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ABSTRACT Epilepsy is a brain disorder, where patients’ lives are extremely disturbed by the occurrence of
sudden unpredictable seizures. This paper develops patient-independent signal processing techniques based
on common spatial patterns and linear discriminant analysis to detect epileptic activities (spikes) frommulti-
channel brain signal recordings. In contrast to current existing studies which heavily rely on the analysis
of electroencephalogram (EEG) data for the detection of epileptic activities, this research work considers
magnetoencephalography (MEG) recordings for the detection of epileptic spikes. This requires careful
development since unlike EEG spikes, MEG spikes do not have well-defined morphological characteristics.
Due to the recent advances in MEG technology, it became possible to consider MEG signals to detect and
analyze epileptic activities, but efforts to develop signal processing tools in this area are still in its outset, as
compared with those devoted to EEG signal processing.

INDEX TERMS Epileptic spikes detection, MEG, common spatial patterns, linear discriminant analysis.

I. INTRODUCTION
Epilepsy is a neurological disorder which is rampant in 1%
of the world population, and this disorder is classified as the
secondmost serious neurological disease known to humanity,
after stroke [1]. The brain activities hold great promise for
monitoring and analyzing neurological disorders. Studies of
epilepsy often rely on the EEG signals in order to analyse the
behaviour of the brain activities during seizures. However,
EEG signals are strongly degraded due to absorption of the
head tissues. The advances in MEG technology have created
a new source of information for brain activities which can
be investigated solely or with the aid of EEG signals. On the
contrary to EEG signals, MEG signals are less noisy and not
attenuated by the brain tissues [2].

MEG is a neurophysiological examination proce-
dure that uses a superconducting quantum interference
device (SQUID) for measuring brain signals. Spikes and
sharp waves in MEG signals can be used to facilitate diag-
nosis of epilepsy. MEG spikes are more clearly distinguish-
able as compared to EEG spikes, from background activ-
ity and appear to be sharper [3]. The MEG signals are of
multi-channel nature. Few works have been performed on

MEG signals for brain activity analysis, due to the limited
number of MEGmachines available around the world, due to
their high cost.

The most common approach for detecting spikes from
brain signals is by visual scanning of recordings. Locating
the epileptic spikes in MEG recordings manually is very
laborious and time consuming [4]–[6]. Note that the high
density of MEG sensors provides a good representation of the
magnetic field distribution over the scalp. However, the high
number ofMEG sensors (˜300) makes visual inspection time-
consuming, as it is impossible to display and evaluate somany
channels simultaneously. Furthermore, visual inspection is
mainly a subjective method, which can lead to disagreement
among different neurologists analyzing the same data [7].
Therefore, in order to overcome the drawbacks caused by
manual inspections, automatic detection of epileptic spikes,
based on objective criteria, would be beneficial for quantita-
tive analysis and clinical diagnosis.

There are many algorithms to detect epileptic spikes from
EEG data, but the objective of this paper is to develop spikes
detector for MEG data. The proposed algorithm consists of
features extractor followed by classifier, carefully selected to
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take into account the inherent characteristics of MEG signals.
Specifically, this study shows that

1) The common spatial patterns (CSP) can effectively
be used to capture discriminating features from MEG
spikes which, unlike EEG signals, do not have well-
defined morphological characteristics.

2) The CSP features, derived from actual MEG data, rea-
sonably follow normal distribution. Therefore, linear
discriminant analysis (LDA) can be used for classifica-
tion; LDA is well-suited for applications where features
are normally distributed [8].

CSP algorithm obtains spatial filters that can be used
for the discrimination between two classes of signals. The
obtained filters must guarantee maximization of the variance
of one class of signals, while minimizing that of the other
class [9]. LDA, on the other hand, is a simple, mathematically
robust classification method which searches for a linear com-
bination of predictors that best separates different classes.

In this study, the MEG data is captured from 20 epileptic
patients at the National Neuroscience Institute (NNI), King
Fahad Medical City (KFMC), Riyadh, Saudi Arabia. The
proposed spikes detection algorithm achieves 91.03% sensi-
tivity and 94.21% specificity; therefore, it is is a valuable tool
for neurologists dealing with MEG data for proper clinical
diagnosis.

