for multi-focus image fusion, and these
algorithms work in the transform domain or spatial
domain [1], [5], [6].

The frequently-used transform domain based image
fusion algorithms include principal component analy-
sis (PCA) based fusion algorithms [7], pyramid based
fusion algorithms [8]–[10] and wavelet based fusion algo-
rithms [11], [12]. The transform domain based image fusion
algorithms produce the fused image in a global way. Hence,
there may be some mis-registrated regions in the results.
Especially, when the contents in the same position of the

source images are different, the fusion results would be
unsatisfactory.

In recent years, spatial domain based image fusion algo-
rithms have raised the attention of many researchers because
they are intuitive and simple. The spatial domain based
fusion algorithms mainly include the pixel based fusion algo-
rithms [13], [14], the block based fusion algorithms [3], [15]
and the region based fusion algorithms [16], [17]. The ear-
liest and simplest pixel based fusion algorithm directly cal-
culates the average of every corresponding pixel value of
the source images. However, the direct average calculation
cannot remove the effect of defocused pixels and this method
usually comes to a bad fusion result. The idea of the block
based or the region based fusion algorithms is to extract image
blocks from the source images and composite them into a
single image. However, the block based algorithms would not
perform well if the extracted blocks contain both clear and
blurred areas.

In this paper, we propose a novel spatial domain based
fusion algorithm for multi-focus image fusion through gra-
dient based decision map construction and mathematical
morphology. The contributions of this paper are: (1) a
weighted kernel based on image gradient is proposed to
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FIGURE 1. Scheme chart of the proposed algorithm. The boundaries in the final decision map and the original decision map are in bold for
display.

measure focus regions; (2) the boundaries between focus and
defocus regions are adjusted bymorphological operations and
free boundary condition based active contour model. Firstly, a
weighted kernel is employed to filter the original focus maps
and the coarse focus map is calculated, which produces the
final focus map. Secondly, morphological operations and free
boundary condition based active contour model are employed
to obtain the exact boundaries. Finally, the fused image is
obtained based on the final decision map and the fusion rule.

To demonstrate the performance of the proposed algo-
rithm, experiments have been performed on the commonly
used image sets. Moreover, the proposed algorithm is com-
pared with eight representative fusion algorithms. And the
results are evaluated in both the qualitative and quantitative
ways, which indicates that the proposed algorithm performs
better.

The rest of this paper is organized as follows. In Section II,
the details of the proposed method are presented. Section III
presents the experiment results and discussions. Finally, we
conclude the paper in Section IV.

II. THE PROPOSED METHOD
In this paper, a novel multi-focus image fusion algorithm
through gradient based decision map construction and math-
ematical morphology is proposed. The scheme chart of the
proposed algorithm is shown in Fig. 1.

A. ORIGINAL FOCUS MAP
The gradient of an image indicates the sharpness information.
For a certain region in the grayscale images, the change of
gray value in focus region is usually greater than the change
of gray value in defocus region. And the gradient represents
the change of gray value. Thus, the gradient could be used to
indicate the focus status. The gradient of every pixel in the
focus region of the source image is usually greater than the
gradient of corresponding pixel in the defocus region of other
source images. Hence, the gradient maps are used to construct
the original focus map in this subsection.

Firstly, the gradients Gi (x, y) of the source images
fi (x, y) (i = 1, 2) are calculated as follows:

Gi (x, y) = ∇fi (x, y) , (1)

where (x, y) is the pixel coordinate of the image. The Sobel
gradient operator [20] is used in our experiment.

Secondly, the differences between the gray value of every
pixel (x, y) in the gradient map Gi (x, y) and the gray value
of the 3× 3 neighborhood pixels are calculated. The original
focus map OFMi (x, y) is defined as the quadratic sum of the
differences, formulated as

OFMi (x, y) =
∑
(p,q)

(Gi(x, y)− Gi(x + p, y+ q))2,

p, q ∈ {−1, 0, 1} . (2)
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The gradient differences between a pixel and its neigh-
bouring pixels represent the sharpness of the images. And
the quadratic sum of the differences on the gradients could
enlarge the differences between a pixel and its neighbour-
ing pixels. This would be benefit for identifying focus and
defocus regions. Thus, it would be effective to employ
the quadratic sum of the gradient differences between one
pixel and its eight neighbourhoods as the original focus
map OFMi (x, y) to express the sharpness information.

