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ABSTRACT Accurate depth estimation is still an important challenge after a decade, particularly from stereo
images. The accuracy comes from a good depth level and preserved structure. For this purpose, a depth post-
processing framework is proposed in this paper. The framework starts with the ‘‘Adaptive Random Walk
with Restart (2015)’’ algorithm. To refine the depth map generated by this method, we introduced a form of
median solver/filter based on the concept of the mutual structure, which refers to the structural information
in both images. This filter is further enhanced by a joint filter. Next, a transformation in image domain is
introduced to remove the artifacts that cause distortion in the image. The proposed post-processing method is
then compared with the top eight algorithms in the Middlebury benchmark. To explore how well this method
is able to compete with more widely known techniques, a comparison is performed with Google’s new depth
map estimation method. The experimental results demonstrate the accuracy and efficiency of the proposed
post-processing method.

INDEX TERMS Stereo matching, depth map, accuracy, edge preserving.

I. INTRODUCTION
A. STEREO DEPTH MAPS
In 3D computer graphics a depth map is an image or image
channel that contains information relating to the distance
to the surfaces of scene objects from a viewpoint [1]. The
depth information corresponds to luminance in proportion to
the distance from the camera. Near surfaces are depicted as
lighter while far surfaces are shown as darker. Estimating the
depth can be considered an important component of under-
standing geometric relations within a scene. In turn, such
relations help to provide a richer representation of objects and
their environment, often leading to improvements in existing
recognition tasks, as well as enabling further applications
such as robotics. In recent years, many new economical
facilities, including time-of-flight [2], [3], structured light [4],
and the Kinect were introduced for depth determination from
stereo images. Kinect captures pairs of synchronized depth-
color images for a scene within a range of several meters.
However, the depth map cannot be used directly in scene
reconstruction because it has some deficiencies such as gaps
due to occlusion, reflection and other optical factors.

In general stereo algorithms or stereo matching algorithms
are categorized into two groups based on the taxonomy

scheme of Scharstein and Szeliski [5]: i.e. local and global
algorithms.

In the local algorithms, the depth value at pixel P is depen-
dent on the intensity and color values of the window W in
which P is located. The initial matching cost is pixel-wise
which is often noisy with minimum information in parts of
the image with smoother texture. Therefore using the cost of
the neighboring regions will assign the best depth value to
pixel P.

On the other hand global methods consider the overall
structure of the scene and smoothen the image and then try
to solve the cost optimization problem.

B. STEREO MATCHING ALGORITHMS
In the last decade stereo matching has attracted a lot of
attention from researchers and many matching algorithms
have been developed. Some of the most well-known and
studied algorithms are LIBELAS [6], iSGM [7], DBP [8]
and CostFilter [9], LIBELAS [6] has been used since 2010
in different research studies. It is inspired from the obser-
vation that despite the fact that many stereo correspon-
dences are highly ambiguous, some of them can be robustly
matched.
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While the processing speed of the LIBELAS is quite fast,
the accuracy of the estimated depth map is poor.

iSGM [7] is an iterative scheme of Semi-global matching
(SGM) technique with refined concept of the cost integration
of semi-global matching. The gathered buffer is evaluated to
a prior disparity map after horizontal and vertical integration.

DBP [8] is a global matching algorithm based on energy-
minimization which as all other global methods contains
data and smoothness term. The main contribution in data
term in this algorithm is that, it is being approximated by a
color weighted correlation. Afterwards, the data term is being
refined in occluded regions by employing the hierarchical
loopy belief propagation algorithm.

CostFilter [9] is a framework for multiple applications
such as computing the disparity maps in real-time. It is the
technique which aims to be fast and edge-aware. It consists
of three steps: constructing a cost volume, fast cost volume
filtering and winner-take-all label selection. The estimated
depth by this method suffers from blocky artifacts along the
edges and corners, especially in the regions with illumination
transition. This causes a broken synthetic view along the
edges.

There are other methods which tried to obtain better accu-
racy of depth map based on the combination of Markov
Random Field (MRF) and sophisticated global optimization
techniques in different researches [10]–[13], but still obtain-
ing a good accuracy in depth estimation remains a chal-
lenge, especially in images with sophisticated or very simple
texture.

