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ABSTRACT Practically, no knowledge exists on the effects of speech coding and recognition for
narrow-band transmission of speech signals within certain frequency ranges especially in relation to the
recognition of paralinguistic cues in speech. We thus investigated the impact of narrow-band standard
speech coders on the machine-based classification of affective vocalizations and clinical vocal recordings.
In addition, we analyzed the effect of speech low-pass filtering by a set of different cut-off frequencies,
either chosen as static values in the 0.5–5-kHz range or given dynamically by different upper limits from
the first five speech formants (F1–F5). Speech coding and recognition were tested, first, according to short-
term speaker states by using affective vocalizations as given by the Geneva Multimodal Emotion Portrayals.
Second, in relation to long-term speaker traits, we tested vocal recording from clinical populations involving
speech impairments as found in the Child Pathological Speech Database. We employ a large acoustic
feature space derived from the Interspeech Computational Paralinguistics Challenge. Besides analysis of the
sheer corruption outcome, we analyzed the potential of matched and multicondition training as opposed to
miss-matched condition. In the results, first, multicondition and matched-condition training significantly
increase performances as opposed to mismatched condition. Second, downgrades in classification accuracy
occur, however, only at comparably severe levels of low-pass filtering. The downgrades especially appear
for multi-categorical rather than for binary decisions. These can be dealt with reasonably by the alluded
strategies.

INDEX TERMS Speech analysis, speech coding, emotion recognition, computational paralinguistics.

I. INTRODUCTION
Although data links are increasing in bandwidth and are
becoming faster, there is a growing need for bandwidth
conservation for wireless cellular and satellite communica-
tion networks. Voice-related applications, which are now
integrated in the majority of mobile devices, require that
the speech signal is processed, stored, or transmitted in
the most costless and efficient manner. Speech Coding is
the art of creating a minimally redundant representation
of the speech signal that can be efficiently transmitted or

stored in digital media [1]. The effects of speech coding
in machine-based speech and speaker recognition systems
have been broadly investigated over the last two decades.
In Automatic Speech Recognition (ASR), several studies
report the effects of different speech coders1 on speech recog-
nition performances [2]–[5]. In particular, given the inter-
est in translating speech recognition technologies to mobile

1A speech coder converts a digitized speech signal into a coded represen-
tation [1].
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environments, the recognition of coded speech transmitted
over wireless channels in network-based speech recogni-
tion (NSR) and distributed speech recognition (DSR) systems
is reported [6]–[8]. Further analyses have also been made on
the influence of the sampling rate and bit rate changes with
different narrowband and wideband codecs on the speech
sounds [9], [10]. The effects of speech compression algo-
rithms has been widely investigated also on speaker recog-
nition systems. In fact, Dunn and colleagues [11] employed
standard speech coders (GSM, G.729, G.723, MELP) in
order to evaluate speaker recognition performances under
matched and mismatched training and testing conditions.2

A detailed analysis of speech coding techniques and bit rate
effects on compressed-domain automatic speaker recogni-
tion is reported by Petracca and colleagues [12]. Moreover,
the influence of speech coding on features dedicated to
speaker identification such as formant frequencies and fun-
damental frequency (F0) trajectories is reported in previous
studies [13], [14].

Thus, it is clear that for Automatic Speech Recognition
and Automatic Speaker Recognition a plethora of studies
have been carried out with respect to speech coding. Until
now, however, no study has directly investigated the effects
of speech coding for narrow-band transmission of human
vocalizations with respect to the recognition of paralinguistic
cues which seem a highly important issue, as in the last
few year Computational Paralinguistic tasks such as auto-
matic affect recognition from speech, are increasingly gain-
ing commercial attention due to the rapid growing interest
in social intelligence [15]–[17] and multi-modal user profil-
ing [18]–[20], e. g., for interactive speech systems [21], [22],
or serious games [23]–[25] and fun applications, such as the
love detector by Nemesysco Ltd.3 Many applications also
exist in the public health sector. Hearing-impaired persons
can profit, because cochlear implant processors typically alter
the spectral cues, which are crucial for the perception of
paralinguistic information [26]. Children with autism may
profit from the analysis of emotional cues as they may
have difficulties understanding or displaying them [27]–[32].
Further, health related applications could be the monitoring
of elderly people living on their own [33], or could be related
to diseases and speech disorders [34] such as occuring in
Parkinson’s disease [35], or cancer, cleft lip, and palate [36].

Affect recognition from speech thus seems not only highly
relevant for techniques concerning digital transmission and
specific health-related applications, but they also concern
social communication and sharing of social data between
human agents that are mediated by these techniques. This
digital communication and social information exchange con-
cerns, for example, wearable wireless devices [37] as well as
mobile social networks [38], [39]. The latter aims at exchang-
ing and integrating relevant information, especially for the

2Matched condition refers to use only data with exactly the same con-
ditions for training and testing. Multi-condition uses a variety of different
condition to generate a more generalised model.

3http://www.nemesysco.com/

integrated use of heterogeneous networks with diverse cell
sizes and radio access technologies [40]. A specific applica-
tion of such digital communication is healthcare communi-
cation, for example for patients living in remote areas or for
elderly patients with limited access to primary health insti-
tutions [41], [42]. A major issue with conventional remote
computer-assisted healthcare was the lack of the dimensions
of emotional care next to a basic medico-physical care. New
developments of wearable computer-assisted emotional inter-
actions [37] for the emotional care of patients might improve
disease outcome to a significant degree [43], especially if
real-time healthcare communication is applied [44]. Thus,
developing techniques for the appropriate and efficient trans-
mission and decoding of emotional cues from the acoustic
pattern of speech and vocalizations in digital communication
is a timely issue.