FIGURE 2. (a) The original focus map of the multi-focus image ‘‘Desk’’
focused on close shot. (b) The original focus map of multi-focus image
‘‘Desk’’ focused on distant view. (c) The gray value of pixels upon the cyan
line in (a). (d) The gray value of pixels upon the cyan line in (b).

The original focus map OFMi (x, y) of multi-focus images
‘‘Desk’’ are presented in Fig. 2 (a) and (b), respectively. The
gray values of pixels along the cyan line in Fig. 2 (a) and (b)
are depicted in Fig. 2 (c) and (d). From Fig. 2 (a) and (c), we
can find that most of the gray values of the focus region are
much larger than that of the defocus region. Fig. 2 (b) and (d)
shows that most of the pixels in the focus region have much
larger gray values than the pixels in the defocus region, such
as the books in the bookshelf. Compared with the gradients
in Fig. 1, it could be observed that the gradient differences
have been enlarged, which is in favour of identifying focus
and defocus regions.

B. FINAL FOCUS MAP
1) COARSE FOCUS MAP
As the original focus map OFMi (x, y) is calculated based on
the eight neighborhood pixels, OFMi (x, y) only represents
the local information of the source images. Moreover, the
quadratic sum of the differences between the gradient values
of the pixels in the focus region and their eight-neighborhood
pixels are very likely to be smaller than the quadratic sum
of the gradient value differences between the corresponding
pixels in the defocus region and their eight-neighborhood
pixels. Then the OFMi (x, y) would fail to estimate the focus
distribution. In order to have a more accurate estimation of
the focus distribution and avoid the small isolate regions,

a simple weighted kernel is constructed to compute the
coarse focusmapCFMi (x, y). The expression of coarse focus
map CFMi (x, y) is formulated as

CFMi (x, y) =
k∑

s=−k

k∑
t=−k

w (x, y)OFMi (x + s, y+ t), (3)

where w (x, y) is the weight of pixel (x, y), which is defined
as w (x, y) = w(k) (x, y) , k = 10. The size of the weighted
kernel is (2k + 1)×(2k + 1). In our experiment, k is set to 10.
The value of the weighted kernel is generated by (4).

The weight kernel we constructed has the following
characteristics:

(1) The weight of the center pixel is equal or greater than
the other weights around the center. And if k = 1, the weights
of the kernel are equal to 1. For k > 1, the weight kernel is
represented as

w(k) (x, y) =
1∑

s=−1

1∑
t=−1

w(k−1) (x + s, y+ t),1 < k ≤ 10.

(4)

(2) The larger the distance between the pixel w (x, y) and
the center pixel is, the smaller weight of this pixel w (x, y) is.

2) FINAL FOCUS MAP
The coarse focus maps could roughly represent the sharp-
ness of the source images. And, in order to combine the
focus status into one map, we construct the final focus
map FFM (x, y). For pixel (x, y) in two multi-focus images
of the source image set, if CFM1 (x, y) > CFM2 (x, y), then
FFM (x, y) equals to 1; otherwise, FFM (x, y) equals to 0.
Hence, the final focus map FFM (x, y) is defined as

FFM (x, y) =

{
1, CFM1 (x, y) > CFM2 (x, y)
0, otherwise.

(5)

The final focus map FFM (x, y) could represent the sharp-
ness of every pixel in the source images. For a certain
region in the image sets, if the value of the coarse focus
map CFMi (x, y) is larger than the values of the other coarse
focus maps, then this region in image fi (x, y) is focused;
otherwise, this region in fi (x, y) is defocused.