Another approach which has been considered to improve
the accuracy of the depth map by mostly preserving the edges
was using the Mutual Information (MI) and SIFT features.
A multisensor synthetic aperture radar (SAR) image registra-
tion method was proposed based on MI [14] and SIFT [15].
In this application, MI was used to estimate the registration
parameters which were being used later by conjugate feature
selection during the SIFT matching phase to decrease the
number of false matches. Following the same idea, a stereo
matching method was introduced in [16], based on the com-
bination ofMI, SIFT, plane-fitting and log-chromaticity color
space.

Generally finding a local matchingmethodwhich performs
well in terms of both speed and accuracy is not easy and
straightforward. But recently employing the random walk
with restart along with optimizing the matching cost proved
that it is possible to have fast matching with pretty accurate
estimation. ARWR is a local matching algorithm based on
random walk with restart method [17] which is used as the
fundamental algorithm in this paper.

At this point it is timely to introduce the field of applica-
tion, which establishes requirements for a high performance
stereo disparity map. This work derives from research on
automotive street-scene analysis where it is important to
determine small objects in order to evaluate risks in the path
of a vehicle – e.g. distant pedestrians, animals, vehicles.
As most automotive imaging systems employ relatively small

sensors (2-4 MP) compared to consumer devices it is impor-
tant to be able to run disparity mapping algorithms at full
native sensor resolution – in our case 2864 ∗ 1924 pixels.

All current methods, as outlined above, suffer from non-
accurate depth around edges and corners, depth discontinuity
especially in texture-less areas, depth conflict around the area
with similar colors and missing depth in one depth level.
By solving these challenges a depth map can present correct
and accurate depth information while respecting the structure
of the reference image.

C. FEATURES OF THE PROPOSED METHOD
In this paper is presented a method to refine the depth
map generated by the Adaptive Random Walk with Restart
(ARWR) algorithm in order to obtain significant improve-
ments in accuracy. The main features of the proposed method
are:

1- A guided joint filter based on the mutual information
was designed by diffusing the image domain.

2- Weights are allocated dynamically to the windows as
part of the joint filter. The weights are being regen-
erated every time the window is moving to the other
patch of pixels. The pixels count in different bins of a
histogram instead of storing the weights directly.

3- The important point about the proposed filter is that it is
rotation invariant because of the joint mutual informa-
tion. Also the filter can be applied repeatedly to remove
more noise but the edges and corners will be preserved
because of the mutual joint feature.

4- When using this filter, the algorithm works better on
high resolution images in comparison with low resolu-
tion.

5- This filter can be used for upsampling/downsampling
purposes.

6- This method has the advantage of filling the depth map
in regions with missing depth values.

The rest of this paper is organized as follows:
In the next section the chosen method, ARWR is presented

in detail. Section 3 provides the details of the proposed post-
processing filter. The results of the evaluation as well as
experimental results are presented in section 4, while con-
clusions are drawn in section 5. There are also 2 appendices
linked to this paper presenting extended numerical and visual
results.

II. INTRODUCTION TO ADAPTIVE RANDOM
WALK WITH RESTART
In this section we describe the fundamental and tech-
nical details of the chosen stereo matching method,
ARWR.

ARWR has an acceptable and comparable performance
in terms of estimation and speed against other algorithm,
but it is still far from the top stereo matching algorithm on
Middlebury benchmark in terms of accuracy.

This algorithm has several important advantages which
make it a suitable method for a variety of applications. It is
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FIGURE 1. Overview of the adaptive random walk with restart.

not affected by illumination variation because of gradient and
census transform, the processing time is quite fast in compar-
ison with recently studied methods, has good performance in
both outside and inside environment and gives us the option
to have a estimation of the depth in low texture scenes.

One important advantage of this algorithm which con-
vinced us to employ it as a part of our approach, is the good
performance on high resolution images. A traditional way
to speed up stereo computation is to use image pyramids or
downsized images which also reduce the disparity range. This
down-sampling in disparity computation will cause some
small objects to be missed. The full disparity resolution for
large distance is vital for long range object detection. The
point about the chosen algorithm is that the image doesn’t
need to be down-sampled to speed up the method.

