
Received July 25, 2016, accepted August 25, 2016, date of publication August 29, 2016, date of current version October 31, 2016.

Digital Object Identifier 10.1109/ACCESS.2016.2604018

UML-Based Development of Embedded
Real-Time Software on Multi-Core in Practice:
Lessons Learned and Future Perspectives
FEDERICO CICCOZZI1, (Member, IEEE), TIBERIU SECELEANU2, (Senior Member, IEEE),
DIARMUID CORCORAN3, AND DETLEF SCHOLLE4
1Mälardalen Real-Time Research Centre, School of Innovation, Design and Engineering, Mälardalen University, Västerås, Sweden
2ABB Corporate Research, Västerås, Sweden
3Ericsson AB, Kista, Sweden
4Alten Sweden AB, Kista, Sweden

Corresponding author: F. Ciccozzi (federico.ciccozzi@mdh.se)

This work was supported by the Knowledge Foundation through the SMARTCore Project led by Mälardalen University and run in
cooperation with Ericsson AB, ABB Corporate Research, and Alten Sweden AB.

ABSTRACT Model-driven engineering has got a foothold in industry as an effective way to tame the
complexity of modern software, which is meant to run on embedded systems with real-time constraints by
promoting abstraction, in terms of prescriptive models, and automation, in terms of model manipulations.
In the plethora of modeling languages, the unified modeling language (UML) has emerged and established
itself as a de facto standard in industry, the most widely used architectural description language and an
ISO/IEC standard. In the SMARTCore project, we have provided solutions for the UML-based development
of software to run on multicore embedded real-time systems with the specific focus of automating the
generation of executable code and the optimization of task allocation based on a unique combination of
model-based and execution-based mechanisms. In this paper, we describe the lessons learned in the research
work carried out within SMARTCore and provide a set of perspectives that we consider to be highly relevant
for the forthcoming future of this research area to enable a wider adoption of UML-based development in
industry in general, and in the multicore embedded real-time domain in particular.

INDEX TERMS Model-driven engineering, UML, ALF, task allocation optimization, embedded, real-time,
code generation.

I. INTRODUCTION
Software is idiosyncratically complex and the fact that it
is often meant to run on embedded systems with real-time
constraints does not simplify its development. Already in the
90’s it became clear that the very fast growth of embedded
software would lead to the need of defining more pow-
erful and flexible development approaches [1] based on
abstraction [2]. While abstraction can effectively help in
taming software complexity, it also introduces additional
artefacts and development phases (e.g., design, transition
from design to implementation); this can make the software
engineering process more intricate [3]. A common way to
mitigate the complexity of an engineering process is boosting
automation in the various engineering phases.

Abstraction and automation are the two key aspects advo-
cated by Model-Driven Engineering (MDE), which repre-
sents an effective way to tackle the difficulty of code-centric

engineering approaches to effectively tame complexity,
express domain-specific concepts and support human com-
munication [4]. It does that by promoting (i) prescriptive
models, for defining abstractions of the software under
development, and (ii) model transformations, for automat-
ing development steps, to first-class development artefacts.
Rules and constraints for building models have to be prop-
erly described through a corresponding modelling language
which includes a metamodel describing the set of available
concepts and well-formedness rules that a correct model
must conform to [5]. Following the MDE paradigm, soft-
ware is developed by designing models and refining them
starting from higher and moving to lower levels of abstrac-
tion until code is generated; refinements are performed
through transformations between models. Model transfor-
mations are manipulations of models that provide the links
between domain abstractions. A transformation is intended as

6528
2169-3536
 2016 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 4, 2016

F. Ciccozzi et al.: UML-Based Development of Embedded Real-Time Software on Multi-Core in Practice

a process that converts source models into target artefacts
(i.e., models or text) related to the same system by means
of a transformation specification [6]. Several modelling lan-
guages have been proposed throughout the years. Among
them, the Unified Modeling Language (UML) represents
a de facto standard in industry [7], the most widely
used architectural description language [8] and an ISO/IEC
(19505-1:2012) standard; in the research work reported in
this paper we focused specifically on UML and related
sub-languages.

Generally MDE aims at reducing final product verification
and validation effort and cost, as well as shortening time-
to-market, by providing correctness-by-construction [9],
in contrast to the more costly correctness-by-correction typ-
ical of code-centric approaches. To do so, one of the key
aspects of MDE is the ability to produce executable artefacts
from design models. The automated production of executable
programs is considered pivotal in industry [7] for economic
reasons but also for mitigating the accidental complexity
introduced by modelling activities [10]. In this paper we
discuss on the automatic code generation from UML mod-
els for embedded real-time systems. Addressing functional
modelling is clearly crucial in software development, but
in the complex world of embedded real-time systems it is
not enough. In fact, while on the one hand these systems
demand ever-increasing performance to deal with their real-
time constraints, on the other hand they always face a cer-
tain resource limitation typical of their embedded nature.
Commonly, higher performance demand is addressed by
increasing the processing power, which in this kind of sys-
tems is achieved through the adoption of multicore1 and
manycore solutions; in our research we focus on the for-
mer. While a solution with multiple processing units is ben-
eficial for increasing processing power, it also introduces
a new challenge that affects system development, namely
how to deploy (allocate) software units to cores to best
utilise the hardware platform. In this paper we focus on this
aspect too.

In the SMARTCore project (see Acknowledgements) we
provided solutions for UML-based development of embed-
ded real-time software with particular focus on: (i) modelling,
(ii) task allocation optimization, and (iii) automatic code
generation. Regarding optimization it is important to stress
the fact that our aim is *not* to provide a design-space
exploration technique. In this paper we expose the lessons
learned from the research work carried out in SMARTCore
to achieve the goals described in [11], as well as the future
perspectives we envision for researchers and practitioners
interested advancing the states of the art and practice in the
research area.

The remainder of the paper is organised as follows.
Section II introduces the context of the SMARTCore project

1A multicore processor is a single chip that contains two or more pro-
cessing units (i.e., cores) which are tightly coupled in order to preserve, e.g.,
energy-efficiency.

and the solutions developed within it. In Section III we
introduce a running example which is used for describing
the various steps of the approach developed in SMARTCore.
The approach itself is described in Section IV, while a dis-
cussion on lessons learned and future perspectives is given
Section V. A snapshot of the literature describing work
related to SMARTCore is provided in Section VI and the
paper is concluded with Section VII.

II. CONTEXT
The goal of the SMARTCore approach is to provide a solu-
tion for UML-based model-driven engineering of multicore
embedded soft2 real-time systems. Since we are mostly inter-
ested in timeliness, the extra-functional properties (EFPs)
we focus on are timing-related attributes such as: end-to-
end response time (elapsed time between the point when
the task starting the chain becomes ready for execution,
and the point when the last task in the chain finishes the
corresponding execution instance), deadline misses and core
load (percentage of core’s busy portion). These properties are
dependent on the dynamic intertwining of tasks and we are
interested in the average-case behaviour. For these reasons
we leverage dynamic (based on simulations and system runs)
model-based and execution-based optimization mechanisms,
since the aforementioned EFPs cannot be derived analytically
from task parameters.

A. TASK MODEL
Regarding tasks we support periodic tasks, whose execution
is triggered after a defined fixed time-interval (i.e., period),
and event-triggered tasks whose execution is triggered by
other tasks finishing their execution. A task chain represents
the flow of execution, and it is defined by a periodic task start-
ing the chain and a set of event-triggered tasks triggered in
ordered sequence. Each task is provided with a set of parame-
ters: priority, used for scheduling purposes, allocation, point-
ing to the core the task is allocated to, best-case execution
time (BCET) and worst-case execution time (WCET) which
we employ for simulation purposes. Moreover, periodic
tasks have one additional parameter, namely period, defin-
ing at which time interval the task execution is triggered.
Currently, only a uniform distribution of task execution times
is implemented and we assume synchronous communication.
End-to-end response times are EFPs that are defined at

chain level, and represent the duration between the point in
time when the periodic task at the start of the chain begins
its execution, until the point in time when the last task in the
chain finishes its execution. During their execution tasks do
not move between cores, as they are statically allocated. Each
core has a preemptive fixed priority-based scheduler in charge
of running the tasks assigned to it.