Human speech and vocalizations have a specific pattern
of acoustic features with a strong harmonic and formant
structure and high energy power in low frequency bands [45].
This acoustic pattern is evident for human voices in gen-
eral, but specifically for human speech and especially for
speech melody as the most important paralinguistic cue.
Speech melody is considerably influenced by the affective
states of the speaker and provides powerful paralinguistic
cues from which listeners infer the emotional states of other
individuals. Concerning the power of spectral frequencies,
the aforementioned high power in low frequency ranges is
especially evident for neutral human vocalizations. Comput-
ing the alpha level of voices as the ratio between the power
in high frequency bands (>1 kHz) and the power in low
frequency bands (<1 kHz) usually reveals low alpha levels for
neutral voices [46]. However, emotional compared with neu-
tral vocalizations usually show an increased alpha level [46]
or an increased proportion of high frequency power [47],
[48], indicating that high energy in upper frequency bands
is a reasonable cue for emotional voices. Especially, angry
and happy voices show an increased alpha level compared
with neutral voices [46], [48], while sad voices usually have a
decreased alpha level [47]. These high frequency cues might
therefore be an important voice feature, which might serve
the discrimination of different vocal expressions by human
listeners [49].

Apart from an increased power in high frequency bands,
human speech in general and affective vocalizations in spe-
cific are characterized by a strong harmonic and formant
structure [45]. The human voice is mostly characterized by
its fundamental frequency (F0) and the first five formant
frequency bands (F1–F5). The latter result from resonances
in the oral cavity. Recently, we have shown that certain
neural subregions in the cortical auditory system are actu-
ally sensitive to these acoustic features in vocal expressions,
especially to the F0, which mainly contributes to the pitch
perception in voices [50]. This decoding of vocal features
from affective vocalizations is presumably accomplished by
the orchestrated functioning of brain network involving the
auditory cortex in the temporal lobe, the frontal lobes [51]
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and subcortical structures such as the amygdala [52]. Voice
detection restricted to the F0–F1 should be sufficient to detect
and classify human voices [53] and the F1–F2 seem to be
sufficient to classify speech vowels [54]. Emotional voices
are sometimes strongly detected and discriminated from the
third formant (F3; see [55]). Voices consist of temporal for-
mant dynamics evolving over time, and not all of them [56]
and only those with a limited modulation rate [57] might be
important to detect human voices and speech.

However, though high energy in upper frequency bands as
well as the formant structure and their temporal dynamics
might be valuable cues for the detection and recognition
of affective vocalizations, many different vocal expressions
actually share the same paralinguistic cues. Listeners often
use these same cues for detecting several vocal emotions,
such as high power in upper frequency bands for expres-
sions of anger and desperation, or high power in lower fre-
quency bands for the expression of sadness and elation [49].
Furthermore, the amplitude level between the F1 and the F2
can help to differentiate some, but not all affective vocaliza-
tions [46]. These shared cues between vocal emotions can
impair their discrimination andmight lead to a perceived con-
fusing between vocalizations [58]. Thus, it seems necessary
to exactly determine the different roles of the relative power
in high and low frequency bands as well as of the speech
formant structure for the classification of different affective
vocalizations.

Besides these more transient and short-term emotional
states, which can considerably influence speech and paralin-
guistic clues during affective vocalizations andwhich provide
important cues for classifying the emotional states of the
speaker, human speech and vocalizations are also influenced
by more long-term speaker traits, such as neurological [59] or
psychiatric disorders [60], [61]. Specifically, speech impair-
ments in children with pervasive developmental disorders
have a strong impact on perceiving as well as expressing
speech in conversational contexts. In relation to the expres-
sion of vocalizations, recent studies for example have shown
that children, which were diagnosed with a disorder from
the autistic spectrum, show an impaired expression of par-
alinguistic cues in speech [61], [62]. Furthermore, children
with language disorders, such as specific language impair-
ments (SLI) or dyslexia, show an impaired expression of
paralinguistic cues in speech [63]. Thus, these impairments
in expressing paralinguistic cues in speech might be one
indicator for the discrimination of ‘normal’ expression of
vocalidizations from impaired expressions in clinical disor-
ders related to the transmission of speech signals in certain
frequency bands. An automated and machine-based analysis
and classification of these vocalizations in normally devel-
oping children and in children with developmental disorders
might help to obtain objective measures of diagnosing spe-
cific developmental conditions [64] based on vocal analysis
on a large set of vocal features.

In this light, we investigated the impact of narrow-band
standard speech coders (such as G.711, G.726, G.728, GSM,

G.723.1, LPC10, and codec2) on the machine based classifi-
cation of affective vocalization and clinical vocal recordings.
Additionally we analysed the effect of low-pass filtering of
human vocalizations recorded both in healthy and in clinical
populations. We used a set of different cut-off frequencies for
low-pass filtering. These are either chosen as static values
in the 0.5 – 5 kHz range or given dynamically by different
upper formant limits from F1 to F5. For the purpose of
machine-based classifications of affective vocalizations as
well as for the classification of impaired vocalizations in
clinical populations we trained a computer-based classifier on
two large-scale databases of vocal recordings. For short-term
and transient emotional speaker states we used recordings
of affective vocalizations as given by the Geneva Multi-
modal Emotion Portrayals (GEMEP) [65]. For long-term
speaker traits related to clinical relevant disorders we used
vocal recordings as found in the Child Pathological Speech
Database (CPSD) [66].