The comparison of this method with several others meth-
ods done in this paper showed that it has acceptable depth
estimation in high resolution images, 2864 ∗ 1924 pixels.
Acceptable depth estimation refers to the fact that the

algorithm doesn’t have the problem of estimating different
layers of depth in one object. It respects the depth layers
without conflict. This feature along with the fast process-
ing time makes this algorithm suitable for high resolution
real-time applications. Also it gives us the ability of mak-
ing a more accurate filter, which is described later in the
paper.

A. ALGORITHM DESIGN
The initial matching cost in ARWR is pixel-wise calculated
by employing census transform and gradient imagematching.
Census-based matching technique or census transform was
initially introduced by Zabi in 1994 [18]. It is a form of
non-parametric local transform to map the intensity values
of the pixels within a square window to a bit string, thereby
capturing the image structure. In other words, it computes for
every pixel a binary string (census signature) by comparing
its grey value with the grey values in its neighborhood.

The census transform is robust to radiometric variations
but the noise in the local image structure is being encoded
based on the intensity of the pixels. The encoded noise brings
some matching doubts especially in the area with repetitive
or similar texture patterns.

To overcome this problem gradient image matching is
employed as part of the local matching block in ARWR.
At this stage gradient images are computed using 5 × 5
Sobel filters. The whole process of the ARWR is shown
in Fig. 1.

The green block in Fig. 1 shows the local matching block
including the transformation and matching parts.

The usual similarity criteria in stereo matching are
only strictly valid for surfaces with Lambertian (diffuse)
reflectance characteristics. Specular reflections are viewpoint
dependent and may cause large intensity difference at corre-
sponding image points. In the presence of specular reflection,
traditional stereo methods are often unable to establish any
correspondence, or the calculated disparity values tend to be
inaccurate.

In this case using the gradient image matching makes
the local matching method more robust on non-Lambertian
surfaces.

The noise variation in the local pixel-wise matching meth-
ods can be vital in term of the performance. That is why SLIC
(Simple Linear Iterative Clustering) algorithm is employed in
ARWR, the blue block in Fig. 1. SLIC is one of the common
super-pixeling methods [19].

The local measurements in the matching block are more
robust to noise variation when the super-pixels are considered
as the smallest parts of the image to be matched to the target
image. Super-pixeling is considered as an alternative to pixels
in pixel-wise matching which leads to a reduction in memory
requirements in the whole algorithm.

At the last step of the ARWR which is shown as pink
block in Fig. 1, the calculated matching cost is updated using
the RWR algorithm to determine the optimum disparity with
respect to occluded and discontinuity regions. The standard
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FIGURE 2. Broken edges and corners in the computed depth map by ARWR.

FIGURE 3. Missing patches in the computed depth map by ARWR.

cost update algorithm in RWR is modified in ARWR where
the matching cost is updated adaptively by considering the
position of the super-pixels in the regions of occlusion or
depth discontinuity.

To recover the smoothness failure at occlusion or depth
discontinuity regions in ARWR, a visibility constraint is
formulated within the RWR algorithm which requires an
occluded pixel to have no match on the target image, and a
non-occluded pixel to have at least one match.

B. ALGORITHM TRADE OFF
There are some issues with the generated depth map based on
ARWR which need to be solved to obtain a clearer and more
accurate depth map.

The depth map produced by the ARWR is suffering from
speckle noise and inaccurate object edges especially for
objects with a detailed geometry. Basically the generated map
is not preserving the edges and corners. At some parts of the
computed depth map the edges are broken or they are faded
into other objects which makes it unsuitable for segmentation
purposes and classification. Fig. 2 shows examples of the
broken edges and corners in the computed depth and the
corresponding patches in the ground truth.

The other issue is the missing parts in the generated map.
We demonstrate that each patch of pixels in a depth map can
provide us valuable information like the scaling factor and
distance to the objects. Fig. 3 represents some samples of the
missing parts in the depth map and the corresponding patches
in the ground truth.

The samples show that some parts of the depth map were
not estimated by ARWR and it brings a false depth level
which is not suitable for 3D reconstruction applications.

These issues are generally some of the most challenging
problems in the current depth computation and enhancement
methods. Having a map which is preserving the right edges
and corners while all pixel patches are contributing in the
depth level allows us to reconstruct an accurate 3D scene from
the camera view point. It also provides an accurate funda-
mental platform for variety of applications such as classifi-
cation, segmentation, distance estimation, obstacle detection
and autonomous navigation.