2Soft in the sense that accurate timing behaviour is crucial for the correct
functioning of the system, (a logically correct result that is produced at the
wrong time point is equivalent to a logically incorrect result), but occasional
deadline misses are tolerated (as opposed to hard real-time systems where
the absence of deadline misses must be guaranteed beforehand).

VOLUME 4, 2016 6529

F. Ciccozzi et al.: UML-Based Development of Embedded Real-Time Software on Multi-Core in Practice

In the following we formalise the aforementioned notions
of task, periodic task, event-triggered task and chain.
Definition 1: A task T is a non-instantiable tuple

T = 〈B,W , pr, a〉, where B represents T ’s BCET, W repre-
sents the WCET, pr represents T ’s scheduling priority and
a represents the affinity parameter identifying the core to
which T is allocated.
Definition 2: A periodic task PT is an instantiable spe-

cialisation of T defined as the tuple PT = 〈T , pe〉, where
T represents the tuple 〈B,W , pr, a〉 and pe represents PT ’s
period.
Definition 3: An event triggered task ET is an instantiable

specialisation of T defined as the tuple ET = T , where
T represents the tuple 〈B,W , pr, a〉.
Definition 4: A chain C is a non-empty ordered set of

tasks {PT ,T1,T2, . . . ,Tn} with |C| ≥ 1 and where the first
element is always represented by a periodic task PT .

B. MODELLING LANGUAGE AND ENVIRONMENT
The modelling language leveraged in the SMARTCore
approach is represented by UML [12] for functional
descriptions and the Action Language for Foundational
UML (ALF) [13] for defining fine-grained behaviours.
Functional models are decorated with extra-functional infor-
mation through the stereotypes provided by theModeling and
Analysis of Real Time and Embedded systems (MARTE)
profile [14]. For describing the hardware model in terms
of available cores and deployment information in terms of
allocation of tasks to cores we exploit specific concepts pro-
vided by MARTE. The approach is implemented and runs on
top of Papyrus,3 an open source integrated environment for
editing EMF [15] models and particularly supporting UML
and related profiles, on the Eclipse platform.

C. MODEL TRANSFORMATIONS
Following the MDE paradigm, a system is developed by
designing models and refining them starting from higher and
moving to lower levels of abstraction until code is generated;
refinements are performed through transformations between
models. A model transformation translates a source model
to a target model while preserving their well-formedness [6].
More specifically, in SMARTCore we exploit the following
kinds of model transformation:
• Model-to-model (M2M): which translates between
source and target models that can be instances of the
same or different languages;

• Model-to-text (M2T): which is a particular case of
M2M where the target artefact is represented by text;

• Text-to-model (T2M): that operates in the opposite
direction as the M2T, generating a model from a textual
representation.

Moreover, any of these types of model transformation can
be defined as in-place, meaning that source (or one of the
sources) and target are represented by the same model;

3https://eclipse.org/papyrus/

in this case, the transformation provides as output an updated
version of (one of) the model(s) in input. Except for the in-
place transformations which are by nature endogenous, the
other transformations entailed in SMARTCore are exogenous
meaning that they operate between artefacts expressed
using different languages [6]. M2M transformations are
implemented with the Operational QVT (QVTo)4 language,
M2T and T2M transformations with Xtend.5

III. A RUNNING EXAMPLE
The system we leverage for showing the various steps of
our approach by a carrier robot self-orienting in a closed
environment. This terrestrial robot is meant to travel between
checkpoints in a delimited and known environment and oper-
ate item retrieval and delivery. The application is expected
to provide the robot with the ability to orient itself around
obstacles of simple shapes; obstacles are created in differ-
ent places, but within the environment’s delimitations. In a
similar way, a set of pick-up spots and one drop-off spot are
created too.

From a behavioural point of view, the robot is initialised,
it is placed in the drop-off spot and starts its mission. The
robot has then to fetch items from the pick-up spots and
release them within the drop-off area. It does that by mov-
ing towards pick-up spots and constantly updating its direc-
tion until it intersects with the target item. Once the robot
has picked up an item, it moves back to the drop-off zone
and releases the item. The robot has 3 possible directions:
forward, right, and left. It sorts directions prioritising the
one leading to the closest pick-up spot and it moves in a
direction as long as it does not intersect with any obstacle.
If no direction can be taken, the robot turns back by turning
twice by 90 degrees to left or right. The application stops its
executionwhen the robot has picked up and released all items.

The system is conceived as object-oriented as follows.
Robot is the main class and exploits two classes, Vector and
Hitbox, for moving in the environment and identifying sensi-
tive spots (its body, pick-up and drop-off spots, obstacles),
respectively. More specifically, the classes are defined as
follows:
• Vector: used to define vectorial movements. It contains
two properties, X and Y, defining 2-dimension coordi-
nates, one constructor (Vector(..)), and three methods,
vecRotateLeft(), vecRotateRight() and eq(..), which are
exploited by the robot to perform movements;

• Hitbox: used to describe sensitive spots such as pick-up
and drop-off areas as well as position and size of obsta-
cles, and the robot’s body size. Positions are identi-
fied through pos of type Vector, while sizes through
the properties height and width. The Hitbox(..) method
represents the class constructor and the intersectsWith(..)
method allows the robot to check if the movement
trajectory intersects an obstacle.

4http://www.eclipse.org/mmt/?project=qvto
5http://www.eclipse.org/xtend/

6530 VOLUME 4, 2016

F. Ciccozzi et al.: UML-Based Development of Embedded Real-Time Software on Multi-Core in Practice

• Robot: represents the main class and contains a number
of properties and the methods used by the robot to
carry out its mission. More specifically, Robot(..) is the
constructor, fetch(..) and fetchList(..) are used to retrieve
single items and the initial items list, respectively, while
the remaining methods allow the robot to move and
orient itself in the environment.

In the next sections we use the robot system for showing the
proposed model-driven approach.

IV. THE SMARTCore APPROACH
The goal of the SMARTCore approach is to provide a
solution for UML-based model-driven engineering of mul-
ticore embedded real-time software. More specifically, the
approach provides the following features:
• Modelling the system in terms of software functional-
ities, tasks, available cores and allocation of software
functionalities to tasks and of tasks to cores;

• Combined model-based and execution-based task
allocation optimization;

• Automatic generation of full-fledged code from system
models.

A. MODELLING THE SYSTEM
The SMARTCore approach is depicted in Fig. 1. The first step
is to model software in terms of functional elements (classes
and/or components), tasks, hardware in terms of cores, and
allocations of functional elements to tasks and of tasks to
cores. The design model (Fig. 1.A) is defined in terms of
UML, ALF and MARTE, and it is composed of four main
parts: (1) software components, where we define the hierar-
chical structure using UML and the functional description in

FIGURE 1. The SMARTCore approach.

terms of fine-grained behaviours in ALF, (2) software tasks,
in which we focus on the definition of schedulable tasks using
UML andMARTE, (3) hardware platform, where we provide
a simple description of the available cores and schedulers,
and (4) allocations of software components to tasks and tasks
to cores. Note that the allocation of software components to
tasks is meant to be decided at design time too but it is not
manipulated (i.e., optimised) by the approach; for this reason
it is not shown in detail in the paper. On the other hand, the
allocation of tasks to core is the one that we aim at optimising
and on which we lay our focus throughout the paper. In Fig. 2,
we show the UML structural model of the self-orientating
carrier robot defined in terms of classes and associations in
a UML class diagram.

