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ABSTRACT Mobile edge computing (MEC) is a promising paradigm to provide cloud-computing
capabilities in close proximity to mobile devices in fifth-generation (5G) networks. In this paper, we study
energy-efficient computation offloading (EECO) mechanisms for MEC in 5G heterogeneous networks.
We formulate an optimization problem to minimize the energy consumption of the offloading system, where
the energy cost of both task computing and file transmission are taken into consideration. Incorporating
the multi-access characteristics of the 5G heterogeneous network, we then design an EECO scheme, which
jointly optimizes offloading and radio resource allocation to obtain the minimal energy consumption under
the latency constraints. Numerical results demonstrate energy efficiency improvement of our proposed
EECO scheme.

INDEX TERMS Energy-efficiency, offloading, mobile edge computing, 5G.

I. INTRODUCTION
As smart mobile devices have seen advanced technology
and design, they facilitate us with a pervasive and powerful
platform to realize many novel mobile applications [1], [2].
Mobile applications, such as the interactive gaming, vir-
tual reality and natural language processing, typically
require intensive computation and result in high energy
consumption [3]–[5]. However smart mobile devices have
limited computation capabilities and battery power. This con-
flict between the resource hungry applications and the limited
capability of the smart mobile devices brings in unprece-
dented challenges to implement the novel mobile applications
in an energy efficient manner.

A new architecture and technology known asMobile Cloud
Computing (MCC) has the potential to address the aforemen-
tioned challenges. By migrating computational tasks from
the mobile devices to the infrastructure-based cloud servers,
MCC can improve the performance of mobile applications
and reduce the energy consumption of mobile devices [6].
However, the infrastructure-based cloud servers are always
located centrally in the core network and far away from
the mobile devices. The long transmission from the mobile

devices to the cloud servers may cause delay fluctuation and
invoke extra transmission energy cost [7]. Thus, the compu-
tation offloading efficiency can severely degrade.

Mobile Edge Computing (MEC) is envisioned as a promis-
ing approach to improve the offloading efficiency. In the
MEC framework, cloud computing capabilities are provided
within the radio access network in close proximity to these
mobile devices [8]. In other words, with the aid of MEC,
mobile devices are enabled to offload their tasks to the
MEC servers on the edge of the network, rather than utilizing
the servers in the core network. This MEC paradigm can
provide low latency, high bandwidth and computing agility
in the computation offloading process.

With the ever-growing energy consumption for infor-
mation and communication technology, the communication
devices and infrastructure play an important role in global
greenhouse gas emissions [9]. Therefore, the development of
green 5G networks has become an important topic for the
design and implementation of future wireless communica-
tions [10]. As MEC is a key component of 5G networks, the
energy efficiency has become a mainstream concern for the
design of the MEC mechanism.
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In this paper, we focus on the design of an energy-efficient
computation offloading mechanism for MEC in 5G hetero-
geneous networks. With the MEC computation offloading,
the energy consumption for accomplishing the computation
tasks includes two parts. The first part is the energy spent on
transmitting the computation files to the MEC servers. Due
to the variable wireless channel states and the different sizes
of the computation files, the energy consumption for trans-
mission may vary among the mobile devices. Furthermore, in
the case where the mobile devices share the radio resources
with each other, they may cause severe interference to each
others [11]–[13]. The interference will decrease the transmis-
sion rates for the files, and hence reduce the energy efficiency
of the MEC offloading. As a result, an efficient transmission
control scheme is needed in the MEC offloading. The second
part is the energy spent on the computing. This amount
mainly depends on the computation capabilities of the mobile
devices and the MEC servers.

Each mobile device can decide whether to offload its task
to the MEC servers for remote computing or to accomplish
the task locally on its own device. This decision is made
by comparing the energy costs. However, due to the lim-
ited communication resources, the interactivity between these
mobile devices in the transmission process may affect the
transmission energy cost of each device. This effect makes
the MEC offloading couple with the wireless resource allo-
cation. Furthermore, considering different QoS constraints
required for the computation tasks and the variable com-
putation capabilities of these devices, archiving an energy-
efficient offloading by coordinating wireless transmission
and task implementation among the mobile devices and the
MEC servers is a challenging task.

In this paper, we design an energy-efficient MEC offload-
ing mechanism for mobile devices in 5G heterogeneous
networks. This mechanismminimizes the system energy con-
sumption and concurrently ensures the latency constraints of
the computation tasks. The main contributions of this paper
are as follows:
• We present a multi-device computation offloading
framework for mobile edge cloud computing in
5G heterogeneous networks.

• To cope with the multi-access characteristics of 5G het-
erogeneous networks, we formulate an energy-efficient
optimization problem that minimizes the system energy
consumption while satisfying the latency constraints.

• In order to overcome the complexity of solving the
optimization problem, we design a three-stage energy-
efficient computation offloading scheme. In this scheme,
through type classification and priority assignment for
the mobile devices, the optimization problem can be
solved in polynomial complexity.

The rest of the paper is organized as follows. In
Section II, we review related work. In Section III, we present
the framework of multi-device MEC offloading in a 5G
heterogeneous network. The energy-efficient optimization
problem is formulated in Section IV. The energy-efficient

MEC computation offloading schemes are described in
Section V. Performance evaluation is presented in Section VI.
Finally, we conclude our work in Section VII.