In the next section of this paper our approach is presented
and shown to provide a suitable solution to the issues men-
tioned above.

III. PROPOSED POST-PROCESSING FILTER
To solve the issues mentioned in the previous section, mutual
information of the reference image and the depth map is used
as the input of the joint weighted median filter. By employing
the mutual joint filter the problem of the regions of occlusion
or depth discontinuity in the initial depth map is solved.
To resolve the blocky artifacts from object edges, the depth
map is transferred to another domain by convolving it.

The whole process of the ARWR + proposed post-
processing method is as follows:

1- Extract the initial depth by using the ARWR algorithm.
2- A. Apply mutual joint weighted median filter to fill the

regions of occlusion or depth discontinuity in the initial
depth map

5512 VOLUME 4, 2016



H. Javidnia, P. Corcoran: Depth Map Post-Processing Approach

B. Overwrite the structure of the RGB image on the
depth map.

3- Transfer the depth map to a signal and perform nor-
malized interpolated convolution on the domain of the
signal to obtain an accurate, edges preserved depth
map.

Fig. 4 presents the general overview of the whole process
and Fig. 5 shows the detailed view of the ARWR+ proposed
post-processing method.

FIGURE 4. Overview of the proposed post-processing method.

A. MUTUAL-STRUCTURE
Mutual information has developed into an accurate mea-
sure for rigid and affine mono- and multimodality image
registration or for two images, it is a combination of the
entropy values of the images, both separately and jointly [20].
By measuring the structure similarity of two images, we can
let the mutual-structure to guide the joint filtering process.
Let’s denote D and I as the initial depth map and the refer-
ence RGB image respectively. Also Dp and Ip are the pixel
intensities in initial depth map and the reference RGB image
respectively. To compute the structure similarity between two
images, we consider a variety of patches in the images. One
common and well-studied method to measure the structure
similarity is to use normalized cross covariance (1). If we
consider the images as two time series signals, then we can
delayD byW samples and then calculate the cross-covariance
between the pair of signals,

CC (W ) =
1

M − 1

M∑
k=1

(Dk−W − µD)(Ik−µI ), (1)

Where µD and µI are the means of each time series
and there are M samples in each. CC (W ) is the cross-
covariance function. Normalized cross-covariance is called
cross-correlation,

N (W ) =
CC (W )√
σ (Dp)σ (Ip)

, (2)

N
(
Dp, Ip

)
=

cov(Dp, Ip)√
σ (Dp)σ (Ip)

, (3)

Where cov(Dp, Ip) is the covariance of patch intensity.
σ
(
Dp
)
and σ (Ip) denote the variances of pixel intensities

in the initial depth map and RGB image respectively. The
maximum value of N

(
Dp, Ip

)
is 1 when two patches are

with the same edges, otherwise
∣∣N (Dp, Ip)∣∣ < 1. Nonlin-

ear computation makes it hard to use the normalized cross-
correlation directly in the process. To solve this problem,
making a connection between normalized cross-correlation

and least-square regression would be helpful. If we consider
H (p) as a patch centered at pixel p, then the least-squared
regression function would be:

f
(
D, I , α1p, α

0
p

)
=

∑
q∈N (p)

(α1pDq + α
0
p − Iq)

2
, (4)

Where α1p and α0p are the regression coefficients. This
function linearly represent one patch inD corresponding with
the one in I . Minimum error with the optimal α1p and α

0
p can

be defined as:

e(Dp, Ip)2 =
min
α1p, α

0
p

1
|H |

f
(
D, I , α1p, α

0
p

)
, (5)

By considering the (1) and (5), we can say the mean square
error is:

e
(
Dp, Ip

)
= σ

(
Ip
) (

1− N
(
Dp, Ip

)2)
, (6)

The relation between the mean square error and normal-
ized cross-correlation is previously proved in [19]. When∣∣N (Dp, Ip)∣∣ = 1, it means that two patches only contain
mutual structure and e

(
Dp, Ip

)
= 0. So:

e(Ip,Dp)2 =
min
b1p, b0p

1
|H |

f
(
I ,D, b1p, b

0
p

)
, (7)

Therefore e
(
Ip,Dp

)
= 0 when

∣∣N (Dp, Ip)∣∣ = 1. Accord-
ing to the above analysis, the structure similarity can be
defined as:

Ss (D, I , α, b) =
∑
p

(f
(
D, I , α1p, α

0
p

)
+ f (I ,D,b1p, b

0
p)),

(8)

where α and b are the coefficient sets of
{
α1p, α

0
p

}
and b1p, b

0
p

respectively.
Algorithm 1 computes the mutual information of D and I .