The remainder of this contribution is structured as follows:
First, a description of the databases and methods is given in
Section II. Then, the experiments and results are described in
Section III, before discussing and drawing conclusions on the
evaluation of obtained results in Section IV.

II. MATERIAL AND METHODS
A. DATABASES
For the purpose of this studywe used two different large-scale
databases of human vocalizations. One database was used for
the purpose of classifying affective vocalizations according
to the emotional valence, the arousal and the category of the
vocalizations. The second database included recordings from
clinical populations in children.

1) THE GEneva MULTIMODAL EMOTION
PORTRAYALS (GEMEP)
The GEMEP database [65] contains 1.2 k instances of emo-
tional speech from ten professional actors (five female) in
18 categories. The database contains prompted emotional
speech of an ‘artificial language’ to ensure emotionally neu-
tral semantics of underlying speech, comprising sustained
vowel phonations, as well as two meaningless phrases with
two different intended sentence modalities (‘‘ne kal ibam
soud molen!’’ = phrase #1, ‘‘koun se mina lod belam?’’ =
phrase #2), each expressed by each actor according to dif-
ferent emotional qualities (emotional valence) and in various
degrees of regulation (emotional intensity or arousal) ranging
from ‘high’ to ‘masked’ (hiding the true emotion).

Given this layout, a partitioning that is both text and
speaker independent is not feasible. Hence, the following
strategy was followed. Vowels and phrase #2 are used for
training and development, subdividing by speaker ID, and
phrase #1 is used for testing. Masked regulation utterances
are only contained in the test set in order to alleviate poten-
tial model distortions. By this partitioning, one obtains text
independence. Since six of the 18 emotional categories are
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extremely sparse (≤ 30 instances in the entire GEMEP
database), the twelve most frequent ones are used in a multi-
class classification task according to the emotional valence
(referred to as ‘categorization task’). Besides this multi-class
valence classification we also performed a binary ‘valence
task’ as well as an ‘arousal task’. For the later two tasks,
mappings are only defined for selected categories such as to
obtain a balanced distribution of positive / negative arousal
and valence among the categories. The resulting partitioning
is shown in Table 1. As meta data, speaker IDs, prompts, and
intended regulation are provided for the training and develop-
ment sets. For the two dimensions arousal and valence (binary
tasks) we provide results training on these binary targets and
mapping from the twelve categories after classification.

TABLE 1. Partitioning of the GEMEP database into train(ing),
dev(elopment), and test sets for 12-way classification by emotion
category, and binary classification by pos(itive)/neg(ative) arousal (A) and
valence (V). +: Mapped to ‘other’ and excluded from evaluation in
12-class task. ∗: Mapped to ‘undefined’ and excluded from evaluation in
binary tasks.

2) THE CHILD PATHOLOGICAL SPEECH DATABASE (CPSD)
The CPSD database [66] provides speech recorded in two
university departments of child and adolescent psychiatry,
located in Paris, France (Université Pierre et Marie Curie/
Pitié-Salpêtière Hospital and Université René Descartes/
Necker Hospital). The dataset used here contains 2.5 k
instances of speech recordings from 99 children aged
6 to 18 years. 35 of these children show Pervasive Develop-
ment Disorders either of the autistic spectrum (PDD, 10male,
2 female), specific language impairment such as dysphasia
(DYS, 10 male, 3 female) or PDD Non-Otherwise Specified
(NOS, 9 male, 1 female) according to the criteria of the
Diagnostic and Statistical Manual of Psychiatric Disorders,
Version 4 (DSM-IV). A monolingual healthy control group
consisted of 64 further children (TYP, 52 male, 12 female).
The French speech includes prompted sentence imitation
of 26 sentences representing different modalities (declarative,
exclamatory, interrogative, and imperative) and four types of
intonations (descending, falling, floating, and rising).

Two evaluation tasks have been performed here: a binary
‘typicality task’ (typically vs. atypically developing chil-
dren), and a four-way ‘diagnosis task’ (classifying into the
above named categories: PDD, DYS, NOS, TYP). Partition-
ing into training, development and test data is done by order
of speaker ID, stratified by age and gender of the children,
and speaker-independently. The class distribution is given
in Table 2.

TABLE 2. Partitioning of the child pathological speech database into
train(ing), dev(elopment), and test sets for four-way classification
by diagnosis, and binary classification by typical/atypical development.
Diagnosis classes: TYPically developing, pervasive developmental
disorders (PDD), pervasive developmental disorders non-otherwise
specified (NOS), and specific language impairment such as
DYSphasia.

B. PROCESSING OF VOCAL RECORDINGS
In this study we processed vocal recordings with standard
speech coders and with two different low pass filtering
techniques.