II. RELATED WORK
The development of cloud computing and virtualization tech-
niques provides an efficient way to decouple the application
environment from the underlying hardware resources, and
thus greatly improves the utilization of available computing
resources [14]–[18]. MCC, which has evolved from cloud
computing, is designed to address the computation require-
ments of new smart mobile phone based applications [19].

In recent years, several studies have addressed the mobile
computation offloading in the MCC scenario. In [20], the
authors formulated the computation offloading decision of
mobile users as a decentralized game, and proposed a
game theoretic approach to achieve the efficient computation
offloading. Considering the local loads of mobile users and
the availabilities of cloudlets, the authors in [21] proposed a
Markov decision process based dynamic offloading scheme
for mobile users in an intermittently connected cloudlet sys-
tem. In [22], the authors studied the multi-user computation
partitioning problem in a large scale mobile cloud applica-
tion scenario, and designed an offline heuristic algorithm to
minimize the average completion time for all users. In order
to form an elastic mobile computing grid, the authors in [23]
proposed a resource provisioning framework for organizing
the heterogeneous devices in the vicinity. In [24], the authors
investigated the impacts of the geographical distribution of
cloud resources on the cloud-based mobile augmentation
performance.

The cloud servers of a MCC are located in the core net-
work, which leads to high energy consumption by the mobile
devices for computation file transmission. Furthermore, the
latency caused by the transmission through wide area net-
works may seriously hamper the interactivity of the real-time
mobile applications. MEC is widely considered as a promis-
ing technique to tackle these challenges. In MEC, services
are hosted on the devices directly attached to radio access
network [25]. The proximity of theMEC servers results in the
access to cloud functionalities with low transmission energy
and latency.

There are a few studies on efficient computation offloading
mechanism of MEC. For instance, in [26], the authors inves-
tigated the tradeoff between offloading computation tasks
to infrastructure clouds and retaining them in mobile edge
clouds. In [27], the authors studied the dynamic service
migration problem in mobile edge clouds, and proposed a
Markov decision process based sequential offloading deci-
sion framework. The authors in [28] proposed a low complex-
ity small cell cluster formation and load balancing scheme
for the edge cloud in dense deployment 5G network. The
authors in [14] formulated the task offloading problem as
a joint optimization of the radio resources together with
the computational resources, and proposed an iterative algo-
rithm to solve the problem. In [29], the authors presented an
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analytical model forMEC cloud, and studied the performance
of MEC with the presence of user mobility. The authors
in [30] made a case study of the formation of a realtime con-
text aware ad-hoc collaboration system through combining
5G and MEC technologies. In [25], the authors studied the
virtual network embedding problems, and proposed network
virtualization in the context of MEC networks.

Due to the sharp increase of the energy consumption
and carbon emission of communication systems, the energy-
efficient performance metric has been a critical goal in the
design of the offloading mechanism in cloud-based net-
works [31]. Few studies have addressed the energy-efficient
computation offloading problem. For example, the authors
in [32] studied the energy-efficient offloading policies for
transcoding tasks in a mobile cloud system, and proposed
an online offloading algorithm with the objective to mini-
mize the energy consumption while achieving low latency.
To reduce energy cost, the authors in [33] presented a frame-
work of the joint optimization of the radio and computa-
tion resource for the energy-limited mobile terminals in a
femto cell network. Based on the estimated execution time
and energy consumption in the computation offloading, the
authors in [34] proposed an offloading framework, which
reduces the energy consumption and shortens the response
time. In MEC, as the computation tasks can be offloaded to
the cloud servers located close to the current position of the
mobile devices, the energy consumption for data transmission
is mainly spent in the radio access network. To improve the
energy efficiency inMEC, the authors in [3] studied themulti-
user computation offloading problem in amulti-channel wire-
less network, and designed a distributed offloading algorithm
through a game theoretic approach. Nevertheless, few work
has taken into account the heterogeneous radio access net-
work in the MEC, and incorporated the multi-transmission
mode selection into the energy-efficient offloading schemes.

Different from these studies, in this paper, we concentrate
on the computation offloading for MEC in 5G heterogeneous
networks and propose the optimal offloading schemes to
improve the energy efficiency of the cloud computing system
while guaranteeing the delay constraints of the computation
tasks.

III. SYSTEM MODEL
Fig. 1 shows the mobile devices offloading their computation
tasks to theMEC server through a 5G heterogeneous network.
In the system, we consider a set of mobile devices, which is
denoted asN = {1, 2, ...,N }. Each device has a computation
task to be completed within a certain delay constraint. The
tasks include interactive gaming, natural language process-
ing, image location and etc [35]. Each computation task can
be described in three terms as Ti = {di, ci, tmaxi }, i ∈ N . For
task Ti, di is the size of the input data for the computation,
which may include program codes, input files etc. ci denotes
the computing ability required for accomplishing this task,
which is quantized by the number of CPU cycles. tmaxi is the
maximum latency required by the computation task.

FIGURE 1. The mobile edge computing offloading in a 5G heterogeneous
network.