Algorithm 1 Mutual Information
Input: Image D and I
Output: Mutual Information of D and I

1 Initialize W ,M to 0;
2 Initialize α = β(αp);
3 Initialize b = β(bp);
4 µD← mean(D);
5 µI ← mean(I );
6 σW = M

/∑
(DM−W − µD) (IM − µI );

7 foreach H in D do
8

∑
(αpDN (p) + αp − IN (p))2;

9 end
10 return S (D, I , α, b);

B. JOINT WEIGHTED MEDIAN FILTER
Median filter [21] is a nonlinear operation which runs through
an image I and replaces each pixel value V by the median
value of neighboring pixels within a (2j+ 1)2 window Wp:

Imedian (p) = median
{
V : pi ∈ Wp

}
, (9)
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FIGURE 5. Overview of the ARWR + Proposed post-processing method.

Median filter processes all the neighbors equally and may
lead to some artifacts like changing the shape of the sharp
corners and make them circular or removing thin structures.
Weighted median filter [22] was introduced to solve this
issue. Considering ω(p, p

′

) the weight on image I , then:

h(p, i) =
∑
p′∈Wp

ω(p, p
′

)δ(V (p
′

)− i), (10)

where Wp is a local windows near p, i is the discrete bin
index and δ (.) is the Kronecker delta function which is 1
when the argument is 0, otherwise it is 0. h (p, .) is the local
histogram with the weighted pixel in it. By accumulating
h (p, i) the weighted median value is obtained.
Joint median filter on a depth map D with a group S of

segments as masks is defined as:

DJmedian (p) = median
{
D(pi) : pi ∈ Wp ∩ Sp

}
, (11)

where Sp ∈ S is the segment containing pixel p. So the new
local histogram for depth map would be:

hD (p, i) =
∑

p′∈Wp∩Sp

δ(D(p
′

)− i), (12)

Based on the (10) and (12), the local histogram of the joint
weighted median filter on the depth map D would be:

hDf (p, i) =
∑

p′∈Wp∩Sp

ω(p, p
′

)δ(D(p
′

)− i), (13)

Using the mutual structure and joint weighted median filter
gives us the capability to transfer the structural information of
the reference image to the depth map, instead of transferring
the whole pattern. And in addition it contributes greatly to a
preservation of the edges in the depth map.

C. NORMALIZED INTERPOLATED CONVOLUTION
Joint weighted median filter based on the mutual structure
provides an edge preserved and smooth depth image, but still
the depth map is suffering from blocky artifact, especially on
the edges. To decrease the blocky effects on the depth map,
converting the image to another domain would be helpful.
Let’s consider a signal:

f (t) = [x1; 0; 0; x4; x5; 0; x7; 0], (14)

where xi are known samples of signals and the missing
samples are replaced by 0.

A simple smoothing filter is:

g (t) =
[
1
3
;
1
3
;
1
3

]
, (15)

Filling the missing part of the f (t) by applying the g(t) will
provide:

f (t)× g(t)

=

[
x1
3
;
x1
3
;
x4
3
;
x4 + x5

3
;
x4 + x5

3
;
x5 + x7

3
;
x7
3
;
x7 + x1

3

]
,

(16)

At this level using the Normalized Convolution appends a
component to each signal which expresses the confidence of a
signal. This component is equal to 0 for each missed sample.
If we consider the map of the component on signal f (t) as
g(t), then:

c (t) = [1; 0; 0; 1; 1; 0; 1; 0] , (17)

By considering the convolution of c(t), it is possible to
approximate the original signal with the filled gaps. So:

f (t)O =
f (t)× g(t)
c(t)× g(t)

, (18)
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where the f (t)O is the original signal without
gaps.