1) SPEECH CODERS
The speech coders tested cover a wide range of bit rates from
64 to 1.2 kbit/s, including:
• 64 kbit/s ITU G.711 mu-law PCM
• 40, 32, 24 kbit/s ITU G.726 ADPCM
• 16 kbit/s ITU G.728 LD-CELP
• 13 kbit/s ETSI GSM-FR RPE-LTP
• 6.3, 5.3 kbit/s ITU G.723.1 MPLPC, CELP
• 2.4 kbit/s DDVPC FS1015 LPC-10e
• 1.2 kbit/s open source codec2
The first two of these are traditional speech wave-

form coders: 64 kbit/s G.711 Pulse-coded Modula-
tion (PCM) and 40, 32, 24 kbit/s G.726 Adaptive Differential
PCM (ADPCM). These are toll-quality standards defined
by the International Telecommunications Union (ITU) and
widely deployed throughout the conventional telephone net-
work. The next three coders are based on Code Excited Linear
Prediction (CELP), a more sophisticated speech-specific
waveform coding technology providing near-toll quality at
medium bit rates. One of these are widely used in the cellular
telephony systems: 13 kbit/s GSM-FR. The G.728 finds
application in teleconferencing. The lower rates 6.3, 5.3 kbit/s
G.723.1 CELP coder is used in VoIP applications. The
2.5 kbit/s LPC-10 is used in secure communication, whereas
the lowest rate 1.2 kbit/s codec2 is an open source codec for
speech over HF/VHF digital radio. Table 3 shows the different
objective measures per speech coder. We can observe that
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FIGURE 1. Spectrograms of an excerpt from the CPSD database. Shown are: a) static low-pass filtering at different cut-off frequencies (from left to right:
1, 2, 3, 4, 5 kHz) and b) dynamic low-pass filtering at different upper formants (from left to right: F1, F2, F3, F4, F5).

TABLE 3. Objective measures averaged over the GEMEP and CPSD
datasets per each speech codec. Segmental signal to noise ratio (SSNR),
Itakura-Saito distance (IS), and perceptual evaluation of speech
quality (PESQ).

low bit-rate codecs show a strong decrease in Segmental
Signal to Noise Ration (SNR) and Perceptual Evaluation
of Speech Quality (PESQ) standardised as ITU-T P.862.
In particular LPC10 produce the highest distortion with an
Itakura-Saito (IS) distance of 29.08 and 26.55 for the GEMEP
and CPSD datasets respectively.

2) LOW-PASS FILTERING
To test the contribution of acoustic information in high fre-
quency bands for the recognition of human vocalizations
we applied low-pass filtering to the stimuli using the Praat
software [67]. We low-pass filtered the stimuli using a ‘static’
as well as as a ‘dynamic’ method of filtering. Both types
correspond to acoustic filtering as it occurs in natural and
social conditions. Degraded speech signals resulting from
static low-pass filtering usually occurs in daily environments,
when voices are heard through distance or through walls, for
example. The extraction of the dynamic pattern of certain for-
mants usually happens by the cognitive and neural decoding

of human speech in the brain of the listener as outlined in
the introduction. While the first method is speech-unspecific
since it simply supresses any signal above a certain cut-off
frequency, the second filtering method takes into account
the spectral and dynamical properties of the speech signal
in terms of formant patterns as they are relevant for human
speech and vocalization recognition.

a: STATIC LOW-PASS-FILTERING WITH
CUT-OFF FREQUENCIES
We used six different cut off frequencies, namely 500Hz,
1 kHz, 2 kHz, 3 kHz, 4 kHz, and 5 kHz. Low-pass filters
were constructed as Hann bandpass filters between 0Hz and
the different cut-off frequencies with a roll-off bandwidth
of 100Hz. Figure 1a shows the spectrograms of an excerpt
taken from the CPSD dataset at different cut-off frequencies
from 1-5kHz. These static cut-off frequencies were chosen
because of two reasons: first, they correspond to a specific
feature that is frequently reported in studies on human per-
ception of vocal emotions [68], and which is referred to as
alpha ratio [46] or as Hammerberg index [49]. This ratio
or index reflects the relative amount of spectral energy in
high versus low frequency bands, and the static cut-off fre-
quency for calculating this ratio is variably reported in the
literature [46], [49]. Second, the selection of the cut-off
frequencies used in the present study roughly follows the
spectral distribution of the mean formant frequencies across
several different expressions of vocal emotions [49].

b: DYNAMIC LOW-PASS FILTERING WITH
SPEECH FORMANT CONTOURS
For this formant filtering procedure we extracted the first one
to five formants (F1–F5) for each vocal stimulus. We created
stimuli for five different conditions. For the F1 condition we
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extracted the first formant (F1) for each stimulus using a tem-
poral analysis window of 25ms and a spectral pre-emphasis
of 50Hz to create a flatter spectrum. The original voice then
was filtered with the extracted temporal F1 pattern, resulting
in a stimulus with nearly zero energy in the spectral frequency
bands above the F1. For the F2 conditionwe extracted the first
two formants and applied the combined F1–F2 pattern to filter
to the original stimulus resulting in a stimulus with a spectral
profile including the F1 and the F2, but no spectral energy
above F2. This procedure was repeated for the F3 condition,
the F4 condition, and the F5 condition with adapted proce-
dures according to the number of formants. Figure 1b shows
the spectrograms of an excerpt taken from the CPSD dataset
filtered at different upper formant frequencies. For each con-
dition we set maximum frequencies for the formant detection
to 600Hz, 1600Hz, 2600Hz, 3600Hz, and 5500Hz, for the
F1 to F5 conditions, respectively. Table 4 gives the mean and
standard deviation of dynamically ranged values correspond-
ing to different upper formants from F1 to F5. The difference
in particular for F1 among the databases is owing to CPSD
consisting of children voices as opposed to the adult voices
contained in GEMEP. The formant filtering was applied only
to voiced segments (cf. Table 5) leading to a lower bitrate.