FIGURE 1. MEG recordings of an epileptic patient.

II. SPIKE DETECTION METHODS
Fig.1 shows MEG recordings from left temporal brain region
of an epileptic patient. The areas between the dotted red
lines in Fig. 1 are the spiky regions of MEG data. Note
that MEG spikes are usually shorter in duration and have
a steeper ascending slope as compared to EEG spikes.
MEG signals also have a higher signal-to-noise ratio (SNR)
formore superficial sources than that of EEG,which indicates
MEG is more suitable for accurate localization of neocorti-
cal epileptiform sources [10], [11]. Consequently, interictal
MEG is increasingly used in epilepsy pre-surgical evaluation.
MEG localization of interictal spike zone has shown excellent
agreement with intracranial video-EEG [12], [13]. Therefore,
MEG signals typically provide interictal and intraictal but
rarely ictal information. The commonly used methods for the
detection of spikes are described next. These methods have
been widely studied for spikes detection in EEG recordings.
However, they can serve here to pave the road and provide the

necessary background for the development of MEG spikes
detection algorithms.

A. AMPLITUDE THRESHOLDING
It is the simplest method for detection of spikes. A spike is
detected when the signal amplitude exceeds a user-defined
threshold. Spikes with different morphologies and similar
amplitudes are not distinguishable by this method. The per-
formance of this method is sensitive to the selected threshold
and degrades rapidly due to many sources of noise [4], [5],
[14], [15].

B. TEMPLATE MATCHING
Template matching, which is often used in image processing,
is another method to detect spikes. In this method, the wave-
form with a typical spike shape is first selected as a template.
Second, this template is used to locate possible close matches
in the signal and, finally, detected matches of templates are
marked as spikes [14], [15].

C. SIGNAL TRANSFORMATIONS
The third approach uses signal transformations such as non-
linear energy operator (NEO or NLEO). It calculates the
energy content of the signal. NEO enhances the signal where
a spike is located and suppresses the other parts of the signal.
DWT (discrete wavelet transforms), FD (Fractal dimension),
Kalman Filter (KF), Singular Spectrum Analysis (SSA) and
Empirical Mode Decomposition (EMD) also transform the
signals so that useful features can be extracted for classifica-
tion [6], [16]–[20].

III. MEG SPIKES DETECTION ALGORITHM
The proposed MEG spikes detector makes use of two algo-
rithms: the CSP algorithm for features extraction and LDA
for classification. Below, we give brief description for these
two algorithms.

A. THE CSP ALGORITHM
The main idea of CSP algorithm is to obtain spatial filters
that can be used for the discrimination between two classes
of signals; in our case spikes and non-spikes signals. The
obtained filters must guarantee maximization of the variance
of one class of signals, while minimizing that of the other
class [20], [21].

LetDi =
{
d1i , d

2
i , d

3
i , . . . , d

n
i , . . . , d

Ni
i

}
be the data sets of

class i, i = 1, 2. Each data set dni is of size q× p and Ni is the
total number of data sets of class i. The parameter q denotes
the number of MEG channels and p denotes the number of
samples per channel. The output of CSP filters for class i,
Sni , is a matrix of size q× p, which is given by

Sni = ω
T dni (1)

The spatial filtersω are obtained by extremizing the following
J (ω) function [9],

J (ω) = ωTC1ω (2)
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subject to the constraint ωTC2ω = I , where T denotes
transpose and C i is given as follows.

C i =
1
Ni

Ni∑
n=1

(
dni
) (
dni
)T (3)

C1and C2 are q × q spatial covariance matrices of class 1
(spikes signals) and class 2 (non-spikes signals). This opti-
mization problem can be solved by extremizing Eq. 2 using
the method of Lagrange multipliers, the spatial filters ω are
then the eigenvectors of P = C−12 C1 [9]. Let xn,ki be the
k th element of q × 1 feature vector xni , and s

n,k
i be the k th

row of matrix Sni . Therefore, the element xn,ki is calculated as
follows.

xn,ki = log


var

(
sn,ki

)
q∑

k=1

(
var

(
sn,ki

))
 (4)

FIGURE 2. (a) Pdfs of CSP features extracted from spike and non-spike
data segments. (b) qq-plot of CSP features.