This scenario previously has been studied to filter the non-
uniform sampled signals [23]. If Tω(ct (x)) is a uniformly
sampled signal in9w, then for a uniform discretizationU (9)
of the original domain 9, normalized convolution generates
the smoothed value of a sample q ∈ U (9) as:

Fi (q) =
(
1
Jq

) ∑
l∈U (9)

T (l)R
(
t
(
q̂
)
, t
(
l̂
))
, (19)

Where Jq =
∑

l∈U (9)
R(t

(
q̂
)
, t(l̂)) is a normalized factor

for q and R is an arbitrary kernel. Generally interpolated
surfaces in an image are smoother than the corresponding
ones generated by normalized convolution. To obtain this,
Fi(q) can be filtered by continuous convolution as below:

CCF (q) =
∫
U9

Fi (x)R
(
t
(
q̂
)
, x
)
dx, (20)

FIGURE 6. Missing samples recovery. (a) Samples of a signal with missing
parts. (b) Recovered samples in domain 9.

Where R is a normalized kernel. Fig. 6.b shows how the
missing samples of signal T are recovered in domain 9.
Applying the same process on a depth map generates

a smooth and artifact free map by transferring it into the
domain 9.

IV. EVALUATION
A. MIDDLEBURY BENCHMARK
The Middlebury benchmark has been widely used over the
last decade to evaluate the performance of stereo matching
algorithms [24]. The ARWR was applied with and with-
out the proposed post processing on 15 standard images
from the Middlebury ‘dense’ training dataset. Based on the
average weight on metric ‘bad 2.0’, the first 8 algorithms
from Middlebury were chosen for comparison, including

GCSVR [25], INTS [26], MCCNN_Layout [25], MC-
CNN+FBS [25], MC-CNN-acrt [27], MC-CNN-fst [27],
MeshStereo [28], SOU4P-net [25] and the original ARWR
without post-processing. As evaluation metrics we consider
the ones presented in Table 1.

TABLE 1. Metrics used in this paper to evaluate the algorithms.

All the evaluation process in this paper is based on the high
quality version of the images and all experiments were done
under the same conditions.

All the images were normalized before evaluation and
maximum disparity setup was defined for all algorithms. The
average value of the 15 images in each metric was considered
as the representing value of the corresponding algorithm.
Table 2 shows the average value of metric/algorithm. To find
the extended tables for each metric/image (color coded to
better present relative performance of each algorithm for each
evaluation metric) please refer to Appendix 1.

The best algorithm’s value in each metric is emboldened.
Based on the MSE, PSNR, SNR, SSIM and DSSIM metrics
the proposed post-processing method has the best perfor-
mance. Table 3 represents the ranking within the 10 tested
algorithms of the ARWR without post-processing and with
post processing applied for each of the evaluated metrics.

Fig.7 presents the results of the proposed post-processing
method on three Middlebury database images.

The initial depth map is computed by ARWR. Beside the
parametric evaluation, the visual comparison of the generated
results and the ground truth clarify the fact that the proposed
post-processing method can preserve edges and the structure.
For more results of the post-processed ARWR and visual
comparison with other methods please refer to Appendix 2.

While the performance of the proposed post-processing
method in term of accuracy is good, the processing time is
a trade-off. Fig.8 shows the processing time required by each
step of the proposed post-processing method on an image
with 962×1414 pixels resolution ran on Matlab R2013a.
The initial disparity is estimated with a maximum disparity
of 256.
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TABLE 2. Average values of metric/algorithm.

FIGURE 7. The result of the sample images from Middlebury database.
Each set of figures denotes the left image, the ground truth and the
proposed postprocessed depth map.

Table 4 represents the average performing time of the all
algorithms applied on the same high resolution image set as
per Middlebury.

The processing time of the studied method is poor, but
can be readily improved as much of this work was not opti-
mized for fast computation. The improvement of algorithm
efficiency and computational speed is currently the subject

TABLE 3. Ranking of ARWR without and with post-processing out
of 10 algorithms.

TABLE 4. The processing time of the studied algorithms on same high
resolution image set.

FIGURE 8. Processing time required by each step of the algorithm.

of a follow-on research project to optimize for an embedded
DSP or GPU implementation.