TABLE 4. Mean and standard deviation of dynamic filtering values
corresponding to different upper formants from F1 to F5. Values
for the GEMEP and the CPSD databases.

TABLE 5. Voiced and unvoiced time in seconds in the GEMEP and the
CPSD databases.

Table 6 shows the different objective measures per
low-pass filtering constellation. We can observe that low
bit-rate filtering show a strong decrease in SSNR and PESQ.
In particular DYNAMICF1 produce the lowest SSNR on
both datasets as expected. In general the dynamic filtering,
produced lower SSNR than static filtering given that it was
applied only to voiced segments. The same trend can be
observed for PESQ where lower values are shown in the case
of dynamic filtering. IS is in general very high given the high
spectral difference between the original signal and the filtered
ones.

TABLE 6. Objective measures averaged over the GEMEP and CPSD
datasets in the case of static and dynamic filtering. Segmental signal to
noise ratio (SSNR), Itakura-Saito distance (IS), and perceptual evaluation
of speech quality (PESQ).

TABLE 7. Applied functionals. 1: arithmetic mean of LLD / positive 1 LLD.
2: not applied to voice related LLD except F0. 3: only applied to F0.

C. ACOUSTIC FEATURES
We based our analysis on the ComParE acoustic feature
set [69], which is an improved version of the INTERSPEECH
2012 Speaker Trait Challenge baseline feature set [20].
The features are a brute-force set of 6 373 acoustic fea-
tures, where numerous functionals (such as but not lim-
ited to mean, standard deviation, regression coefficients;
cf. Table 7) are applied to a large set of commonly used
low-level descriptors (LLDs) and their delta coefficients as
indicated in Table 8. The set includes energy, spectral, cep-
stral (MFCC), voicing related low-level descriptors (LLDs)
as well as voice quality features (jitter and shimmer) includ-
ing logarithmic harmonic-to-noise ratio (HNR), spectral har-
monicity, psychoacoustic spectral sharpness.4 Note that the
LLDs do not contain formant-related features given the test-
ing conditions of different formant positions. The functionals

4Note that the LLDs do not contain formant-related features. This is
reasonable given the testing of cutting at different formant positions.
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TABLE 8. Low-level descriptors (LLD).

are applied over one utterance resulting in one 6 373 dimen-
sional feature vector for every utterance, regardless of its
length. The features are extracted with our open-source audio
and paralinguistics analysis toolkit openSMILE [70].

D. MACHINE-BASED TRAINING AND CLASSIFICATION
Thus, besides the analysis of the corruption outcome,
we analysed the potential of matched and multi-condition
training as opposed to miss-matched condition.

Based on the extraction of features as outlined in the
previous section, a system has to be designed to map these
features to the target variable of interest, such as affec-
tive vocalization (GEMEP database) or impaired vocaliza-
tion from clinical population (CPSD database). In order to
map our feature vector to the target domain, we choose
static classifiers given our frame-wise or supra-segmental
features. With static classification we refer to the process of
assigning a discrete class label to an unknown feature vector
of fixed dimensionality. For transparency and reproducibil-
ity, we used an open-source classifier implementation from
the WEKA data mining toolkit [72]. Linear kernel Support
Vector Machines (SVM) were used, which are known to be
robust against over-fitting and which were also used for the
baseline calculation in ComParE 2013 [69]. SVM are origi-
nally designed for binary classification, however, we used a
multi-class SVM [71] by combining several binary classifiers
trained in a ‘one-against-one’ fashion. As a training algo-
rithm, we used SequentialMinimal Optimisation (SMO). The
complexity parameter C was set to the values that achieved
best UAR on the development set as reported by Schuller
and colleagues [69]. For the GEMEP corpus C was set to
C = 0.01 for arousal, C = 0.1 for valence and C = 1.0
for category. For the CPSD corpus C was set to C = 0.01 for
typicality and C = 0.001 for diagnosis. The optimization of
the hyperparameters on the development set is a traditional
procedure to avoid overfitting.

Techniques from ASR for acoustic pre-processing and
signal enhancement or multi-condition training have typi-
cally been applied to boost performances in degraded acous-
tic conditions caused by additive noise [73], reverberation,

and also speech codec compression [11]. Thus, besides the
analysis of the sheer corruption outcome, we analysed the
potential of matched and multi-condition training as opposed
to miss-matched condition. Matched conditions learning is
used, which refers to training on data that is filtered at the
same cut-off frequency or upper formant as the test data.
Mismatched conditions training refers to training on the orig-
inal, clean data and testing on filtered data. It investigates the
performance of a generic model in varying filtering condi-
tions. A third alternative is multi-condition training, which
combines benefits from matched and mismatched conditions
training. Multiple copies of the data filtered at different
cut-off frequencies (or formants) are used during training.
Thus, a generic model is generated, which is expected to work
well in a variety of filtered conditions.