C. MORPHOLOGICAL PROCESSING
The focus regions might contain some defocused patches,
likewise, the defocus regions might contain some focused
patches. To deal with these situations, the morphological
small object removing operation is employed to remove the
noise within the object region, which is based on opening and
closing operations [18]. Moreover, the boundaries between
focus and defocus regions may be winding and far away from
the true boundaries. To make the boundaries become much
closer to the true boundaries, morphological opening-and-
closing operation [19] and small object removing operation
are alternately employed to process the FFM (x, y) after
removing small patches.
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1) SMALL PATCH REMOVING OPERATION
In this paper, if the pixel number of a certain region is smaller
than NUM , then this region is regarded as small patches. And
this region will be processed by morphological small object
removing operation, expressed as

OD1 (x, y) = RSO (FFM (x, y) ,NUM) , (6)

where OD1 (x, y) is the first stage of the original decision
map; RSO (•) is the morphological small object removing
operation [18]; NUM represents the maximum pixel number
of the small patches removed. The parameter NUM is related
to the pixel number of the source images. In our experiment,
NUM = [m× n/40], where m, n is the height and width of
the image fi (x, y), respectively; [·] is rounding operation.

2) MORPHOLOGICAL OPENING OPERATION AND
SMALL PATCH REMOVING OPERATION
In this stage, morphological opening operation and small
object removing operation are applied to the first stage of the
original decision map OD1 (x, y) with structuring element B,
and this procedure is expressed as

OD2 (x, y) = RSO(OD1 (x, y) ◦ B,NUM ), (7)

where OD2 (x, y) is the second stage of the original decision
map; B is a flat disk structuring element; ◦ is morphological
opening operator [19].

After the morphological opening operation, there would be
some small patches in the focus regions those are wrongly
regarded as defocused. So the small object removing oper-
ation is necessary. After the removing operation, the small
patches in focus regions would be eliminated.

3) MORPHOLOGICAL CLOSING OPERATION AND SMALL
PATCH REMOVING OPERATION
Symmetry operations are performed in the defocus regions,
which is expressed as

OD (x, y) = RSO(OD2 (x, y) • B,NUM ), (8)

where OD (x, y) is the original decision map; B is a flat disk
structuring element; • is morphological closing operator [19].
In this stage, we could remove the small patches those are

produced by morphological closing operation and wrongly
regarded as defocused in the focus regions.

In order to better illustrate the procedure of morphological
processing, an example is shown in Fig. 3. Fig. 3 (a) is the
final focus map. Fig. 3 (b) is the first stage of the original
decision map. Fig. 3 (c) is the second stage of the original
focus map. Fig. 3 (d) is the original decisionmap. As depicted
in Fig. 3 (a), we can find that there are some small patches
in the final focus map. Though the small patch removing
operation, almost all of them have been removed as shown
in Fig. 3 (b). As shown in Fig. 3 (c), after processing by
morphological opening operation and small object removing
operation, the boundary is smoother. From Fig. 3 (d), the
boundary becomes much closer to the true boundary though

FIGURE 3. An example of morphological processing. (a) The final focus
map. (b) The first stage of the original decision map. (c) The second stage
of the original decision map. (d) The original decision map.

morphological closing operation and small object removing
operation. This would benefit the multi-focus image fusion.

D. BOUNDARIES EXTRACTION
In this subsection, the boundaries between focus regions
and defocus regions are extracted from the original decision
map OD (x, y).

Firstly, the boundaries are extracted from the original deci-
sion mapOD (x, y) though Sobel operator [20]. Secondly, the
morphological bridging operation [21] is used to connect the
gap interrupted by single pixel. Finally, the morphological
thining operation [22] is applied to obtain the boundaries
Lj(j = 1, . . . , l) whose width is single pixel.

E. FINAL DECISION MAP
In general, the extracted boundaries Lj(j = 1, . . . , l) can-
not exactly represent the true boundaries between the focus
and defocus regions. It is necessary to adjust the boundaries
Lj(j = 1, . . . , l) for obtaining better results. Free boundary
condition based active contour model [23] constructs the
energy function depending on the image gradient, which is
conformed to the characteristic of the focus and defocus
region. And it would be effective to make the boundaries get
closer to the true boundaries when using Lj(j = 1, . . . , l)
as the initial contours instead of using the random initial
contours.