For each mobile device i (i ∈ N ), the task Ti can be
either executed locally on itself or on the MEC server via
computation offloading. In our model, each task is atomic
and can not be further divided. Let f Li and δLi denote the
local computing ability and the energy consumption for one
CPU cycle of device i, respectively. Thus, we can get the time
duration of the local execution of task Ti as

tLi = ci/f Li . (1)

The energy consumption of this local execution can be
calculated as

eLi = ciδLi . (2)

In the 5G heterogeneous network, there is a Macro Base
Station (MBS) equipped with an MEC server. The MEC
server has the ability to run multiple computation tasks
simultaneously. Besides the MBS, there is a Small Base Sta-
tion (SBS), whose service area is overlaid by that of theMBS.
To reuse spectrum efficiently, both the MBS and the SBS
operate in the same frequency band. The spectrum is divided
into K channels, which are denoted as K = {1, 2, ...,K }.
The bandwidth of each channel is identical, which is denoted
asW . In this paper, we focus on a multi-user OFDMA system
in 5G networks, where each channel in the system is orthog-
onal to the others.

Between the SBS and the MBS, there is a backhaul. This
backhaul relays the transmission from the SBS to the MBS.
We consider this backhaul is shared with other communica-
tion infrastructures. Thus, we ignore the power consumption
of this backhaul. The transmission bandwidth of the backhaul
is limited. The transmission delay of the backhaul is propor-
tional to the length of the data with the scaling factor ϕ.

When a mobile device chooses computing its task by the
MEC server, the input data can be transmitted to the MEC
server through the MBS or the SBS. In the case that mobile
device i accesses the MBS on channel k , the obtained uplink

5898 VOLUME 4, 2016



K. Zhang et al.: Energy-Efficient Offloading for Mobile Edge Computing in 5G Heterogeneous Networks

data transmission rate can be shown as

rMi,k = W log2(1+
pMi g

M
i

ISi,k + σ
2
), (3)

where pMi is the power of mobile device i transmitting data
to MBS in a unit channel. The transmission power can be
determined by the MBS through some power control mech-
anisms [36]. gMi is the channel gain between mobile user i

and the MBS. ISi,k denotes the interference at the MBS on
channel k , which is caused by the other devices’ uplink trans-
mission to the SBS on the same channel. σ 2 is the background
noise power.

Similarly, we can give the uplink transmission rate of
device i accessing to the SBS on the channel k as

rSi,k = W log2(1+
pSi g

S
i

IMi,k + σ
2
). (4)

IV. PROBLEM FORMULATION
In this paper, we focus on the energy efficiency of the com-
putation offloading network, and aim to minimize the sys-
tem energy consumption under the latency constraints of the
computation tasks. The energy consumption includes both the
computational energy and the communication energy.

Due to the variable computing and communication abilities
of thesemobile devices, for each device, the energy consump-
tion of computing the task locallymay be higher or lower than
when the task is executed on the MEC server. Thus, in order
to reduce the energy cost, each mobile device should decide
whether to offload the task in an energy-efficient manner.

Considering device i is able to offload Ti in two ways,
namely through the MBS and the SBS, we denote ai,j,k as the
task offloading decisions of the device i, where ai,j,k = {0, 1}.
ai,j,k = 1 means mobile device i chooses mode j to accom-
plish the task Ti, and the computation data is transmitted
through channel k . ai,j,k = 0, otherwise. Here, i ∈ N , and
k ∈ K. Let j = {1, 2, 3} denote the chosen modes. They
are computing locally, transmitting through the MBS and
transmitting through the SBS, respectively. It should be noted
that as there is no channel in the local computing mode, the
item k is meaningless when j = 1. Thus we take ai,1,1 = 1 as
the indicator that device i selects local computation.
For the computation task offloading to the MEC server,

some extra energy and time cost are incurred by the wireless
uplink transmission. In the case that device i offloads its task
through the MBS to the MEC server, the total time duration
can be calculated as

tMi = di/rMi + ci/f
R
0 , (5)

where f R0 is the computing ability of the MEC server. To
concentrate our studies on the effects of the 5G heterogeneous
network on the computation offloading, we consider f R0 is a
constant for each offloading task. rMi is the total uplink rate
of the data transmitting from device i to the MBS. rMi can be

given as

rMi =
∑K

k=1
ai,2,krMi,k

=

K∑
k=1

ai,2,kW log2(1+
pMi g

M
i

N∑
l=1,l 6=i

al,3,kpSl g
M
l + σ

2

). (6)

The total energy consumption in this case can be shown as

eMi = bMi p
M
i di/r

M
i + ciδ

R, (7)

where δR is the energy cost of theMEC server for implement-
ing a unit CPU cycle. As the MEC server always has higher
computation energy efficiency than the mobile devices, we
consider that δR < δL . bMi is the number of the chan-
nels utilized by device i for transmitting data to the MBS,

and bMi =
∑K

k=1 ai,2,k .
Similarly, the time cost for the case where device i chooses

offloading the task through the SBS can be given by

tSi = di/rSi + diϕ + ci/f
R
0 , (8)

where ϕ is a coefficient representing backhaul transmission
time delay for a unit data. The uplink transmitting rate rSi
in (8) is shown as

rSi =
∑K

k=1
ai,3,krSi,k

=

K∑
k=1

ai,3,kW log2(1+
pSi g

S
i

N∑
l=1,l 6=i

al,2,kpMl g
S
l + σ

2

). (9)

The total energy cost for offloading the task through the
SBS is

eSi = bSi p
S
i di/r

S
i + ciδ

R, (10)

where bSi is number of the channels occupied by device i, and
bSi =

∑K
k=1 ai,3,k .