Fig. 2(a) shows the pdfs of all CSP features conbined
together in vector V i = {x

n,1
i , xn,2i , . . . , xn,ki , . . . , xn,qi }

Ni
n=1.

The CSP features are obtained from 48 spike and non-spike

data segments of real MEG data. Fig. 2(b) shows the quantile-
quantile qq-plot of CSP features. This figure compares the
features of class 1(class 2) on the vertical axis to normal
data, having the same mean and variance of class 1(class 2),
on the horizontal axis. The approximate linearity of quantile
points suggests that both classes are closely follow the normal
distribution. Next, we introduce the LDA which is known to
be a good choice for the binary classification of normally
distributed data [8].

B. LINEAR DISCRIMINANT ANALYSIS
We use LDA to classify MEG data into two classes; signals
with spikes and signals without spikes. Classification is often
performed through a learning process in which a training
set is used to provide observations (features) with known
labelling of their classes.

LDA is a simple, mathematically robust classification
method based on selecting the class having the highest pos-
teriori probability. In LDA, the data is assumed to follow
a normal distribution. In principle, LDA searches for a lin-
ear combination of predictors that best separates different
classes. For a two-class problem, LDA maximizes the Fisher
criterion defined as [22],

J (β) =
βTXBβ

βTXWβ
(5)

where β =
[
β1, β2, β3, . . . , βq

]T is a q × 1 discriminant
vector, XB is the between classes scatter matrix, and XW is
the within classes scatter matrix. Letµi be a q×1mean vector
of class i. That is,

µi =
1
Ni

Ni∑
n=1

xni (6)

The scatter for each class is defined as

X i =

Ni∑
n=1

(
xni − µi

) (
xni − µi

)T (7)

Therefore, the definitions of scatter matrices are as follows.

XB = (µ1 − µ2) (µ1 − µ2)
T (8)

XW = X1 + X2 (9)

Therefore, the unknown weighting coefficients β of linear
model can be shown to have the form [22],

β = X−1W (µ1 − µ2) (10)

The weighting coefficients vector β is the normal to the
discriminant hyperplane. The features to be discriminated are
projected onto β. That is,

yn = βT xni (11)

Because projections of features from both classes exhibit
approximately the same distributions, as shown in Fig. 2(a),
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therefore, the threshold c, against which yn is compared, can
be set as follows.

c =
1
2
βT (µ1 + µ2) (12)

C. TRAINING AND TESTING
The proposed detection algorithm has two stages; training
phase and testing phase, as shown in Fig. 3.

FIGURE 3. MEG spikes detection methodology. Si , xi are the filtered
outputs and feature vectors from all data sets, respectively.

In the training phase, MEG data sets Di are first used to
determine the CSP filters, ω. Each data set dni is of size q×p.
where q = 26 (corresponding to the number of sensors of
one region of the brain as will be described in Section 4) and
p = 100 (approximating the duration of a MEG spike). The
MEG data sets are then filtered by ω. Features are extracted
from the filtered MEG data sets according to Eq. 4, and
then used to determine LDA weighting coefficients β for the
purpose of classification.

In the testing phase, MEG data set dni is filtered by ω,
which is determined during the training phase. Features are
extracted from data set, and then applied to the LDA, with
the previously determined parameters for classification.

Leave-one-out cross-validation (LOOCV) method is used
to evaluate the performance of the classifier. In one round of
this method, N data segments are partitioned into two sets:
N − 1 data segments for training and one data segment for
testing. N rounds of cross-validation method are performed
by changing each time the data segment under test. In our
work, a data segment is of length 15 minutes, where at least
10 spikes exist. The performance of proposed spikes detec-
tion algorithm is then evaluated by taking the average of all
N validation results.