FIGURE 2. Functional model.

To model the dynamic behaviour of the system, the body
of each UML operation (e.g., updateDirection(..)
owned by the main class Robot) is described in
terms of ALF. An extract of the ALF code describing
updateDirection(..) is provided in Listing 1.

In Fig. 3 we show an extract of the remaining elements of a
SMARTCore design model, that is to say tasks, hardware and
allocations of tasks to cores. Schedulable tasks (t1–t14) are

VOLUME 4, 2016 6531

F. Ciccozzi et al.: UML-Based Development of Embedded Real-Time Software on Multi-Core in Practice

FIGURE 3. Tasks, hardware and allocation.

Listing 1. Extract from ALF description of updateDirection(..).

defined as «SwSchedulableResource»MARTE elements and
allocated through a one-to-one connection to a core (stereo-
typed as «hwProcessor») through the attribute allocation.

As aforementioned, we support two kinds of tasks:
(i) periodic (defined as PeriodicTask in the model, e.g. t1),
and (ii) event-triggered (defined as EventTriggeredTask,
e.g. t2). Cores are defined as Core (c0, c1) in the model
and they have a main scheduler, defined in the stereotype’s
property mainScheduler that refers to a scheduler instance
(stereotyped as «scheduler»). In the example two instances
s0 and s1 of a fixed priority preemptive scheduler (defined
as PP_scheduler) are shown. Since the task allocation opti-
mization mechanism is based on task chains, we model this
information through directed dependency links called chain.
In Fig. 3 we can see two chains, one starting with periodic
task t and the other one starting with the periodic task t11.

According to the task model6 defined in Section II-A,
software tasks and their allocations as well as task chains
shown in Fig. 3 can be formalised as follows:

6Times are defined in milliseconds.

6532 VOLUME 4, 2016

F. Ciccozzi et al.: UML-Based Development of Embedded Real-Time Software on Multi-Core in Practice

• Event-triggered tasks:
t2= 〈2, 3, 5,c0〉
t3= 〈2, 3, 5,c0〉
t4= 〈2, 3, 5,c1〉
t5= 〈2, 3, 5,c1〉
t6= 〈2, 3, 5,c1〉
t7= 〈2, 3, 5,c0〉
t8= 〈2, 3, 5,c0〉
t9= 〈2, 3, 5,c0〉
t10= 〈2, 3, 5,c1〉
t12= 〈2, 3, 6,c1〉
t13= 〈2, 3, 6,c0〉
t14= 〈2, 3, 6,c1〉

• Periodic tasks:
t1= 〈2, 3, 5, 2.55,c0〉
t11= 〈2, 3, 6, 3.2,c1〉

• Chains:
tc1= {t1,t2,t3,t4,t5,t6,t7,t8,t9,t10}
tc2= {t11,t12,t13,t14}

B. ALLOCATION OPTIMIZATION
From the design model, a simulation model in Java is gener-
ated through M2T transformations (Fig. 1.B). The optimiza-
tion mechanism is composed of two modules: model-based
and execution-based. optimization starts with the model-
based module which runs the simulation model (Fig. 1.C).
In each iteration the simulation model is enriched with details
about a particular allocation configuration according to the
previous iteration in order to be analysed and evaluated. The
simulation produces data from which we derive average end-
to-end response times and deadline misses for task chains,
and information about core load. These performance metrics
are exploited to compare different allocation configurations.
The best allocation configuration is kept, and used to generate
an enhanced simulation model to be run in the next iteration.
In order for the allocation optimization to stop (or the first
module to stop for the second module to take over), we can
define the following stop criteria: predefined maximum num-
ber of iterations, time limit, number of consecutive iterations
that have not resulted in an improvement, a certain value for
a particular EFP, or a combination of the above.

Since model-based analysis is performed on an abstraction
of the system, it can typically produce performance pre-
dictions fast. This is the reason why we use model-based
optimization to quickly asses a large number of allocation
configurations and find a good one. Once the model-based
optimization is not able to improve the allocation config-
uration (or reaches the pre-fixed time limit or maximum
runs), the best allocation configuration is back-propagated to
the design model in terms of in-place T2M transformations
(Fig. 1.D) which update the model with the new alloca-
tion configuration. More specifically, it modifies the alloca-
tion attribute of the re-allocated «SwSchedulableResource»
elements. From the enhanced design model, the approach
automatically generates full-fledged and instrumented
C/C++ code by means of M2T transformations (Fig. 1.E).

At this point, the execution-based optimization is run
(Fig. 1.F) on the generated code. In each iteration, the mech-
anism modifies the generated code in order to execute and
evaluate a particular allocation configuration. As for the
model-based one, once the execution-based optimization is
not able to improve the allocation configuration (or reaches
the pre-fixed time limit or maximum runs), the best allocation
configuration is back-propagated to the designmodel in terms
of in-place T2M transformations (Fig. 1.G). Compared to
the model-based optimization, this one is slower but, since
it leverages the good allocation configuration identified in
the model-based step as starting point, it usually needs to
run for fewer iterations. Additionally, EFPs obtained by run-
time measurements are more accurate than the model-based
predictions. To summarise, we combine the speed of model-
based analysis with the accuracy of performance measure-
ments to provide code with improved allocation of tasks to
cores.

In both modules, in order to find a new allocation config-
uration, a ‘‘problematic’’ task is identified and re-allocated.
In order to identify problematic tasks we exploit the delay
matrix heuristic defined by Feljan and Carlson [16]. This
heuristic takes into consideration the fact that the most prob-
lematic task on a core is either the one that considerably
delays tasks that belong to the chain to be optimised, or the
one that is considerably delayed by other tasks. For identi-
fying a new allocation, the heuristic takes the current best
allocation specification and moves the problematic task to a
core that has lowest load.

Task allocation optimization is performed with respect
to end-to-end response times. The goal of the optimization
mechanism is to find the best allocation of tasks to cores that
permits to keep the number of deadline misses in the system
below a desired boundary, while minimising the average
end-to-end response time for a selected task chain. In the
example, we wanted to minimise end-to-end response time of
tc2, the optimization was set to run for 100 iterations (stop
criterium 1) and the limit of allowed deadlinemisses is set to 0
(stop criterium 2). Once the optimization completed its job,
the best allocation, with no deadline misses and an average
response time for chain tc2 of 13.79, is found and back-
propagated to the design model. More specifically, the best
allocation configuration is the following (in bold themodified
allocations):

t1= 〈2, 3, 5, 2.55,c1〉
t2= 〈2, 3, 5,c0〉
t3= 〈2, 3, 5,c0〉
t4= 〈2, 3, 5,c0〉
t5= 〈2, 3, 5,c1〉
t6= 〈2, 3, 5,c1〉
t7= 〈2, 3, 5,c1〉
t8= 〈2, 3, 5,c0〉
t9= 〈2, 3, 5,c0〉
t10= 〈2, 3, 5,c1〉
t11= 〈2, 3, 6, 3.2,c1〉
t12= 〈2, 3, 6,c1〉

VOLUME 4, 2016 6533

F. Ciccozzi et al.: UML-Based Development of Embedded Real-Time Software on Multi-Core in Practice

t13= 〈2, 3, 6,c1〉
t14= 〈2, 3, 6,c1〉

Several experiments have been carried out in order to evaluate
the two optimization modules in isolation as well as their
combination (which resulted the most efficient). For the inter-
ested reader, more details about the optimization mechanisms
and the experiments can be found in [17].