The energy of active contour model is usually formulated
as

E (C (s)) =
∫

[Eint (C (s))+ Eext (C (s))]ds, (9)

where Eint (C (s)) is internal energy term, Eext (C (s)) is
external energy term, C (s) represents a differentiable curve
in the image I (x, y). The internal energy term controls the
continuity and smoothness of the evolutionary curve while
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the external energy term adjusts the curve to be consistent
with image features. The energy function can be expressed
more explicitly as [23], [24]

E (C (s)) =
∫ 1

0

[∣∣C ′ (s)∣∣2 − ∣∣∇ (Gσ0 ∗ I (C (s)))∣∣]ds, (10)

where Gσ0 signifies a Gaussian filter with standard deviation
σ0 = 2.
The procedure of searching the exact boundaries is

described as follows.
Firstly, two end points P0, P1 of every active contour and

two corresponding smooth boundary curves B0 (q), B1 (q) are
defined. The two end points P0 and P1 of the active contour
are defined by the two ends of the extracted boundary Lj,
which are constrained lying on two smooth boundary curves
B0 (q) and B1 (q), respectively. In our data, the end points
always locate at the image boundaries. This makes the def-
inition of the smoothed boundary curves much simpler. As a
result, the smoothed boundary curve B0 (q) is defined by
a section of the image boundary with the end point as the
center. We suppose that the boundaries we extracted are close
to the true boundaries. The definition of another smoothed
boundary curve B1 (q) is similar to the definition of B0 (q).
Secondly, the extracted boundaries Lj(j = 1, . . . , l) are

used as the initial contour of the active contour model. Then,
the final boundary map Lfinal could be obtained by the active
contour model.

Finally, the value of every region in the final decision
map Dfinal is decided according to the original decision map
OD (x, y) and the final boundary map Lfinal . For a certain
region R in the final boundary map Lfinal , if its value in the
original decision mapOD (x, y) is 1, then its value in the final
boundary map Lfinal equals to 1. That is, the value of the
corresponding region in the final decision map Dfinal equals
to 1 and the corresponding region in image f1 (x, y) is copied
to the region R. For a certain region R, if its value in the
original decision mapOD (x, y) is 0, then its value in the final
boundary map Lfinal equals to 0. This means the value of the
corresponding region in the final decision map Dfinal equals
to 0 and the corresponding region in image f2 (x, y) is copied
to the region R. Though this way, the final decision mapDfinal
is obtained.

F. FUSION IMAGE
There might be some flaws in the boundary region if we
directly copy the regions in the source images to the cor-
responding regions. These flaws are caused by the abrupt
change of the gray values in the boundary region. So it is
necessary to establish a fusion rule to fuse the source images.
For simplicity, the final decision map Dfinal is smoothed by
a Gaussian filter to make the fused image smooth in the
boundary region. Then, the fused image f (x, y) could be
expressed as

f (x, y) = DfinalG × f1 (x, y)+
(
1− DfinalG

)
× f2 (x, y) .

(11)

And (11) means the fused image is composed by the focus
regions in the image f1 (x, y) and f2 (x, y). Though these steps,
a fused image fully focused could be obtained.

III. EXPERIMENT RESULTS AND DISCUSSIONS
In this section, we conduct experiments in eighteen sets of
multi-focus images to verify the performance of the proposed
algorithm through the comparisons with the representative
fusion algorithms in both the qualitative and quantitative
ways. The experiment settings and experiment results are
introduced as follows.