To minimize the total energy consumption of the system,
the optimization problem is mathematically modeled as

min
{ai,j,k }

N∑
i=1

(ai,1,1eLi + si,2(p
M
i
di
rMi

K∑
k=1

ai,2,k + ciδR)

+ si,3(pSi
di
rSi

K∑
k=1

ai,3,k + ciδR))

s.t. C1 : ai,1,1 · tLi ≤ t
max
i , i ∈ N

C2 : rMi ≥
di

tmax
i − ci/f R0

, i ∈ N

C3 : rSi ≥
di

tmax
i − ci/f R0 − diϕ

, i ∈ N

C4 :
K∑
k=1

ai,1,k ·
K∑
k=1

ai,2,k = 0, i ∈ N

C5 :
K∑
k=1

ai,2,k ·
K∑
k=1

ai,3,k = 0, i ∈ N
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C6 :
K∑
k=1

ai,1,k ·
K∑
k=1

ai,3,k = 0, i ∈ N

C7 :
N∑
i=1

ai,j,k = 1, i ∈ N , j ∈ {2, 3}

C8 :
N∑
i=1

M∑
k=1

ai,j,k ≤M , i ∈ N , j ∈ {2, 3}

C9 : ai,j,k = {0, 1}, i ∈ N , j ∈ {1, 2, 3}, k ∈ K.
(11)

In (11), si,j = 1(
∑K

k=1 ai,j,k > 0), where j = {2, 3}.
Here, 1(x) is an indicator function which equals 1 if x is
true and 0 otherwise. Constraints C1∼C3 ensure the latency
requirements of the three possible implementation ways
of task i, respectively. Constraints C4∼C6 state that only
one implementation way can be selected for each device i.
According to constraint C7, one channel can only be allocated
to at most one device. Constraint C8 indicates that the total
channels occupied by the mobile devices are less than the
maximum number of channels possessed by the MBS or
the SBS.
Lemma 1: The optimization problem (11) can be equally

transformed to the problem shown as follows.

min
{ai,j,k }

N∑
i=1

(ai,1,1eL
′

i + p
M
i
di
rMi

K∑
k=1

ai,2,k + pSi
di
rSi

K∑
k=1

ai,3,k )

s.t. C1 ∼ C9, (12)

where eL
′

i = eLi − ciδ
R.

Proof: The objective function of (11) can be rewrit-
ten as min{ai,j,k }

∑N
i=1(ai,1,1 + si,2 + si,3)ciδR + (ai,1,1eL

′

i +

si,2pMi
di
rMi

∑K
k=1 ai,2,k + si,3p

S
i
di
rSi

∑K
k=1 ai,3,k ). According to

the definition of si,j and constraint C7 in (11), we can get
ai,1,1 + si,2 + si,3 = 1. Thus, (ai,1,1 + si,2 + si,3)ciδR

can be omitted in the objective function, as it is a constant.
Furthermore, according to constraints C4 ∼ C6 in (11), we
can see that at a given time, for each device i, one and only
one of these three items of the objective function is a positive
value, and the other two are zeros. Then, we can remove si,j
(j = {2, 3}) from the function. �

V. ENERGY-EFFICIENT COMPUTATION
OFFLOADING SCHEMES
In this section, we focus on solving the optimization prob-
lem (12). We design energy-efficient MEC cloud offloading
and radio resource allocation schemes in the 5G heteroge-
neous networks.

In the computation offloading process, the mobile devices
choose their tasks’ implementation modes through the binary
strategies {ai,j,k}. The decisions of the {ai,j,k} not only
depend on the tasks’ delay constraints, but also on the
transmission interference between the mobile devices and
the limited resources of the radio access networks. Thus, the

problem (12) can be taken as a special maximum cardinality
bin packing problem, and is proved NP-hard [3], [37].

To obtain the sub-optimal solution of (12), we propose
a scheme named Energy-Efficient Computation Offload-
ing (EECO) to decide the tasks’ implementation modes and
allocate radio resources to the offloading devices. In order to
solve (12) efficiently, the EECO scheme is divided into three
stages, which are stated as follows.
• Stage 1: Mobile device classification. The mobile
devices are classified into three types according to their
time and energy cost features of the task computing
process.

• Stage 2: Priority determination.We derive the priorities
of the devices, which choose offloading their tasks to the
MEC server. The priorities are used for radio resource
allocation, and determined by the wireless communica-
tion states and the task requirements.

• Stage 3: Radio resource allocation. In this stage, the
channels of MBS and SBS are allocated to the mobile
devices according to the priorities determined in stage 2.

In the above stages, stage 2 and 3 operate iteratively, until
a convergence criterion is satisfied. In the following of this
section, we present the EECO scheme in detail.