C. CODE GENERATION
From the design model we can automatically generate an
executable multithreaded C/C++ application instrumented
for execution-based optimization (Fig. 1.F) or a ’clean’ one
for deployment (Fig. 1.H) throughM2T transformations. The
transformations navigate the model in all its parts and gen-
erate a corresponding description in C/C++. The tasks are
transformed through a 1-to-1 mapping to threads. In the case
of instrumented code, depending on the task type, specific
triggering code (according to themodelled period for periodic
tasks, at triggering task completion for event-triggered tasks)
is generated too.

Listing 2. Extract of generated C++ for updateDirection(..).

While structural translation of UML models to code is not
new, the translation from its standardised action language
ALF to C/C++ proposed in SMARTCore is the first of its
kind (Listing 2). Moreover, to the best of our knowledge
the translation of tasks and their allocation to multithreaded
applications in combination with behaviours defined using
ALF had not been attempted before SMARTCore. When
it comes to the translation of ALF to C/C++, we pro-
vide a translation of the syntactical minimum conformance
(as described in the ALF specification [13]), that is to say
the subset of ALF that is used for writing textual action
language snippets as behaviours within a larger graphical
UML model and that includes all the capabilities available in
a traditional, procedural programming language. Moreover,
we provide a translation of part of the concepts, addressed
as ALF units, that are used to textually describe structural
portions of a UML model. By providing this option, we
allow the developer to, besides defining actions within a
graphical UML model, even define the structural parts of

the model in terms of ALF to get corresponding executable
C++ generated entirely from an ALF model describing a
fully-functional software system. A specific way to manage
memory is not enforced by UML, while in order to produce
executable code we had to provide one. For this reason we
investigated a set of possible alternatives and opted for a
memory management based on smart pointers.7

This kind of pointer defines a reference counter for each
allocated object. Once the reference counter hits zero, the
related object is released from memory. On the one hand,
this solution might be costly when dealing with frequent
acquisition-release cycles of time-demanding objects. On the
other hand, other memory management mechanisms may
cause pausing of the whole program execution for the mem-
ory to be examined, replaced, or freed. Smart pointers are
used to manage objects of non-primitive type (i.e., classes
and their instances) in the following way. A non-primitive
type T is wrapped as shared_ptr<T> (e.g., line 1 of
Listing 2), which represents a smart pointer to an object of
type T. When instantiating the object (i.e., class instance)
the construct make_shared<T> (e.g., line 6 of Listing 2)
is exploited to initialise the smart pointer referencing to the
specific object and taking care of memory management.

In the generated code, each task corresponds to a POSIX8

thread with read-execute-write semantics meaning that a
thread first reads input, then performs calculations and finally
writes output. The code used for execution-based optimiza-
tion is instrumented with code for measuring the end-to-end
response times for chains. The experiments were run on the
Ubuntu 12.04 LTS operating system (kernel version 3.2.29)
patched with the PREEMPT RT patch (version 3.2.29-rt44),9

to give Ubuntu a hard real-time kernel. Since the approach
does not depend on PREEMPT RT’s APIs, generated code is
portable to other real-time operating systems.

V. LESSONS LEARNED AND PERSPECTIVES
The solutions proposed in the SMARTCore project have
been iteratively validated against artificial as well as real in-
house and industrial systems. In this section we provide a set
of lessons learned and key perspectives for researchers and
practitioners to benefit from our experiences and build upon
them. More specifically, we discuss on technological aspects,
related to the selected languages and tools, and methodolog-
ical aspects, concerning the actual techniques developed in
SMARTCore.

A. TECHNOLOGICAL ASPECTS
1) MODELLING LANGUAGES
We chose UML since it is regarded the de facto standard in
industry [7] and the most widely used architectural descrip-
tion language [8]. Moreover, two out of the three indus-
trial partners in SMARTCore already had UML in their

7http://www.cplusplus.com/reference/memory/shared_ptr/
8http://pubs.opengroup.org/onlinepubs/9699919799
9https://rt.wiki.kernel.org/index.php/Main_Page

6534 VOLUME 4, 2016

F. Ciccozzi et al.: UML-Based Development of Embedded Real-Time Software on Multi-Core in Practice

development process, while the third partner was interested
in experimenting with UML. For the first two, there were no
issues with the language selection. In order for the latter to
evaluate the impact of a hypothetical shift to UML, we had
to make a comparison with the modelling language currently
used, Simulink/Matlab.10 The differences between UML and
Simulink/Matlab are idiosyncratic and it is not realistic to
provide a generic comparison between them. Nevertheless,
we could notice some interesting aspects. On the one hand,
thanks to its general-purpose nature, UML provides very
powerful (object-oriented) abstract and concrete syntaxes for
modelling complex software architectures composed of dif-
ferent kinds of hierarchical assemblies and putting together
heterogeneous software components in a seamless manner.
On the other hand, it is not able to express dynamicity of
systems in a flexible and compact way as Simulink/Matlab
does. MARTE provides notions for different sample time
types, but it is hardly comparable to Simulink/Matlab, which
naturally provides 9 sample time types (discrete, continu-
ous, asynchronous, fixed in minor step, inherited, hybrid,
constant, variable, triggered). When it comes to data types,
UML comes with a minimal set of primitive types, enriched
with MARTE’s data types specifically for embedded real-
time systems. Also in this case, Simulink/Matlab comes with
a reacher set of default data types. On the other hand, cus-
tom data types can only be defined either in an S-function
using C, or in a Level-2 MATLAB S-function by inheritance
from other model blocks. UML provides instead metamod-
elling mechanisms for easily defining custom data types to
be exploited using textual and graphical concrete syntaxes
for both structural modelling and definition of fine-grained
behaviours through action language.

2) TRANSFORMATION LANGUAGES
SMARTCore adheres to the MDE vision of models and
model transformations as core development artefacts. In order
to automate the various development steps, from generation
of analysis and execution artefacts to model-based optimiza-
tion and back-propagation of analysis/monitoring results to
models, we employed models transformations. Among the
many model transformation languages available, we evalu-
ated several options and eventually chose QVTo for M2M
transformations and Xtend for M2T and T2M transforma-
tions.When selecting a transformation language, we took into
account its typology, maturity, and, when needed, the effort
to include it in a toolchain based on Eclipse. We evaluated the
following three different options for M2M transformations:

• Atlas Transformation Language11: it is a hybrid (mixed
of declarative and imperative) language originally
defined for expressing unidirectional model transforma-
tions. It is a mature technology and seamlessly inte-
grated in Eclipse.

10http://www.mathworks.com/products/simulink/
11https://eclipse.org/atl/

• Janus Transformation Language12: it is a relational
language specifically defined for bidirectional non-
bijective transformations and change propagation. It has
a mature back-end, but it falls short when it comes to
usability. It is currently not integrated in Eclipse.

• QVTo: it is an imperative language defined for express-
ing unidirectional model transformations. It is a mature
technology, implements the operational portion of the
OMG Query/View/Transformation standard,13 and it is
seamlessly integrated in Eclipse.

Since we needed to define non-bijective transformations,
JTL represented our initial first choice. Unfortunately, the
effort needed to bring it in our toolchain was heavier than
the possible benefits coming along with it. Nevertheless,
we have initiated a collaboration with the research group
responsible for JTL to improve the usability of the language.
Between ATL and QVTo, we selected the latter since it pro-
vides a wider spectrum of imperative constructs which could
help us in programmatically controlling the non-bijective
relations among source (e.g., UML model) and target
(e.g., C/C++ code) artefacts.

ConcerningM2T and T2M transformations, we considered
the following three trasformation languages:

• Acceleo14: it is a hybrid template-based language
proposing a pragmatic implementation of the OMG
Model to Text Language standard. It is a mature tech-
nology and seamlessly integrated in Eclipse.