A. EXPERIMENT SETTINGS
The experiments are conducted in eighteen sets of multi-
focus images, in which the ‘‘Clock’’, ‘‘Lab’’, ‘‘Pepsi’’ and
‘‘Desk’’ are obtained from [25], the ‘‘OpenGL’’, ‘‘Flower’’,
‘‘Seascape’’ and ‘‘Temple’’ are provided by [26], the ‘‘Leop-
ard’’, ‘‘Wine’’, ‘‘Balloon’’, ‘‘Calendar’’, ‘‘Corner’’, ‘‘Craft’’,
‘‘Leaf’’, ‘‘Newspaper’’, ‘‘Girl’’ and ‘‘Grass’’ are acquired
from [27]. And we appreciate them for providing the source
images.
To verify the effectiveness of our algorithm, we per-

form the comparisons with eight representative image fusion
algorithms in both the qualitative and quantitative aspects.
These eight comparison algorithms include the discrete
wavelet transform based fusion algorithm (DWT) [11], the
shift invariant discrete wavelet transform based fusion algo-
rithm (SIDWT) [27], the multi-scale transform and sparse
representation based fusion algorithm (MST-SR) [29], the
image matting based fusion algorithm (IMF) [30], the guided
filter based fusion algorithm (GFF) [31], the multi-scale
weighted gradient based fusion algorithm (MWGF) [32], the
dense scale invariant feature transform based fusion algo-
rithm (DSIFT) [33] and the quadtree based fusion algorithm
(QUADTREE) [34].
The decomposition levels of DWT, SIDWT and MST-SR

are 4. And the parameters of the other algorithms are set as the
recommended values which are presented in the respective
publications [11], [28]–[34]. The qualitative and quantitative
evaluations are described in the following two subsections.

B. QUALITATIVE EVALUATION
Qualitative evaluation, i.e., visual comparison, is the sim-
plest way to assess the performance of fusion algorithms.
Some comparison examples are shown below. The compar-
ison results of ‘‘Desk’’ among different fusion algorithms
are shown in Fig. 4. And the enlarged images of the labeled
regions in Fig. 4 are shown in Fig. 5. From Fig. 4 (a) and (b),
we can see that DWT and SIDWT can achieve the fusion
purpose. However, there are some blurs in their fusion results,
such as the edges around the books in the bookshelf and the
number on the clock. From Fig. 4 (d), we can find that the
boundary between the focus and defocus regions of the source
images is a little blur, which is caused by the decision map
obtained by image matting. In Fig. 4 (c) and (e)-(h), the fused
results obtained by MST-SR, GFF, MWGF, QUADTREE
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FIGURE 4. Fused images of the ‘‘Desk’’ image set. (a)-(i) are the fused images of DWT [11], SIDWT [28], MST-SR [29], IMF [30], GFF [31], MWGF [32],
DSIFT [33], QUADTREE [34] and the proposed algorithm, respectively.

and DSIFT suffer from some artifacts around the boundary
such as the labeled regions in Fig. 5. However, as shown in
Fig. 4 (i), the fused result yielded by the proposed algorithm
provides intact edges and obtains satisfying visual effect.
Moreover, from Fig. 5, we can clearly see that the proposed
algorithm obtains the best visual effect among these algo-
rithms, which implies that the proposed algorithm obtains a
satisfying result for image set ‘‘Desk’’.

The comparison results of ‘‘Temple’’ among different
fusion algorithms are shown in Fig. 6. And the enlarged
images of the labeled regions in Fig. 6 are shown in Fig. 7.
From Fig. 6 (a)-(c), the fused results of DWT and SIDWT
suffer from serious artifacts such as the text region of the
left side of ‘‘stone lion’’ and the region above the text. This
is because DWT and SIDWT use the global way to fuse
images. As shown in Fig. 6 (c), the fused result of MST-SR
generates less artifacts than the results of DWT and SIDWT,
because MST-SR combines the merits of the MST and SR.
For the results of IMF, GFF and MWGF in Fig. 6 (d)-(f), the

artifacts are less. But there still exist obvious artifacts around
the text. And according to Fig. 6 (g)-(i), QUADTREE, DSIFT
and the proposed algorithm generate less artifacts than DWT,
SIDWT, MST-SR, IMF, GFF and MWGF. This means, these
three algorithms get better results. From Fig. 7 (a)-(c), we can
clearly see that the artifacts in the enlarged patches getting
from the results of DWT, SIDWT and MST-SR are serious.
In Fig. 7 (d)-(f), the regions around the boundary in the fused
images of IMF, GFF and MWGF are blurry. As shown in
Fig. 7 (g)-(h), the regions around the boundary in the fused
images of DISFT and QUADTREE introduce artifacts and
are not smooth. However, the boundary in the fused image of
the proposed algorithm is clear and smooth.