A. MOBILE DEVICE CLASSIFICATION
Based on the tasks’ latency constraints and the comparison
of the energy costs between different task implementation
modes, we classify the mobile devices into three types.

The first type of devices is defined as the devices, which
should compute their tasks on the MEC server. We denote the
set of the devices of this type as GR. For a device with limited
computation resource, which cannot satisfy the latency con-
straint of the task, the device needs to choose offloading the
task to the MEC server. Thus, we can get that if tLi > tmaxi ,
device i belongs to GR, i ∈ N .
The second type is defined as the devices should compute

the task on their local equipments.We denote the device set of
this type as GL . The condition used to determine the devices
belonging to this type is given as follows.
Theorem 1: If tLi ≤ tmaxi and eLi < min{pMi

⌈
nM0
⌉
,

pSi
⌈
nS0
⌉
} + ciδR, device i belongs to GL (i ∈ N ), where

nM0 =
di

(tmax
i − ci/f R0 )wlog2(1+ pMi g

M
i /σ

2)
, (13)

and

nS0 =
di

(tmax
i − ci/f R0 − diϕ)wlog2(1+ p

S
i g

S
i /σ

2)
, (14)

where d·e is the ceil function.
Proof: If device i chooses offloading its task to the

MEC server through the MBS, the highest transmission rate
per channel it can obtain is rMi,max = wlog2(1 + pMi g

M
i /σ

2).
To satisfy the latency constraint tmaxi , the least number
of channels needed by device i is nM0 = di/((tmax

i −

ci/f R0 )wlog2(1 + pMi g
M
i /σ

2)). Thus, we can get the least
energy for device i to offload task Ti to theMEC server via the
MBS is pMi

⌈
nM0
⌉
+ciδR. Similarly, we can get the least energy
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Algorithm 1 The Algorithm for Classifying the Mobile
Devices
Initialization:

Mobile device set: N = {1, 2, · · · ,N };
Transmission power to MBS: {pMi }, i ∈ N ;
Transmission power to SBS: {pSi }, i ∈ N ;
Computation tasks: Ti = {di, ci, tmaxi }, i ∈ N ;
Categorized device sets: GL = GO = GR = ∅.

1: For Each device i ∈ N Do
2: Calculate tLi and eLi according to (1) and (2), respec-

tively;
3: if (tLi > tmaxi ) then
4: i⇒ GR;
5: else if (tLi ≤ t

max
i ) then

6: if (eLi < min{pMi
⌈
nM0
⌉
, pSi

⌈
nS0
⌉
} + ciδR) then

7: i⇒ GL ;
8: end if
9: else
10: i⇒ GO;
11: end if
12: End For
Output: GL , GR and GO.

consumed to offload task Ti to the MEC server via the SBS
as pSi

⌈
nS0
⌉
+ ciδR. Thus, we get the conclusion that given the

condition tLi ≤ tmaxi , if the energy spent on local computing
is less than the minimal value of the energy consumed for
offloading, device i chooses to complete its task locally. �

Besides the two types mentioned before, the third type of
themobile devices is denoted asGO. The devices belong toGO
can either decide to implement their tasks locally or to offload
the tasks to the MEC server. The decisions mainly depend on
the wireless communication states.

The complete device classification process is illustrated in
Algorithm 1.

B. MOBILE DEVICE PRIORITY DETERMINATION
Considering the limited capacity of the radio resources and
the transmission interference between the mobile devices, we
set different priorities for the devices in the radio resource
allocation process.

For the devices belonging to GR, due to their inadequate
computation capabilities, the computation tasks need to be
offloaded to the MEC server. The radio resource allocation of
GR should have the highest priority. However, for the devices
belonging to GO, their tasks can be either offloaded to the
MEC server or the tasks can be executed locally. Thus, to
reduce the energy consumption of the offloading system and
to utilize the radio resource more efficiently, the devices in
GO should be assigned different priorities. Before introducing
the priority determination algorithm, we first present two key
definitions as follows.
Definition 1: The qualified channels for device i is

the unoccupied channels of the MBS or the SBS, from

which device i can gain Signal to Interference plus Noise
Ratios (SINRs) above a given threshold θi.
In Definition 1, the threshold θi can be calculated as

θi = 2r̄iW − 1, (15)

where r̄i is device i’s additional required data rate to transmit
the task file within delay constraint, based on the obtained
channels in the last stage iteration. We can get r̄i =
di/tmax

i − ri,a. Here, ri,a is the total transmission rate on the
channels which have been already allocated to device i.
Let S denote the wireless communication state of the cur-

rent priorities determination stage. As in the EECO scheme,
the stage 2 and 3 operate iteratively, S is updated in each
iteration. Given a state S, the number of qualified channels
for device i accessing the MBS can be expressed as

hMi =
∑
k∈K′M

1(γMi,k ≥ θi), (16)

where K′M is the set of the available channels of MBS. γMi,k is
the SINR of device i transmitting in channel k of the MBS,
which can be shown as γMi,k = pMi g

M
i /(I

S
i,k + σ

2).
Similarly, we can get the number of qualified channels for

device i accessing the SBS as

hSi =
∑
k∈K′S

1(γ Si,k ≥ θi), (17)

where K′S is the set of the unoccupied channels of SBS,
and γ Si,k = pSi g

S
i /(I

M
i,k + σ

2).