• Xpand15: it is an imperative language based on expan-
sion rules specifically defined for code generation. It
is a mature technology and seamlessly integrated in
Eclipse.

• Xtend: it is an evolution of Xpand. It is regarded as a
flexible and expressive dialect of Java and seamlessly
integrated in Eclipse.

Since the three languages provide similar features and display
the same level of integration in Eclipse, we selected Xtend
for two reasons. (1) Xtend’s concrete syntax represents a
powerful mask on top of Java, enabling the use of both
Xtend-specific as well as pure Java constructs under the same
hood; since Eclipse is Java-based, the programmatic effort of
leveraging Xtend in combination with other Eclipse features
was negligible. (2) Xtend code is transparently compiled to
Java, which is then executed for performing the defined trans-
formations; being able to exploit the Java Virtual Machine
gives Xtend a notable edge compared to Acceleo and Xpand,
which are instead interpreted by ad-hoc engines. As an exam-
ple of this, a transformation defined in Xtend displays an
execution time which is close to 10 times lower than the same
transformation defined using Xpand.

12http://jtl.di.univaq.it/
13http://www.omg.org/spec/QVT/1.1/
14https://eclipse.org/acceleo/
15http://wiki.eclipse.org/Xpand

VOLUME 4, 2016 6535

F. Ciccozzi et al.: UML-Based Development of Embedded Real-Time Software on Multi-Core in Practice

3) TARGET LANGUAGES
When it comes to target languages, our code generator
produces C/C++, which was unanimously preferred by the
three industrial partners. Moreover, no proprietary libraries
nor hard-coded domain-specific hacks were accounted in
the development of our solutions to not jeopardise the
generalisability and dissemination of SMARTCore’s results
for the community to use and build upon. Java is used
for the description of simulation models employed for
model-based optimization and SMARTCore provides a set
of model transformations for generating them. While the
generator of C/C++ is domain-agnostic and reusable in
ideally any context where executable C/C++ has to be
generated from UML models, the generation of Java sim-
ulation models is specifically designed for serving the
purpose of the model-based optimization module of our
approach.

4) DEVELOPMENT ENVIRONMENT
Since the goal of SMARTCore was to provide an open-
source solution to run on state-of-the-art and practice tech-
nologies, we chose to leverage Papyrus, which is the de-facto
standard open source modelling environment for UML and
the reference modelling environment of the PolarSys16

initiative. Moreover, the Papyrus Industry Consortium17

has recently been formed and approved by the Eclipse
Foundation. At the time of this writing, some Papyrus-
related issues with the support of ALF had to be solved
within SMARTCore for exploiting it for modelling and
code generation. Thanks to the collaboration established
during SMARTCore with the research group providing
Papyrus, feedback from SMARTCore have helped out in
identifying issues related to the ALF implementation in
Papyrus.

B. METHODOLOGICAL ASPECTS
1) MODELLING THE SYSTEM
Originally UML was mainly seen as an abstraction of object-
oriented 3GLs to be used for better human communication.
After 19 years, UML has matured a lot and it has now
everything to replace 3GLs in MDE. The majority of tools
providing code generation for UML established in industry
employs 3GLs rather than proper action languages (i.e., ALF)
for defining behaviours within UML models in order to
more easily generate code (e.g., [18]–[20]). By doing so,
the developer can infer assumptions on the target system
(e.g., memory management, parallelism, communication),
which hinder the generation of code for different targets
from the same input models. In short, while using 3GLs to
define behaviours in UMLmodels simplifies code generation
since behaviours are already provided in the target language,
it complicates model validation, analysis, consistency

16https://www.polarsys.org/
17https://www.polarsys.org/ic/papyrus

checking and generally imperils many benefits of using
models. In order to avoid that, in SMARTCore we embraced
the recently formalised platform-neutral action language for
UML, ALF, for which we provided the first of its kind
translator to C++ [21].

By employing an action language like ALF, action code
is given full knowledge of the surrounding model [22], [23]
and this brings about several benefits, among which sim-
plified model-based analysis, model simulation and consis-
tency checking at modelling level. When it comes to the
reusability of models, since ALF is not bound to any specific
target platform, code generators like the one we defined in
SMARTCore can target different variations (providing some
degree of reusability for code generators too) of one language
(e.g., different memory management mechanisms depend-
ing on the user’s selection) or different languages, from the
samemodel. Regarding user experience of using ALF instead
of C/C++ for defining behaviours in the UML models,
industrial actors in SMARTCore agreed in finding it very
intuitive thanks to its Java-like syntax and they appreciated
the naturalness by which it seamlessly integrates with UML.
Clearly, some domain-specific C/C++ constructs could not
be used and a workaround using ALF concepts had to be
found.

2) AUTOMATIC CODE GENERATION
Working on code generation, we experienced that transla-
tion of UML models to 3GLs still raises two fundamental
issues [24]. (1) The intermediate translation step from source
model to 3GL code creates discontinuity between the final
executable and its source model. This is exasperated by the
fact that translators from UML to 3GLs do not account
UML-specific semantics. Discontinuity, meant as executa-
bles which are not semantically consistent to their source
models and suffer from information loss, undermines model
observability (e.g., model debugging, models@runtime).
(2) Existing compilers are designed to fully exploit the
semantics of their language (i.e., in our case C/C++).
This allows them to implement numerous time and mem-
ory optimizations. However, they are unable to exploit
the UML semantics; the result is suboptimal executables.
Consequently, while suboptimality, a certain level of infor-
mation loss and semantic inconsistencies are bearable in
non-critical domains, they have historically hindered the full
embracement of MDE and UML in safety-critical domains
where predictability is key [25]. We argue that direct com-
pilation of UML by-passing the use of 3GLs is needed to
(i) provide full control over the manipulations that models
undergo to produce executables and (ii) enable optimizations
based on model-based analysis that can not be achieved by
translating to 3GLs.More specifically, a compiler specifically
designed for UML would diminish semantic issues, enhance
model observability, enable fruitful optimizations at model-
level and eventually enable the generation of optimised and
more predictable executables.

6536 VOLUME 4, 2016

F. Ciccozzi et al.: UML-Based Development of Embedded Real-Time Software on Multi-Core in Practice

A specific technique for memory management in UML
is not enforced but rather left intentionally open to sev-
eral options. When generating code we needed to choose a
suitable memory management mechanism for the generated
code and we opted for smart pointers. The alternatives we
investigated were:
• Allocate basic typed variables on the stack and more
complex objects on the heap. This solution would result
in decent code performance and it would be fairly easy
to implement. The issue with it resides in the fact that it
does not ensure prevention from stack overflows since
allocations of basic typed variables may require more
space than available on the call stack.

• Allocate everything on the heap through smart pointers.
This solution would give good code performance and
would not be extremely difficult to implement. More-
over, it would prevent from stack overflows and memory
leaks, since none of the objects are allocated on it.

• Perform a smart allocation based, e.g., on the scope
of use and the size of the objects. On the one hand,
this solution would provide the best code performance
and prevent from stack overflows. On the other hand,
it would be very complex to implement and main-
tain since it would require (i) an analytical engine to
determine object-specific allocations and (ii) a way to
automatically generate destructors to handle memory
deallocation of user-defined objects.

The main focus in SMARTCore was to achieve a sound
solution that was not too costly to develop and maintain,
while providing the possibility to be complemented with
other solutions. That is why we decided to go for allocation
on the heap through smart pointers. Performance-wise, smart
pointers add two counting variables to manage the memory
needed by an object. On the one hand, this represents a
tiny overhead in memory usage, usually outplayed by the
security that is provided by smart pointers; very few modern
embedded systems would not be able to afford such a small
overhead. On the other hand, for hard real-time applications
whose criticality resides in their timeliness, a deeper analysis
would be needed to assess how smart pointers can affect
deterioration from a timing perspective.