The comparison results of ‘‘Clock’’ among different fusion
algorithms are shown in Fig. 8. In Fig. 8 (a), the fused result
of DWT suffers from some artifacts. As for the results of
SIDWT and MST-SR in Fig. 8 (b) and (c), we can find that
there are some blurs on the numbers of clocks and shadows
around the numbers of the clocks especially in the back clock.
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FIGURE 5. (a)-(i) the enlarged images of the labeled regions in Fig. 4, respectively.

The results of GFF, MWGF, DSIFT and QUADTREE intro-
duce artifacts around the string ‘‘8’’ of the back clock as
shown in Fig. 8(e)-(h). In Fig. 8 (d) and (i), the results of
IMF and the proposed algorithm suffer from the least artifacts
around the string ‘‘8’’.

Overall, the performance of the proposed algorithm
is better than the other compared algorithms in visual
aspect.

C. QUANTITATIVE EVALUATION
Since it is impossible to get the ground truth of the fused
image in practice, metrics without reference image have
been proposed to assess the performance of the fusion
algorithms [35]–[43]. Five metrics are used to assess

the fusion images: fast feature mutual information
metric QFFMI [35], [36], Tsallis entropy based metric
QTE [37], [38], nonlinear correlation information entropy
metric QNCIE [39], [40], phase congruency metric QPC [41],
and modified structural similarity metric QMSSIM [42].

1) FAST FEATURE MUTUAL INFORMATION METRIC QFFMI
QFFMI is defined as [35], [36]

QFFMI =
1
n

n∑
i=1

(
Ii (f , f1)

Hi (f )+ Hi (f1)
+

Ii (f , f2)
Hi (f )+ Hi (f2)

)
,

(12)
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FIGURE 6. Fused images of the ‘‘Temple’’ image set by the compared algorithms. (a)-(i) are the fused image of DWT [11], SIDWT [28], MST-SR [29],
IMF [30], GFF [31], MWGF [32], DSIFT [33], QUADTREE [34] and the proposed algorithm, respectively.

where n is the number of slide windows; Hi (X) is the
entropy of the ith windows from image X ; Ii (X ,Y ) is the
regional mutual information between the ith windows of
images X and Y . QFFMI evaluates how much of edge infor-
mation the fused image obtained from the source images. The
larger the value ofQFFMI is, the better the quality of the fused
image is.

2) Tsallis ENTROPY BASED METRIC QTE
QTE is defined as [37], [38]

QTE =
Iq (f , f1)+ Iq (f , f2)

Hq (f1)+ Hq (f2)− Iq (f1, f2)
. (13)

where Hq (X) is the marginal entropy of image X ;
Iq (X ,Y ) is the Tsallis entropy between images X and Y ;
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FIGURE 7. (a)-(i) the enlarged images of the labeled regions in Fig. 6, respectively.

order q 6= 1. QTE measures the amount of information
transferred from the source images to the fused image. The
larger value indicates the better performance of the fusion
algorithm.

3) NONLINEAR CORRELATION INFORMATION
ENTROPY METRIC QNCIE
QNCIE is defined as [39], [40]

QNCIE = 1+
3∑
i=1

λi

3
logb

λi

3
, (14)

where b is the intensity level, i.e., b = 256; λi (i = 1, 2, 3)
are the eigenvalue of the nonlinear correlation matrix. QNCIE
calculates the general correlation degrees between the source
images and the fused image, respectively. The larger value
of QNCIE indicates the better performance of the fusion
algorithm.