IV. MEG DATA RECORDING AND ANNOTATION
MEG data was recorded in a shielded room at NNI-KFMC
with an Elekta Neuromag system. The MEG signals are
muchweaker than normal environmental magnetic noise. The
shielded room blocks the majority of environmental magnetic
fields so that the magnetic fields generated by the brain can

be detected. Elekta Neuromag head system (helmet) contains
102 magnetometer and 204 gradiometer sensors. These sen-
sors are further categorized according to the different brain
regions.

Clinically, brain is divided into eight regions; left temporal,
right temporal, left frontal, right frontal, left parietal, right
parietal, left occipital, and right occipital. Each element of
the Elekta Neuromag system comprised of three sensors, one
magnetometer and two gradiometers.

Magnetic brain activity was recorded at a sampling fre-
quency of 1 kHz. MEG data was filtered by tSSS (Spatiotem-
poral signal space separation) method [23]. The data were
then off-line band-pass filtered 1–50 Hz for visual inspection.

A total of 49MEG data segments, each of 15 minutes dura-
tion and 26 channels, were taken from 20 epileptic patients.
These segments are analyzed by expert neurologists from
NNI, KFMC, Riyadh. The neurologists marked the MEG
spikes locations, in different brain regions, by visual inspec-
tion. The total number of spikes in these recordings is 391.

TABLE 1. MEG spikes of an epileptic patient, annotated by KFMC
neurologists.

As mentioned earlier, there are 306 sensors to cover the
whole head. These sensors are further marked according to
the brain regions. Table 1 shows the annotation of three MEG
spikes of an epileptic patient, marked by KFMC neurologists.
Specifically, for each spike, the table provides information
about the location of its peak, its duration, and inwhich region
of head it is located.

V. RESULTS AND DISCUSSION
Sensitivity and specificity are the two most widely used met-
rics for the performance evaluation of binary classification
problems. Sensitivity is a performance metric representing
the ratio of number of times the classifier makes correct
positive decisions (i.e., detects spikes) to the total number
of positive decisions it made. Specificity, on the other hand,
is the ratio of number of times the classifier makes correct
negative decisions (i.e., detects spikes-free segments) to the
total number of negative decisions it made [24].

In this study, sensitivity and specificity of the classifier
are calculated by LOOCV procedure. We use the spike and
non-spike data sets from 48 data segments for training and
leave the spike and non-spike data sets of the remaining
data segment for testing. We repeat this process by changing
each time the data segment under test, following the LOOCV
methodology.
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FIGURE 4. Specificity of each testing segment for all trials of LOOCV
method.

TABLE 2. Performance of the MEG spikes detection algorithm.

To study the effect of selecting spike-free data sets on the
performance of proposed algorithm, we compute the speci-
ficity 7 times for each data segment under test by randomly
selecting the spike-free data sets during the training phase.
Fig. 4 shows the specificity computed for the 49 data seg-
ments when the spike-free data sets get changed 7 times
during the training phase. It can be seen that specificity
patterns are almost the same for all trials. That is, random
selection of the non-spike data sets during the training phase
does not affect the performance of the classifier. The overall
performance of the classifier is shown in Table 2. The average
sensitivity and specificity obtained from data segments of
20 patients and 7 trials, each of which is trained with different
non-spike data sets, are 91.03% and 94.21%, respectively.

VI. CONCLUSION
With the recent advances in MEG technology, MEG devices
started to gain popularity worldwide in analyzing brain activ-
ities. This study proposes a CSP-LDA based MEG spikes
detection algorithm for epileptic subjects. We have demon-
strated using real data that the proposed detection algorithm
can achieve high sensitivity and specificity in a patient-
independent data setting. In particular, the work here shows
that a CSP-LDA based spikes detection algorithm can achieve

91.03% sensitivity and 94.21% specificity when applied to
MEG data. The developed MEG spikes detection algorithm
has the potential to help neurologists to analyze MEG data
in a timely manner instead of spending considerable time to
detect MEG spikes by visual inspection.
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