Overall, we believe that effort should be spent to define
mechanisms for guiding the automatic generation of exe-
cutables in achieving smart memory management in terms
of minimisation of dynamic memory handling and optimiza-
tion of the tradeoff between allocations on heap and stack.
The possibility to allocate on stack, in fact, brings about
several advantages for real-time and safety-critical embed-
ded systems: automatic, faster and more time-predictable
allocation/de-allocation operations, reduced overhead for the
management of the objects in the slower heap, no need for
synchronization on local objects (synchronization elision),
and reduced memory fragmentation [26].

3) ALLOCATION OPTIMIZATION
In SMARTCore we exploit a combined model-based and
execution-based optimization mechanism. As aforemen-
tioned, during the optimization process new allocation con-
figurations to be analysed are identified. The identification
could be done randomly by relocating a task to a random core.
For efficiency reasons (i.e., make the optimization faster), we
exploited the delay matrix heuristic. This heuristic takes into
consideration the fact that the most problematic task on a core
is either the one that considerably delays tasks that belong
to the chain to be optimised, or the one that is considerably
delayed by other tasks. For identifying a new allocation, the
heuristic takes the current best allocation specification and
moves the problematic task to a core with low load. Clearly,
this is only one possibility, which is particularly suitable
for the purposes of SMARTCore. In different application
scenarios, other heuristics, even partially random, could be
preferred and thereby should be evaluated against the delay
matrix.

A relevant aspect of the combined optimizationmechanism
is the selection of the point when the change from model-
based to execution-based module should happen. We tried to
provide a general rule that would work no matter what the
scenario was, but we noticed that this was not achievable.
The reason is that the switch from model-based to execution-
based modules depends on (i) how well they agree on what
a good allocation is, and (ii) the difference in time needed
for obtaining performance predictions and performance mea-
surements. Regarding (i), if performance prediction is not
precise enough, the model-based module could misdirect
the optimization before the execution-based module takes
over. Regarding (ii), if the time taken by the model-based
module is comparable to the one taken by the execution-
based one, there is no real reason for the model-based module
to run for many iterations (or even to run at all!). On the
contrary, if the two modules have similar accuracy, then it is
worth running the model-based module for many iterations
before handing over to the execution-based module, since
the latter is usually slower. Similarly, when model-based
optimization is much faster than execution-based, than it is
worth to run the model-based module for a higher number
of iterations. If performance predictions could be obtained
analytically (without simulation), the model-based module
would bemuch faster and could thereby process amuch larger
portion of the solution space than the execution-basedmodule
in the same amount of time. We believe that more effective
(i.e., compact) ways for modelling and analysing the solution
space of allocation configurations shall be sought. In partic-
ular we advocate the exploitation of what in decision theory
is called known uncertainty [27] for compact modelling of
the solution space to be leveraged by parametric model-based
analyses which should be able to exploit explicitly modelled
uncertainty.

VOLUME 4, 2016 6537

F. Ciccozzi et al.: UML-Based Development of Embedded Real-Time Software on Multi-Core in Practice

Future perspectives

• The use of action languages compliant toUML such
as ALF is crucial to avoid that action code specified
using a different language would violate standard
UML semantics. To this end, we believe that a
stronger effort needs to be put on the mechanisms
to support the use of such UML-compliant action
languages.

• The combination of model-based and execution-
based optimization mechanisms is very valuable as
long as they are effectively intertwined and rely
on suitable heuristics. For improving the benefits
given by this combination, model-based optimiza-
tion should be made more effective. Our suggestion
is to enhance modelling and model-based analysis
to entail known uncertainty explicitly modelled for
expressing a large solution space in a much more
compact manner.

• Bidirectional transformation languages can repre-
sent the key for non-bijective relations among arte-
facts as in the case of code generation. For them to
be valid options in industrial settings, an engineer-
ing effort is needed to make them more accessible
and usable.

• In order to increase predictability in terms of time-
liness and memory management, efforts in the
direction of direct compilation of modelling lan-
guages, by-passing translation to 3GLs as execution
enabler, are essential. Direct compilation of models
to executables will boost the adoption of MDE
and UML for modern real-time and safety-critical
systems (e.g., cyber-physical systems, internet-of-
things, autonomous systems).

• For the same reasons, we believe that efforts in
providing smart memory management in terms of
minimisation of dynamic memory handling and
optimization of the tradeoff between allocations on
heap and stack are needed.

VI. RELATED WORK
Several approaches have been proposed for model-driven
engineering of embedded real-time systems both for sin-
glecore [28] as well as for multicore systems starting from
different abstraction levels. Piat et al. [29] propose the gen-
eration of static C code for multicore systems starting from
synchronous data flow graphs. Cha et al. [30] present an
automatic code generation scheme for multicore systems by
inserting user-defined S-Functions for Simulink applications.
An approach operating at a very low level of abstraction
is proposed by Collins et al. [31] in terms of Huckleberry,
a tool for automatically generating parallel implementa-
tions for multicore platforms from sequential recursive

divide-and-conquer programs. Overall, in current approaches
inputs for the generation process vary from source code to for-
mal mathematical models, thus in contrast with SMARTCore
not considering more intuitive graphical design models as
starting point for the generation of multicore systems. In [32]
the authors provide a tool which automates the generation
of the System-Level Architecture Model (S-LAM) from a
UML annotated with MARTE in order to ease the develop-
ment towards Massively Parallel Multi-Processors System-
on-Chip (MP2SoC). Nevertheless the proposed approach
does not automatically generate the entire executable code
from UML models.

Navabi et al. [33] in the early 90’s, and some years later
Mahadevan and Armstrong [34], came up with different
approaches for back-annotating behavioural descriptions
with timing information; however, both operate horizon-
tally18 in terms of abstraction levels and no automation is
provided. Hegedüs et al. [35] propose back-propagation for
enabling execution traces retrieved by model checkers or
simulation tools to be integrated and replayed in modelling
frameworks. Guerra et al. [36] address back-propagation of
analysis results to the original model by means of triple
graphical patterns. The mentioned approaches are all meant
to horizontally operate at modelling level with propaga-
tion of data among models. Apart from horizontal back-
propagation, SMARTCore focused on vertically propagating
analysis results observed at code level back to design mod-
els for better understanding and exploiting hard-to-predict
EFPs [37].

Regarding measurements of EFPs at system implemen-
tation level, besides runtime monitoring, other verification
techniques (e.g., static analysis) can be used for small and
simple systems, but their application for large and complex
systems might not always be practical and economical [38].
Even when feasible, conditions that cause invalidation of
the analysis results at runtime may happen. An example
is the difference between the ideal execution environment
(considered for performing analysis) and the actual onewhich
leads to the violation of the assumptions that were taken
into account when performing static analysis [39]. Therefore,
the information gathered through monitoring the execution
of a system is not only interesting and useful for observing
the actual behaviour and to detect violations at runtime, but
also to be used for making adaptation decisions, as well
as to induct enforcement and preservation of properties.
Saadatmand et al.’s work [40] serves as an example of using
monitoring information for balancing timing and security
properties in embedded real-time systems; in SMARTCore
we leveraged similar solutions. In [41] the authors try to
estimate the effects of monitor overheads on different types
of embedded multicore applications and give suggestions on
the number and type of monitors to use for those. This kind

18Horizontal and vertical are used for specifying the direction of data
transitions among artefacts either at the same (i.e., horizontal, from model to
model) or at different (i.e., vertical, from code to model) level of abstraction.

6538 VOLUME 4, 2016

F. Ciccozzi et al.: UML-Based Development of Embedded Real-Time Software on Multi-Core in Practice

of approaches were investigate in SMARTCore, but did not
fit in the project’s scope.