Here we evaluate for the first time the impact of speech
coders and low-pass filtering by a set of different cut-
off frequencies under mismatched, matched, and multi-
condition learning for speaker state (affective vocalizations)
and trait analysis (clinical populations). As primary evalu-
ation measure, we retain the choice of unweighted average
recall (UAR) as used in ComParE 2013 and broadly in the
field [74]. In the given case of two classes (‘X’ and ‘NX’), it is
calculated as (Recall(X)+Recall(NX))/2, i. e., the number
of instances per class is ignored by intention. The motiva-
tion to consider unweighted rather than weighted average
recall (‘conventional accuracy’) is that it is also meaning-
ful for highly unbalanced distributions of instances among
classes, as is given for CPSD. In the case of equal distri-
bution, UAR and ‘usual accuracy’ naturally resemble each
other.

To cope with imbalanced class distribution in the CPSD
set, up-sampling is applied on the training data. The under-
represented categories (PDD, NOS, DYS) in the four-way
diagnosis task are up-sampled by using a factor of five.
In the binary typicality task a factor of two is applied. No re-
sampling of the training set is done for the GEMEP set which
appears sufficiently equally distributed.

We only show the evaluation on the test set, thus we re-train
the models using the training and development set, applying
re-sampling as described above.

III. RESULTS
The results are summarised in Table 9 for the standard speech
coders, in Table 10 for the classification of affective vocal-
izations and in Table 11 for the classification of vocalizations
from the clinical population. In Table 10 and Table 11, we
show results for the static filtering (‘Cut-off’) and for the
dynamic formant filtering (‘Formants’) scenarios in the three
training methods (mismatched condition, matched condition,
and multi-condition training). In multi-condition training we
join the training sets of different formant (or static) filtering
conditions (e. g., clean, F1, F2, F3, F4, F5) and evaluate on
all the test sets. In the case of mismatched evaluations we
train on the unfiltered clean training sets and evaluate on
all test sets. Finally, in the case of matched condition we
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TABLE 9. Emotion in the GEMEP set and Autism in the CPSD set – Detailed results for clean (mi), matched condition (ma) and multi-condition (mu)
training with eleven codecs. Unweighted average recall (UAR) for the ‘arousal task’, the ‘valence task’, the ‘category task’, the ‘typicality task’, and the
‘diagnosis task’ on all coded conditions. For comparison: baseline results [69] (‘clean’). The asterisk ∗ indicates, which improvements w.r.t. the
mismatched system are significant (one-tailed t-test, p < 0.05).

TABLE 10. Emotion in the GEMEP set – Detailed results for clean (mi), matched condition (ma) and multi-condition (mu) training with five static cut-off
frequencies (in the 0.5–5 kHz range) and five different upper formants from F1 to F5. Unweighted average recall (UAR) for the ‘arousal task’, the ‘valence
task’ and the ‘category task’ on all low-pass filtered conditions. For comparison: baseline results [69] (‘clean’). The asterisk ∗ indicates, which
improvements w.r.t. the mismatched system are significant (one-tailed t-test, p < 0.05).

TABLE 11. Autism in the CPSD set – Detailed results for clean (mi), matched condition (ma) and multi-condition (mu) training with five static cut-off
frequencies (in the 0.5–4 kHz range) and five different upper formants from F1 to F5. Unweighted average recall (UAR) for the ‘typicality task’, and the
‘diagnosis task’ on all low-pass filtered conditions. For comparison: baseline results [69] (‘clean’). The asterisk ∗ indicates, which improvements
w.r.t. the mismatched system are significant (one-tailed t-test, p < 0.05).

train on a certain filtered training set (e. g., F2) and evaluate
on the related test partition (e. g., F2). The same applies
for the static filtering scenario. Note that, accordingly the
training set inmulti-condition training is 7 (for static filtering)
and 6 (for formant filtering) times the size of the original
(clean) training set. The results for clean testing are given
in the ’clean’ column. Note that ‘clean’ here represents non-
filtered speech – the term was chosen owing to its com-
mon usage when dealing with noisy or even reverberated
speech.

A. CLASSIFICATION ACCURACY OF
AFFECTIVE VOCALIZATIONS
1) SPEECH CODERS
The results in Table 9 (‘GEMEP’ column) show the general
performance trends for the Arousal, Valence, and Category
tasks over the three training methods in the eleven speech
coding scenarios.

We observed that with clean training (mismatched) there
was a drop in performances that became more evident for
lower bit-rate coders. With codec2 – showing the lowest
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FIGURE 2. Detailed results for clean (mismatched), matched condition and multi-condition training with five static
cut-off frequencies (left) and five different upper formants from F1 to F5 (right). Unweighted average recall (UAR) for the
(a) ‘arousal task’, (b) the ‘valence task’, and (c) the ‘category task’ on all low-pass filtered conditions (cf. also Table 10 for
details). For comparison: baseline results [69] (‘clean’).

bit-rate of 1.3 kbit/s – we obtained the lowest results for
all the three classification tasks (61.1%, 56.0%, and 25.4%
UAR for the arousal, the valence, and category task, respec-
tively), dropping considerably below the baseline reported
by Schuller and colleagues [69] and indicated in the ’clean’
column (75.0%, 61.6%, and 40.9% UAR for the arousal,
the valence, and the category task, respectively). Matched
andmulti-condition training performed notably better. In fact,
for codec2 with matched training we obtained the best result
(74.5% UAR) for the arousal. With multi-condition training
we achieved on average the best performances over all the

different test conditions. In particular, for the arousal and the
valence task we even outperformed the baseline results by
achieving respectively 75.1% and 65.8% UAR when testing
on G.72816 and G.72135.3 signals respectively. Note that, for
the valence task we also outperformed the baseline when
testing on ‘clean’, i. e., non-filtered, speech (62.3% UAR).