4) PHASE CONGRUENCY METRIC QPC
QPC is formulated as [41]

QPC = (Pp)α (PM )β (Pm)γ , (15)

where p, M and m signify phase congruency, maximum, and
minimum moments, respectively. QPC measures the extent
that the salient features of the source images are preserved.
The larger value means the better performance of the fusion
algorithm.

5) MODIFIED STRUCTURAL SIMILARITY METRIC QMSSIM
QMSSIM is defined as [42]

QMSSIM

=


λ(ω)SSIM (f1, f |ω)+ (1− λ(ω))SSIM (f2, f |ω),
if SSIM (f1, f2|ω) ≥ 0.75

max {SSIM (f1, f |ω) , SSIM (f2, f |ω)},
if SSIM (f1, f2|ω) < 0.75,

(16)
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FIGURE 8. Fused images of the ‘‘Clock’’ image set by the compared algorithms. (a)-(i) are the fused image of DWT [11], SIDWT [28],
MST-SR [29], IMF [30], GFF [31], MWGF [32], DSIFT [33], QUADTREE [34] and the proposed algorithm, respectively.

where SSIM is the structural similarity, λ (ω) is the local
weight [42].QMSSIM measures the amount of structural infor-
mation preserved in the fused image. The larger value demon-
strates the better performance of the fusion algorithm.

The averages of five evaluation metrics of each algorithm
on eighteen multi-focus image sets are presented in Table 1.
The largest number is shown in bold. From metric QFFMI in
the first row of Table 1, we can find that the fused images
of DWT, SIDWT, MST-SR, IMF, GFF, MWGF, DISIFT and
QUADTREE obtain less edge information from the source

images. In other words, the proposed algorithm gets themaxi-
mum value of metricQFFMI , and the amount of edge informa-
tion in the fused images generated by the proposed algorithm
is the most. As to metric QTE shown in the second row of
Table 1, the fused images of the proposed algorithm inherits
more information from the source images, which manifests
the proposed algorithm performs better than the other eight
algorithms. As to the metricQNCIE in the third row of Table 1,
DWT, SIDWT, MST-SR, IMF, GFF, MWGF, DISIFT and
QUADTREE obtain smaller values than the proposed
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TABLE 1. Quantitative evaluation results.

algorithm, which implies that the fused images of the pro-
posed algorithm have stronger relationship with the corre-
sponding source images. As for the metric QPC in the fourth
row of Table 1, the amount of the preserved salient features
of the fused images generated by the proposed algorithm is
the most among these nine algorithms, which implies that the
proposed algorithm outperforms the other eight algorithms.
As shown in the last row of Table 1, the metric QMSSIM value
of the proposed algorithm is higher than the other eight algo-
rithms, which indicates that the proposed algorithm preserves
more structural information than the other eight algorithms.
This is mainly because the proposed algorithm could find the
real boundaries and fuse the images more accurately.

The data set of multi-focus images includes sky, grass,
seascape, temple, wall and other outdoor scenes. Also, the
data set contains book, calendar, newspaper, clock, desk,
lab and other indoor scenes. Moreover, the data set contains
images with different contents in the same position. In a
word, the fusion task of this data set is challenging. The
post-processing morphological operations could deal with
these various multi-focus images and the results are effec-
tive, which indicates the effectiveness of the morphological
operations. All of these indicate that the proposed algorithm
is effective for different types of multi-focus image fusion.

In conclusion, the proposed algorithm performs the best
among these nine algorithms for multi-focus image fusion.

IV. CONCLUSIONS
This paper presents a novel algorithm for multi-focus image
fusion through gradient based decision map construction and
mathematical morphology. The contributions of this paper
are: (1) a weighted kernel based on image gradient is pro-
posed to measure focus regions; (2) the boundaries between
focus and defocus regions are adjusted by morphological
operations and free boundary condition based active contour
model. From the qualitative and quantitative comparisons, it
can be seen that the proposed algorithm is effective for multi-
focus image fusion and it performs better than other eight
representative fusion algorithms.
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