In the literature there exist approaches dealing with
allocation optimization based on measurements at system
implementation level as described in [42]. The COMPAS
framework by Mos and Murphy [43] is a performance
monitoring approach for J2EE systems. For performance
prediction of the modelled scenarios, the approach sug-
gests using existing simulation techniques, which are not
part of the approach. Based on the COMPAS framework,
two further approaches have been proposed: AQUA, by
Diaconescu and Murphy [44], and PAD, by Parsons and
Murphy [45]. The goal of these approaches is to identify
performance problems in the running system and adapt the
implementation (at code level) to make it able to fulfil EFPs
requirements. Instead, the uniqueness of the SMARTCore
approach consists in introducing a new dimension to alloca-
tion optimization at model level to be used in combination
with measurements gathered at system implementation level,
as introduced in [46].

VII. CONCLUSION
In this paper we described the solutions for UML-based
development of embedded real-time software on multicore
provided within the SMARTCore project. More specifically,
we described how we achieved modelling, combined model-
based and execution-based task allocation optimization, and
automatic code generation. For researchers and practitioners
to leverage our experiences in SMARTCore, we described
a set of lessons learned related to both technological and
methodological aspects and we stressed five key perspec-
tives that we find fundamental for boosting the adoption
of (UML-based) MDE of embedded real-time systems in
industry. A follow-up of the SMARTCore project is already
being planned and will aim at investigating some of these
perspectives as follows.

The experiments carried out to evaluate the optimization
mechanisms resulted in the combined optimization being
on average more efficient than model-based and execution-
based modules singularly. Nevertheless, the scope of the
optimization was narrow since we aimed at optimising end-
to-end response times and deadline misses of task chains
only. It would certainly be valuable to run further experiments
with the aim of optimising a multiple set of extra-functional
properties to better understand under which circumstances
the combined approach is favourable.

Concerning code generation, an interesting direction to
enhance it would be to make the involved transformations
configurable by the modeller through parameters in order to
guide the generation towards a specific target. For instance,
the modeller could be given a set of different mechanisms
for memory management among which to select the one to
use when generating code. From a methodological perspec-
tive, we have already started an effort towards direct com-
pilation of UML and ALF, without intermediate translations
to programming languages such as C++, to maximise the

preservation of execution semantics of UML and ALF in the
generated executables.

As aforementioned, smart memory management, meant
as the minimisation of dynamic memory handling and the
optimization of the tradeoff between allocations on heap
and stack, is key for the production of predictable executa-
bles suitable for embedded real-time and safety-critical sys-
tems. We are planning an investigation on the theory behind
escape [26] and unbounded structure analysis [47] as well
as memory management for real-time object-orientation [48]
to understand whether and how they can be applied to the
compilation of UML models.

REFERENCES
[1] P. Hudak, ‘‘Building domain-specific embedded languages,’’ ACM

Comput. Surv., vol. 28, no. 4, Dec. 1996, Art. no. 196.
[2] C. W. Krueger, ‘‘Software reuse,’’ ACM Comput. Surv., vol. 24, no. 2,

pp. 131–183, 1992.
[3] F. Brooks, Jr., No Silver Bullet: Essence and Accidents of Software Engi-

neering. New York, NY, USA: IEEE Press, Apr. 1987.
[4] D. C. Schmidt, ‘‘Guest editor’s introduction: Model-driven engineering,’’

Computer, vol. 39, no. 2, pp. 25–31, Feb. 2006.
[5] S. Kent, ‘‘Model driven engineering,’’ in Proc. IFM, 2002, pp. 286–298.
[6] K. Czarnecki and S. Helsen, ‘‘Feature-based survey of model transforma-

tion approaches,’’ IBM Syst. J., vol. 45, no. 3, pp. 621–645, 2006.
[7] J. Hutchinson, J.Whittle,M. Rouncefield, and S. Kristoffersen, ‘‘Empirical

assessment of MDE in industry,’’ in Proc. ICSE, 2011, pp. 471–480.
[8] I. Malavolta, P. Lago, H. Muccini, P. Pelliccione, and A. Tang, ‘‘What

industry needs from architectural languages: A survey,’’ IEEE Trans.
Softw. Eng., vol. 39, no. 6, pp. 869–891, Jun. 2013. [Online]. Available:
http://doi.ieeecomputersociety.org/10.1109/TSE.2012.74

[9] R. Chapman, ‘‘Correctness by construction: A manifesto for high integrity
software,’’ in Proc. SCS, 2006, pp. 43–46.

[10] C. Atkinson and T. Kühne, ‘‘Reducing accidental complexity in domain
models,’’ Softw. Syst. Model., vol. 7, no. 3, pp. 345–359, 2008.

[11] F. Ciccozzi, D. Corcoran, T. Seceleanu, and D. Scholle, ‘‘SMARTCore:
Boosting model-driven engineering of embedded systems for multicore,’’
in Proc. ITNG, 2015, pp. 89–94.

[12] Object Management Group. (2011). UML Superstructure
Specification V2.3, accessed on Apr. 11, 2012. [Online]. Available:
http://www.omg.org/spec/UML/2.3/Superstructure/PDF/

[13] OMG. Action Language for Foundational UML, accessed on Oct. 8, 2016.
[Online]. Available: http://www.omg.org/spec/ALF/1.0.1/

[14] OMG. (2011). UML Profile for MARTE: Modeling and Analysis
of Real-Time Embedded Systems, V1.1. [Online]. Available:
http://www.omg.org/spec/MARTE

[15] F. Budinsky, D. Steinberg, and E. Merks, Eclipse Modeling Framework.
Reading, MA, USA: Addison-Wesley, 2003.

[16] J. Feljan and J. Carlson, ‘‘Task allocation optimization for multicore
embedded systems,’’ in Proc. SEAA, 2014, pp. 237–244.

[17] J. Feljan, F. Ciccozzi, J. Carlson, and I. Crnkovic, ‘‘Enhancingmodel-based
architecture optimization with monitored system runs,’’ in Proc. SEAA,
2015, pp. 216–223.

[18] E. Riccobene, P. Scandurra, S. Bocchio, A. Rosti, L. Lavazza, and
L. Mantellini, ‘‘SystemC/C-based model-driven design for embedded
systems,’’ ACM Trans. Embedded Comput. Syst., vol. 8, no. 4, 2009,
Art. no. 30.

[19] F. Mischkalla, D. He, and W. Mueller, ‘‘Closing the gap between UML-
based modeling, simulation and synthesis of combined HW/SW systems,’’
in Proc. DATE, 2010, pp. 1201–1206.

[20] J. Vidal, F. de Lamotte, G. Gogniat, P. Soulard, and J.-P. Diguet,
‘‘A co-design approach for embedded system modeling and code gener-
ation with UML and MARTE,’’ in Proc. DATE, 2009, pp. 226–231.

[21] F. Ciccozzi, ‘‘Dethroning programming languages as endorsed means for
fine-grained UML behaviour modelling in open source MDE,’’ in Proc.
OSS4MDE, 2015, pp. 44–53.

[22] J. Tatibouët, A. Cuccuru, S. Gérard, and F. Terrier, ‘‘Formalizing execution
semantics of UML profiles with fUMLmodels,’’ in Proc. MODELS, 2014,
pp. 133–148.

VOLUME 4, 2016 6539

F. Ciccozzi et al.: UML-Based Development of Embedded Real-Time Software on Multi-Core in Practice

[23] B. Selic, ‘‘The less well known UML,’’ Formal Methods for Model-Driven
Engineering, vol. 7320. Berlin, Germany: Springer, 2012, pp. 1–20.

[24] B. Selic, ‘‘What will it take? A view on adoption of model-based methods
in practice,’’ Softw. Syst. Model., vol. 11, no. 4, pp. 513–526, 2012.