2) LOW-PASS FILTERING
The results in Table 10 and Figure 2 show the general per-
formance trends for the Arousal, Valence, and Category tasks
over the three training methods in the two filtering scenarios.
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a: STATIC LOW-PASS FILTERING WITH
CUT-OFF FREQUENCIES
By looking at the static filtering scenario (‘Cut-off’ columns),
we observed that with clean training (mismatched) there was
a drop in performances that became more evident for lower
cut-off frequencies. At 500Hz we obtained the lowest results
(in the static filtering scenario) for all the three classification
tasks (61.1%, 56.0%, and 16.7% UAR for the arousal, the
valence, and category task, respectively). Matched and multi-
condition training performed notably better. With matched
training we obtained the best results at 500Hz (74.2%,
61.6%, and 31.0% UAR for the arousal, the valence, and
the category task respectively). It is particularly interesting
to observe that for the valence task we reached the base-
line performance. This means that the 500Hz low-pass fil-
tered signals contained sufficient and relevant information for
the valence classification task. With multi-condition training
we achieved on average the best performances over all the
different test conditions. In particular, for the arousal and
the valence task we even outperformed the baseline results
by achieving respectively 75.8% and 62.3% UAR when
testing on 3 kHz low-pass filtered signals. For the compar-
ison between the binary valence task (positive vs. negative
valence) and the category task (12 emotional categories) we
found that the performance for the mismatched conditions
drops only for the lowest cut-off frequencies (0.5 and 1 kHz),
whereas performance already drops for the 2 kHz conditions
for the category task including multiple categories.

b: DYNAMIC LOW-PASS FILTERING WITH
SPEECH FORMANTS
For the dynamic filtering scenario (’Formants’ columns),
the performance trends were similar to the static filtering
scenario, but the drop of performance already happened with
higher levels of low-pass filtering. We again found that with
clean training (mismatched) the performances are strongly
dropping below the baseline in all of the five testing condi-
tions (47.9%, 53.5%, and 15.3% UAR for the arousal, the
valence, and the category task, respectively). Again, matched
andmulti-condition training performed notably better. For the
arousal task, matched training performed slightly better than
multi-condition by reaching the baseline (75.0%UAR) when
testing on the F1-filtered test partition. For the valence and the
category task, multi-condition training was evidently boost-
ing the performances across all the different test conditions.
It is interesting to note that one even outperforms the baseline
by reaching 64.6% UAR for the valence task when testing on
the F2-filtered condition.

B. CLASSIFICATION ACCURACY OF VOCALIZATIONS
FROM CLINICAL POPULATIONS
1) SPEECH CODERS
With respect to the machine-based classification of vocaliza-
tions from the clinical population, Table 9 (‘CPSD’ column)
show the general performance trends for the typicality and

diagnosis tasks over the three training methods in the eleven
speech coding scenarios.

With clean training (mismatched) there was a drop in
performances that became more evident for lower bit-rate
coders. In particular, with LPC10 we obtained the lowest
results for the two classification tasks (73.3%, and 40.1%
UAR for the typicality, and diagnosis task). The results are
significantly below the baseline reported in [69] and indi-
cated in the ‘clean’ column (90.7%, 67.1% UAR for the
typicality and the diagnosis task, respectively). This means
that codecs with very low PESQ and SSNR such as LPC10
are not containing sufficient information the typicality and
diagnosis tasks. Matched and multi-condition training per-
formed notably better. With matched training we obtained
the best results with LPC10 (86.1%, and 64.2% UAR for the
typicality, and the diagnosis task respectively). With matched
training we achieved on average the best performances over
all the different test conditions.

2) LOW-PASS FILTERING
Table 11 and Figure 3 show the general performance trends
for the typicality and diagnosis tasks considering the three
training methods in the two filtering scenarios.

a: STATIC LOW-PASS FILTERING WITH
CUT-OFF FREQUENCIES
In the static filtering scenario (‘Cut-off’ columns), we found
that clean training (mismatched) leads to lower performances.
The lower the cut-off frequency, the lower the performance
is. Similar as for the emotion tasks described above, at
500Hz we observed the lowest results for the two tasks
(72.7%, and 45.4% UAR for the typicality and the diag-
nosis task, respectively). The results are significantly below
the baseline. Applying matched and multi-condition training
increased the results mostly on the lower cut-off frequencies
scenarios. The two training strategies performed similarly
over the different testing condition. With a matched training
condition we obtained slightly better results on average. In
particular, for the typicality task UAR is achieved very close
to the baseline when testing at 2, 3 and 5 kHz cut-off frequen-
cies (90.2%, 90.6%, and 90.0% UAR, respectively). This
indicates that relevant information for this task is contained
in lower frequency bands. For the diagnosis task, we obtained
a maximum of 62.3% UAR when testing on 5 kHz-filtered
signals. In this case we were far from the baseline mean-
ing that relevant information is still present at ‘even higher’
frequencies.

b: DYNAMIC LOW-PASS FILTERING WITH
SPEECH FORMANTS
Concerning the dynamic filtering scenario (‘Formants’
columns), the performance trends are partially worse in com-
parison with the static filtering scenario. With clean training
(mismatched) the performances strongly dropped below the
baseline on all the five testing conditions (64.3% and 36.2%
UAR for the typicality and the diagnosis task, respectively).
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FIGURE 3. Detailed results for clean (mismatched), matched condition and multi-condition training with five static cut-off frequencies (left)
and five different upper formants from F1 to F5 (right). Unweighted average recall (UAR) for the (a) ‘typicality task’, and (b) the ‘diagnosis task’
on all low-pass filtered conditions (cf. also Table 11 for details). For comparison: baseline results [69] (‘clean’).