B. COMPARISON WITH GOOGLE’S DEPTH
ESTIMATION TECHNIQUE
In the second part of the evaluation we referred to the recent
technology which is used by the Google Camera ‘‘Lens Blur’’
feature in Android OS. The basic idea in this technology is to
match the stereo images in the bilateral space by avoiding
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FIGURE 9. The result of the images from Google’s method [29]. Each set of figures denotes the left image, Google’s result and the proposed
post-processed depth map.

per-pixel inference using leveraging techniques for fast bilat-
eral filter [29]. This idea is presented in the other form to
compute the depth from focus in the handheld devices by
using focal stack.

A global approach is employed to generate the depth map
by minimizing a cost function related to the pixel disparities.
The data matching cost in their method is based on the
Birchfield-Tomasi technique [30].

To satisfy the smoothness term of the cost function, the
bilateral filter is used which causes a smoother image while
the edges are preserved. For each pixel i of an image, one
would typically consider a square (kernel) centered at i and
perform a convolution.

Minimizing the cost function is extremely slow for higher
resolution pictures. This problem is solved by splatting the
value of each pixel into a higher dimensional bilateral space.
The general idea is to; instead of applying the bilateral filter
in pixel space, splat the pixels according to their location and
color into a five-dimensional bilateral grid. Then blur the grid
using a short range isotropic blur filter, and slice the grid in
order to recover the filtered image.

According to the authors of [29], the most instinctive way
to evaluate the performance of a stereo algorithm for defocus
is to visually inspect the renderings produced using that
algorithm. The kind of error that they cared about was related
to failing to follow image edges at occlusion boundaries
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TABLE 5. Structural similarity and dissimilarity of Google’s method and
post-processed ARWR.

where errors in disparity can cause rendering errors. The
Middlebury error metrics are not considering this type of
error. Middlebury error metrics are pixel-wise and Google’s
method has a poor performance on this benchmark, because
their algorithm over- or under-estimate the disparity of flat
texture-less regions, has disparity confusion in close shots
with different level of brightness, has disparity confusion at
the regions with specific pattern and sharp opposite colors.

Unfortunately there is no ground truth and benchmark
based on this method. We only had access to a number of
images and generated disparities which are published in [29].

To find out the structural similarity of the Google’s result
and the proposed post-processing method, we employed
SSIM and DSSIM metrics. For two identical images the
values of SSIM and DSSIM are 1 and 0 respectively. Table 5
shows how close are our results to Google’s for each image
and with the same disparity level setup. The visual com-
parison of the Google’s technique and the post-processed
ARWR is shown in Fig. 9. The visual comparison shows
different patches of the estimated disparity by Google’s and
our method. This visual and numerical comparison show
how close the proposed method is to Google’s in terms of
preserving the structure of the estimated disparity, edges and
corners.

V. CONCLUSION
In this paper we proposed and evaluated a post-processing
technique to increase the accuracy of the depthmap computed
by Adaptive RandomWalk with Restart method. We demon-
strated that keeping the sharp edges and corners along with
main structure of the reference image in the depth map is
an important factor to increase the accuracy. The proposed
method uses the combination of the mutual structure of the
RGB image to keep the structure and joint weighted filter
to make the depth planes smooth and fill the regions of
discontinuity. Transferring the depth map to another domain
gave us the option to implement normalized interpolated
convolution to remove the blocky artifacts of around the
edges and corners. The comparison with the top 8 methods
of the Middlebury benchmark and the ARWR without post-
processing proved the performance quality of the proposed
method. The value of the average structural similarity index
which is about 0.9935 with Google’s stereo matching method
is another confirmation on the performance of the discussed
method.

With respect to the performance of the studied method
in this paper, there are still a number of open challenges
such as reducing the processing time, while maintaining the
same accuracy in real-time applications with low processing
power. This challenge motivates our future research activ-
ity. In follow-on work it is planned to filter each image
in 8-16 dimensional bilateral space instead of employing a
normalized interpolation. Preliminary experiments indicate
this could improve the speed of the enhanced ARWR by
as much as an order of magnitude. This refinement would
make the post-processed ARWR algorithm competitive in
terms of computation time with the top 2-3 algorithms form
Middlebury.
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