[25] P. Gai, G. Lipari, and M. Di Natale, ‘‘Minimizing memory utilization of
real-time task sets in single and multi-processor systems-on-a-chip,’’ in
Proc. RTSS, 2001, pp. 73–83.

[26] J.-D. Choi, M. Gupta, M. J. Serrano, V. C. Sreedhar, and S. P. Midkiff,
‘‘Stack allocation and synchronization optimizations for Java using escape
analysis,’’ ACM Trans. Programm. Lang. Syst., vol. 25, no. 6, pp. 876–910,
2003.

[27] C. C. Chow and R. K. Sarin, ‘‘Known, unknown, and unknowable uncer-
tainties,’’ Theory Decision, vol. 52, no. 2, pp. 127–138, 2002.

[28] J. Porter et al., ‘‘The ESMoL modeling language and tools for synthe-
sizing and simulating real-time embedded systems,’’ in Proc. 15th IEEE
Real-Time Embedded Technol. Appl. Symp., San Francisco, CA, USA,
Apr. 2009.

[29] J. Piat, S. S. Bhattacharyya, M. Pelcat, and M. Raulet, ‘‘Multi-core code
generation from interface based hierarchy,’’ in Proc. DASIP, 2009.

[30] M. Cha, K. H. Kim, C. J. Lee, D. Ha, and B. S. Kim, ‘‘Deriving high-
performance real-time multicore systems based on simulink applications,’’
in Proc. DASC, 2011, pp. 267–274.

[31] R. L. Collins, B. Vellore, and L. P. Carloni, ‘‘Recursion-driven parallel code
generation for multi-core platforms,’’ in Proc. DATE, 2010, pp. 190–195.

[32] M. Ammar, M. Baklouti, M. Pelcat, K. Desnos, and M. Abid, ‘‘Automatic
generation of S-LAM descriptions from UML/MARTE for the DSE of
massively parallel embedded systems,’’ in Software Engineering, Artifi-
cial Intelligence, Networking and Parallel/Distributed Computing. Berlin,
Germany: Springer, 2016, pp. 195–211.

[33] Z. Navabi, S. Day, and M. Massoumi, ‘‘Investigating back annotation
of timing information into dataflow descriptions,’’ in Proc. VIUF, 1992,
pp. 185–195.

[34] G. Mahadevan and J. R. Armstrong, ‘‘Investigating back annotation of
timing information into dataflow descriptions,’’ in Proc. VIUF, 1995.

[35] A. Hegedüs, G. Bergmann, I. Ráth, and D. Varró, ‘‘Back-annotation of sim-
ulation traces with change-driven model transformations,’’ in Proc. SEFM,
2010, pp. 145–155.

[36] E. Guerra, D. Sanz, P. Díaz, and I. Aedo, ‘‘A transformation-driven
approach to the verification of security policies in Web designs,’’ in Proc.
ICWE, 2007, pp. 269–284.

[37] F. Ciccozzi, A. Cicchetti, and M. Sjödin, ‘‘Round-trip support for extra-
functional property management in model-driven engineering of embed-
ded systems,’’ Inf. Softw. Technol., vol. 55, no. 6, pp. 1085–1100, 2012.

[38] A. Wall, J. Kraft, J. Neander, C. Norström, and M. Lembke, ‘‘Introducing
temporal analyzability late in the lifecycle of complex real-time systems,’’
in Proc. RTCSA, 2003, pp. 513–528.

[39] S. E. Chodrow, F. Jahanian, and M. Donner,Monitoring and Debugging of
Distributed Real-Time Systems. France: ECSI, 1995, pp. 103–112.

[40] M. Saadatmand, A. Cicchetti, and M. Sjödin, ‘‘Design of adaptive security
mechanisms for real-time embedded systems,’’ in Proc. ESSoS, 2012,
pp. 121–134.

[41] S. Chun-Yi et al., ‘‘Adaptive performance monitoring for embedded mul-
ticore systems,’’ in Proc. ICWPP, Sep. 2011, pp. 222–228.

[42] H. Koziolek, ‘‘Performance evaluation of component-based software sys-
tems: A survey,’’ Perform. Eval., vol. 67, no. 8, pp. 634–658, 2010.

[43] A. Mos and J. Murphy, ‘‘A framework for performance monitoring, mod-
elling and prediction of component oriented distributed systems,’’ in Proc.
WOSP, 2002, pp. 235–236.

[44] A. Diaconescu and J. Murphy, ‘‘Automating the performance management
of component-based enterprise systems through the use of redundancy,’’ in
Proc. ASE, 2005, pp. 44–53.

[45] T. Parsons and J. Murphy, ‘‘Detecting performance antipatterns in compo-
nent based enterprise systems,’’ J. Object Technol., vol. 7, no. 3, pp. 55–90,
2008.

[46] F. Ciccozzi, M. Saadatmand, A. Cicchetti, and M. Sjödin, ‘‘An automated
round-trip support towards deployment assessment in component-based
embedded systems,’’ in Proc. CBSE, 2013, pp. 179–188.

[47] I. Grabe, ‘‘Static analysis of unbounded structures in object-oriented pro-
grams,’’ Ph.D. dissertation, Leiden Inst. Adv. Comput. Sci., Faculty Sci.,
Leiden Univ., Leiden, The Netherlands, 2012.

[48] J. M. Enery, D. Hickey, and M. Boubekeur, ‘‘Empirical evaluation of two
main-stream RTSJ implementations,’’ in Proc. JRTES, 2007, pp. 47–54.

FEDERICO CICCOZZI (M’09) received the Ph.D.
degree from the School of Innovation, Design
and Engineering, Mälardalen University, Sweden,
in 2014. In his research activity, he was with sev-
eral companies and research institutions, such as
Ericsson, ABB, Alten, Thales, and CEA list. He is
currently an Assistant Professor with the School of
Innovation, Design and Engineering, Mälardalen
University. His research focuses on the definition
of metamodels and model transformations for sev-

eral automation aspects in the model-driven development of component-
based embedded real-time systems, such as code generation, preservation
of system properties, back-propagation, multi-paradigm modeling, model
versioning, (co)evolution and synchronisation, and the application of model-
driven and component-based techniques to (multi-)robot systems. He has
co-authored over 35 publications in journals and international conferences
and workshops in these areas. He has been serving the community as the
Conference Track and Workshop Organiser, the Expert Panelist, the Pro-
gram Committee Member, and a Reviewer for conferences, workshops, and
international journals.

TIBERIU SECELEANU (SM’04) received the
Ph.D. degree in computer science from
Åbo Akademi, Turku, Finland. He is currently a
Principal Scientist with ABB Corporate Research
and an Adjunct Professor of Computer Engi-
neering with Mälardalen University, Sweden.
His research interests are in embedded system
architectures and design methodologies,
formal methods in system design, and wireless
communication.

DIARMUID CORCORAN has many years expe-
rience in software architecture and the develop-
ment of embedded systems with deep knowledge
on model-driven techniques applied to large-scale
projects in industry. He was an Expert and an
Industrial Ph.D. Student with the Research and
Development Department, Ericsson AB. He is
interested in exploiting high-level UML modeling
formalisms for the description of embedded sys-
tems and the automatic generation of full-fledged

code optimized for multicore.

DETLEF SCHOLLE has excellent knowledge of
real-time embedded systems, from small device
components to large distributed systems. He was
the Program Manager with Alten Sweden AB,
where he has been involved in several embed-
ded real-time systems research projects, such
as DysCAS, MBAT, iFEST, Frames, GEODES,
and PDFRAME. His main interest is on robust,
dependable and reliable embedded systems in
diverse applicative domains.

6540 VOLUME 4, 2016