In this case the performances were even below the ones
obtained in the static filtering scenario. With matched and
multi-condition training again better results are obtained. For
the typicality task we measured performances close to the
baseline only when testing with a higher number of for-
mants (e. g., we obtain 88.1% UAR when testing on F5).
It is interesting to see that we outperformed the baseline
in multi-condition training when testing on clean signals
(91.1% UAR). For the diagnosis task, we obtained a maxi-
mum of 61.6% UAR when testing on F5-filtered conditions.

IV. DISCUSSION
Considering that practically no knowledge exists on the
effects of machine-based speech coding in narrow-band
transmission with regard to the recognition of paralinguistic
cues in human vocalizations, we evaluated the impact of
speech degradation applying several standard speech coders
and by low-pass filtering of the speech signal from different
sources (affective, clinical) by a set of different static and
dynamic cut-off frequencies. The aim was to test the per-
formance of a computer-based speech classifier on degraded

speech input by investigating the sensitivity of the classifier
to different acoustic information contained in the different
frequency bands. For a static condition of low-pass filter-
ing we used values in the 0.5–5 kHz range, whereas for
the condition of dynamic filtering we used different upper
speech formants from F1 to F5. We were mainly interested
in the influence of three major factors on the classification
performance of the classifier: (1) the type of paralinguistic
vocalizations (affective, clinical), (2) the low-pass filtering
method (static, dynamic), and (3) the training method of the
classifier (clean/mismatched, matched, multi-condition).

We thus first evaluated the impact of speech degradation
using low bit-rate speech coders ranging from 64 to 1.3 kbit/s
and we interestingly found that evenwith very low bit-rate the
arousal, the valence, and the typicality tasks showed a slight
performance degradation. However, more complex task such
as the category, and the diagnosis seemed to be more sensitive
to lower bit-rates.

We thus then first to gain more insight into the impact
of speech coding of different paralinguistic cues originat-
ing from different vocalizations. For the tasks concerning
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affective vocalizations, namely the arousal, the valence, and
the category task we found that relevant information is still
contained in the bandwidth-limited signals and that the per-
formance of the classifier generally stayed astonishingly
invariant (e. g., category task) or even increases (e. g., arousal
and valence task) at first in case of static filtering. In general
the machine-based classification accuracy was close to the
baseline condition for the different tasks even for a consid-
erable low-pass filtering with static cut-off frequencies when
using matched or multi-condition training. The performance
of the classifier only substantially dropped for extreme levels
of low-pass filtering with 0.5 kHz or in case of dynamic
filtering without matched or multi-condition training. This
drop of performance was evident for each task performed
on the affective vocalizations. However, there were also
some specific performance differences between the tasks. For
example, while a binary valence classification of vocaliza-
tions seems only to becomemore inaccurate with extreme low
levels of low-pass filtering, a more complex multi-categorical
decision already shows a drop in performancewith intermedi-
ate low-pass filtering, especially during themismatched train-
ing condition. Thus, the more alternatives for the categorical
decision exist, the more the accuracy drops with decreasing
levels of low frequency information.

Unlike the classification accuracy on affective vocaliza-
tions using cut-off filtering, we found a much more impaired
classification accuracy with dynamic formant filtering,
again especially during the mismatched training condition.
All levels of formant filtering revealed considerably
decreased classification accuracy. This is indicative that the
speech formants provide an important paralinguistic cue,
even in higher formant ranges. This drop in performance
was specifically evident for the binary arousal and the cat-
egorization tasks with multiple categories. Thus, the speech
formants seem to carry a lot of information about the arousal
level of affective vocalization and they seem to support the
discrimination of multiple emotional categories, but only
have small information for the distinction of negative and
positive emotions.

For the tasks related to the clinical populations, we found
that the classification performances remained more closer to
the state-of-the-art performance (typicality task) or slightly
deteriorate (diagnosis task) as compared to the tasks per-
formed on affective vocalizations. This drop of performance
was most evident again for the lowest cut-off frequency in the
static filtering condition and especially for the mismatched
training condition. Furthermore, the drop of performance
was again greater for the condition of multiple classification
categories (i. e., the typicality task). For the dynamic formant
filtering condition we also found a drop of performance
already with only filtering above F5, but this drop was less
pronounced as for the tasks performed on affective vocaliza-
tions.

Besides the performance of the classifier according to
the different speech databases and the different tasks per-
formed on each dataset, the third interest of this study was

to investigate the impact of different training procedures
of the classifier. We analysed the potential of matched and
multi-condition training as opposed to the miss-matched
condition. The results corroborates common evidence that
multi-condition and matched-condition training significantly
increase performances as opposed to mismatched condition.
This applies both to the classification of affective vocaliza-
tions as well as to the classification of vocalizations from
clinical populations.

Future work might deal with extending the multi-condition
learning approach to more diverse filtering types, as well as
an in-depth analysis on acoustic features under bandlimit.
Further, one can evaluate approaches as originally tailored
for ASR for the transfer to the domain of Computational
Paralinguistics. In particular, transfer learning and domain
adaptation techniques can be investigated.
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