Definition 2: The priority of device i in the process of the
radio resource allocation is defined as

pi = α1(
tmaxi

T̄max
)+ α2(

hi
H̄
)+ α3(

Ē

eLi − ciδ
R
), (18)

where T̄max =
∑

i∈GO t
max
i , H̄ =

∑
i∈GO hi, and Ē =∑

i∈GO (e
L
i − ciδR). αj (j = {1, 2, 3}) is a coefficient, 0 ≤

αj ≤ 1 and
∑3

j=1 αj = 1. The device with the less pi value
has the higher priority.

The priority definition jointly takes the delay constraint,
radio resources and the offloading energy gain into consider-
ation. In (18), the first item indicates the effect of the delay
constraint on the priority. The device with more critical delay
constraint should have the higher priority. The second item
in (18) states the effect of the radio resource availability on the
priority. The device that has less qualified channels should be
allocated radio resources preferentially. Otherwise, the device
may fail to transmit the task file to the MEC server within
the delay constraint, due to the insufficient radio resources.
The third item in (18) means that the device with higher
computing energy difference between the local computing
and MEC server computing should have the higher priority.

It is worth noting that as the devices ofGO can either choose
the MBS or the SBS to transmit the task file, the hi in (18)
should be either hMi or hSi , when device i has decided to access
the MBS or the SBS, respectively. However, before device i

VOLUME 4, 2016 5901



K. Zhang et al.: Energy-Efficient Offloading for Mobile Edge Computing in 5G Heterogeneous Networks

Algorithm 2 The Algorithm for the Device Priority
Determination
Initialization:

Categorized device set: GO;
Computation tasks: Ti = {di, ci, tmaxi }, i ∈ GO;
Allocated channels for devices: Ai, i ∈ GO;
MBS channel set: KM = {1, 2, ...,K };
SBS channel set: KS = {1, 2, ...,K };
Wireless communication state: S;
Priority set: P = ∅.

1: For Each device i ∈ GO Do
2: if Ai = ∅ then
3: Calculate hMi and hSi according to (16) and (17),

respectively;
4: Set hi = max{hMi , h

S
i };

5: else if Ai ∈ KM then
6: Get hi = hMi according to (16);
7: else if Ai ∈ KS then
8: Get hi = hSi according to (17);
9: end if
10: Calculate pi according to (18);
11: End For
Output: The priority set for the devices P = {pi}, i ∈ GO.

has decided accessing a base station, there is no restriction for
its access selection. Thus, it chooses the base station with the
more qualified channels, i.e., hi = max{hMi , h

S
i }.

We present this priority determination process
in Algorithm 2.

C. RADIO RESOURCE ALLOCATION
In the third stage, the channels of both the MBS and the SBS
are allocated to the devices based on the determined priorities.
To ensure the fairness between these devices, each device can
get at most one channel in a stage iteration.

In the allocation process, if a device has not decided to
access any base station, the device can make the decision
based on the comparison of the energy savings between
offloading the task through the MBS and the SBS.

For the device that has decided access the MBS, it can
only choose a channel from the ones belonging to the MBS.
Given device i accesses the MBS, as the transmitting power
pMi is identical for each channel of the MBS, device i should
choose the channel that has the highest SINR. The reason is
that higher SINR leads to shorter transmission time and less
transmission energy consumption. The new selected channel
improves the total transmission rate of device i with the
increase of the transmission power on this channel. However,
the improving transmission rate reduces the transmission
time, whichmay decrease the total transmission energy. Thus,
we should compare the energy cost between the case with
the new selected channel and the case without it. If the new
selected channel brings higher energy cost, it should not be
allocated to device i.

Algorithm 3 The Algorithm of Resource Allocation
Initialization:

Categorized device set: GO;
Computation tasks: Ti = {di, ci, tmaxi }, i ∈ GO;
Allocated channels for devices: {Ai}, i ∈ GO;
MBS channel set: KM = {1, 2, ...,K };
SBS channel set: KS = {1, 2, ...,K };
MBS’s unoccupied channel set: K′M ;
SBS’s unoccupied channel set: K′S ;
Wireless communication state: S.

1: Set the temporary set G′O = GO ;
2: while G′O 6= ∅ Do
3: Select the device i, where i = argmin

i
{pi}, i ∈ GO;

4: if Ai = ∅ then
5: Under the given state S, choose the channels with

the highest SINR from K′M and K′S . The selected
channels are denoted as kM0 and kS0 , respectively.;

6: Compute the transmission rate obtained from kM0
and kS0 . The rates are denoted as rMi,0 and rSi,0,
respectively.;

7: if pMi /r
M
i,0 ≥ p

S
i /r

S
i,0&& eMi < eLi then

8: kM0 ⇒ Ai and K′M = K′M\k
M
0 ;

9: else if pMi /r
M
i,0 < pSi /r

S
i,0&& eSi < eLi then

10: kS0 ⇒ Ai and K′S = K′S\k
S
0 ;

11: end if
12: else if Ai ∈ KM then
13: Choose the channel k with the highest SNIR inK′M ;
14: Compute the energy costs eMi with the channels Ai

and eM
′

i with the channels {Ai ∪ k};
15: if eM

′

i < eMi < eLi then
16: k ⇒ Ai and K′M = K′M\k;
17: end if
18: else if Ai ∈ KS then
19: Choose the channel k with the highest SNIR in K′S ;
20: Compute the energy costs eSi with the channels Ai

and eS
′

i with the channels {Ai ∪ k};
21: if eS

′

i < eSi < eLi then
22: k ⇒ Ai and K′S = K′S\k;
23: end if
24: end if
25: G′O = G′O\i;
26: end while
Output: The updated wireless communication state S.

For the devices that have chosen to access the SBS, the
channel allocation is in a similar way. We show the complete
radio resource allocation process in Algorithm 3.

D. MAIN PROCESS OF EECO
The detail of the proposed EECO scheme is illustrated in
Algorithm 4. At first, we classify the mobile devices into
three types. For the devices belonging to GR, as they cannot
accomplish the tasks on their own devices under the latency
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Algorithm 4 TheMain Process of the Energy-Efficient Com-
puting Offloading Scheme
Initialization:

Mobile device set: N = {1, 2, · · · ,N };
Computation tasks: Ti = {di, ci, tmaxi }, i ∈ N ;
Allocated channels for devices: {Ai} = ∅, i ∈ N ;
MBS channel set: KM = {1, 2, · · · ,K };
SBS channel set: KS = {1, 2, · · · ,K };
MBS’s unoccupied channel set: K′M = KM ;
SBS’s unoccupied channel set: K′S = KS ;
Wireless communication state: S;
Final determined device sets: GfinalL = GfinalR′ = ∅.

1: Clarify the mobile devices into sets GL , GR and GO
according to Algorithm 1;

2: Allocate radio resources to the device set GR, and offload
their tasks to the MEC server;

3: Update K′M and K′S ;
4: while GO 6= ∅ || {K′M 6= ∅&&K′S 6= ∅} Do
5: Get priority set P according to Algorithm 2;
6: Based on priority set P , allocate radio resource to the

device set GO according to Algorithm 3, and get the
allocated channels A′i for device i, i ∈ GO;

7: For Each device i ∈ GO Do
8: if A′i 6= Ai&& tMi ≤ t

max
i (tSi ≤ t

max
i ) then

9: Ai = A′i;
10: else if A′i == Ai&& tMi ≤ t

max
i (tSi ≤ t

max
i ) then

11: GO = GO\i and i⇒ GfinalR′ ;
12: else if A′i == Ai&& tMi > tmaxi (tSi > tmaxi ) then

13: GO = GO\i, i ⇒ GfinalL , and put the channels in
Ai to the unoccupied channel set;

14: end if
15: Update the channel sets K′M and K′S ;
16: End For
17: end while
18: For device set GfinalL , implement their computing tasks

locally;
19: For device set GfinalR′ , offload their computing tasks to the

MEC server.

constraint, we allocate the channels to the devices with the
highest priority. Then, we update the channel allocation state,
and the scheme goes into the iterative process. In each iter-
ation, the devices of GO are assigned priorities according to
Algorithm 2 and allocated channels according toAlgorithm 3.
At the end of each iteration, each device of GO is checked in
terms of its channel resource assignment. In every iteration of
EECO, each device chooses the channel that brings the high-
est reduction in the energy consumption. In a given iteration,
if a device cannot get a channel that decreases its energy cost,
it is less likely that the device will obtain a suitable channel
in the next iteration. Thus, we remove the devices from GO
whose channel assignments are identical in two consecutive
iterations. The removed devices are classified into GL or GR
according to the offloading time delay based on their assigned

channel resources. The iteration process is terminated when
there is no device in GO or no available radio resource.
Theorem 2: The computation of EECO scheme has a poly-

nomial complexity.
Proof: Firstly, the mobile device classification in Line 1

of Algorithm 4 hasN iterations by categorizing each device in
mobile device set N . Secondly, the priority determination in
Line 5 has |GO| iterations for assigning priorities for devices
in GO. After that, radio resource allocation is applied in Line 6
with |GO| iterations in total. The number of iterations of the
while-loop is limited by the process of removing devices in
GO and the eliminating channels inK′M andK′S . The analysis
of the iterative process is given as follows. On one hand, a
channel is allocated to a device and removed from K′M or K′S
in Line 8, 10, 16 and 22 of Algorithm 3, taking at most k+K
iterations of the while-loop in Algorithm 4 in terms of remov-
ing channels. On the other hand, each device is removed in
Algorithm 4 Line 11 and 13, giving |GO| iterations of the
while-loop in terms of deleting devices. To sum, the iteration
of the while-loop is (|GO| + |GO| + |GO|)max(|GO|,K + K ).
Then, the computational complexity of EECO can be given

O(N + (|GO| + |GO| + |GO|)max(|GO|,K + K ))

= O(max(|GO|2 + N , |GO|K + N )). (19)

�

VI. NUMERICAL RESULTS
In this section, we evaluate the performance of our pro-
posed EECO scheme through the extensive simulations.
We consider there are an MBS and an SBS that cover a
1000m×1000m area. Each base station has K = 50 channels
and the channels belonging to one base station are orthogonal.
There is an MEC server located in the MBS, whose com-
putation capability is 4GHz/sec. The energy consumption
for the MEC is given as δR=1W/GHz [38]. The backhaul
time delay coefficient ϕ is set as 0.0001 sec/KB. N = 50
mobile devices are randomly scattered over the area. The
number of CPU cycles required by the computation tasks
of the devices are randomly distributed between 0.1 and
1 GHz. The corresponding computation file size is randomly
distributed between 300 and 800KB. The mobile devices’
latency requirements are randomly distributed between
0.5 and 1 second.

Fig. 2 indicates the energy consumption performance of the
system with three different task implementation schemes in
terms of the number of the mobile devices. The energy con-
sumption includes both the energy cost spent on computation
and file transmission. In this figure, the energy consumption
of all three schemes increase as the number of devices grows.
The energy consumption of the scheme without offloading
is higher than that of the other two schemes in all cases,
especially with large number of devices. It is worth noting
that some tasks’ delay constraints may not be satisfied when
all the tasks are implemented locally on the devices. Here
we use the performance of this scheme as a benchmark to
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FIGURE 2. The energy consumption of the offloading system with
different schemes.

measure the energy cost reduction gained by the other two
schemes.

Compared to the scheme without offloading, Fig. 2 shows
that the average rate of the decrease in energy consumption
in our proposed EECO scheme is 18%. From this figure, we
can see that the energy consumption difference between the
scheme without offloading and the schemes with offloading
doesn’t continue to increase with the growth of the number
of the mobile devices. This is because that the energy con-
sumption for file transmission may vary with the increase
of the device number, and there is no linear relationship
between them. Furthermore, we can see from the figure that
the energy consumption of EECO and that of the offloading
scheme without device priorities are almost the same when
the number of device is below 30. However, the difference
becomes visible as the number increases. The reason is that,
when there are few devices in the network, the radio resource
is sufficient for the offloading devices. With the increase
in the number of device, the channel contention occurs.
The offloading scheme without device priorities allocates the
channels to the offloading devices randomly. On the contrary,
in EECO scheme, the channels are preferentially allocated to
the devices, which may result in higher energy cost reduction.

Fig. 3 shows the number of the mobile devices of the three
types with different time delay coefficient ϕ. In Fig. 3, when
ϕ ≤ 0.0003 sec/KB, there is no change in the number of
devices. This is because that the low transmission delay of
the backhaul may not cause the total time cost of the task
accomplishment breaks the delay constraints of the tasks.
With the increase of ϕ, higher transmission delay is posed on
the backhaul. Thus, the offloading devices that can not use the
SBS for transmitting files under the delay constraint choose to
transmit through theMBS.However, due to the radio resource
limitation of the MBS, the number of devices offloading the
tasks viaMBS reaches themaximumvaluewhen ϕ ≥ 0.0007.
The left devices that can neither offload tasks viaMBS nor via
SBS should implement their tasks locally.

Fig. 4 indicates the energy consumption of the system with
different time delay coefficient ϕ. The energy consumption

FIGURE 3. The number of the device sets GL, GO and GR with different
backhaul time delay coefficient.

FIGURE 4. The energy consumption of the offloading system with
different backhaul time delay coefficient.

FIGURE 5. The number of the offloading devices with different MEC
server CPU capabilities.

of the system increases with higher ϕ. This can be explained
as follows. First, when ϕ increases, the devices located
near the SBS have to transmit through the MBS due to the
time delay constraint. For these devices, transmitting via the
MBS causes higher transmission energy cost compared to
transmitting through the SBS. Second, the number of devices
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that implement tasks locally increases. Considering that the
computation energy efficiency of the MEC server is higher
than that of the devices, some extra energy should be con-
sumed.

Fig. 5 compares the impacts of the MEC server CPU capa-
bility on the number of the offloading devices with different
MEC server energy cost. The number of devices that choose
to offload their tasks to the MEC server decreases with the
increase in the server computation energy cost. When energy
cost reaches 6 W/GHz, since more computation energy is
consumed for the task implemented on the MEC server than
on the local devices, no device offloads its task to the MEC
server. As the CPU capability gets lower, the number of
offloading devices reduces. It is worth noting that the offload-
ing device numbers with CPU capabilities of 4 GHz/sec and
3 GHz/sec are the same in this figure. The reason is that both
these CPU capabilities can satisfy the delay constraints of the
offloaded tasks. To this end, we can draw a conclusion that the
energy cost of the MEC server directly affects the offloading
devices. However, the offloading choices of the devices can
only be influenced when the MEC server CPU capability is
below a certain threshold.

VII. CONCLUSION
In this paper, we investigated the MEC offloading mecha-
nisms in 5G heterogeneous networks. In order to improve
the energy efficiency of the offloading system, we formu-
lated a problem to minimize the energy consumption of the
computation task implementation together with that of the
communication process. To solve the problem more effi-
ciently, we proposed an EECO scheme, which jointly opti-
mizes the computation offloading decisions and the radio
resource allocation strategies to minimize the system energy
cost under the delay constraints. In addition, we conducted a
simulation study, which clearly displays the energy efficiency
enhancement in our proposed EECO scheme.
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