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ABSTRACT Time series analysis is an important data mining task in areas such as the stock market and
petroleum industry. One interesting problem in knowledge discovery is the detection of previously unknown
frequent patterns.With the existing types of patterns, some similar subsequences are overlooked or dissimilar
ones are matched. In this paper, we define patterns with weak-wildcard gaps to represent subsequences with
noise and shift, and design efficient algorithms to obtain frequent and strong patterns. First, we convert a
numeric time series into a sequence according to the data fluctuation. Second, we define the pattern mining
with weak-wildcard gaps problem, where a weak-wildcard matches any character in an alphabet subset.
Third, we design an Apriori-like algorithm with an efficient pruning technique to obtain frequent and strong
patterns. Experimental results show that our algorithm is efficient and can discover frequent and strong
patterns.

INDEX TERMS Pattern discovery, sequences, time series analysis, weak-wildcard.

I. INTRODUCTION
Frequent pattern discovery from time-series data is important
in fields such as the stock market and petroleum indus-
try. Time series data can consist of data such as the daily
closing price of stocks [1] or daily well production [2].
People often discover patterns [3] or motifs [4] based on sim-
ilar subsequences. Specifically, frequent patterns are desired
because they represent some events [5] or are important
for commerce [6]. According to Lonardi and Patel [4], an
efficient pattern discovery algorithm is useful. It can be used
as a tool for summarizing and visualizing massive time-
series databases. It also can be used as a subroutine in
other data mining tasks such as classification, clustering, and
association-rule mining. One key issue is how to define a
pattern to represent similar subsequences.

A number of different definitions of a pattern have
been proposed for numeric and symbolic data [7].
Popular approaches to numeric data are based on distance
measures such as Euclidian distance [4]. Two subsequences
are supposed to match if their distance is smaller than a user-
specified threshold [4]. For instance, the subsequences illus-
trated in Figs. 1 (a)–(c) match each other within a reasonable
threshold. The advantage of these approaches is that they
discover the original subsequence. However, they essentially
do not provide the generalized patterns of the subsequences.

Moreover, two subsequences with different lengths cannot be
compared.

Approaches using symbolic data have been more
fruitful [8]–[10] in recent years. Some data such as gene
sequences [8], [9] and text [11] are intrinsically symbolic.
Numeric data can also be encoded as symbolic data [4], [12].
For example, the subsequences illustrated in Figs. 1 (a)–(c)
can all be coded as ‘‘BbCBD’’. Consequently, the plain pat-
tern P1 = BbCBD matches all of them. Coding ignores minor
differences in the subsequences, and the data are represented
at a coarser granularity. In granular computing [13]–[16], the
patterns are more visible [13], [17], [18] at an appropriate
granularity. To deal with data with noise [19] or shift, the
concept of wildcard gaps has been proposed. A wildcard
is a special symbol φ that matches any character, while
a wildcard gap is a sequence of wildcards [8], [20], [21].
The latter has the form [N ,M ], where N and M stand for
the lower and upper length bounds, respectively. Pattern
P2 = B[0,1]b[0,1]C[0,1]B[0,1]D matches all nine subse-
quences in Figure 1. We observe that subsequences in
Figs. 1 (d)–(f) are similar to those in Figs. 1 (a)–(c). Unfortu-
nately, the subsequences in Figs. 1 (h)–(j) are quite dissimilar
to the rest.

In this paper, we define a new type of pattern and design
an efficient algorithm to obtain frequent ones. First, we code
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FIGURE 1. Nine subsequences: (a)–(c) are very similar, (a)–(f) are similar, and (h)–(j) are dissimilar.

the time-series to obtain a symbolic sequence according to
the fluctuation in the data. This coding technique is similar
to existing ones, but has some crucial differences [12]. The
conversion is based on the exponential change of the data. In
this way, minor to major fluctuations are coded by a small
alphabet.

Second, we define patterns with weak-wildcard gaps along
with a frequent pattern mining problem. In our data con-
version approach, some characters represent minor changes
while others represent major ones. Thus, we introduce the
concepts of weak and strong characters. A weak-wildcard
matches any weak character, while a weak-wildcard gap
matches a sequence of weak characters and has the form
(N ,M ). The new type of patterns is more general than two
existing ones. In some cases, we require further that only
strong characters can be included in a pattern. For example,
P3 = B(0,1)b(0,1)C(0,1)B(0,1)D matches the subsequences
in Figs. 1 (a)–(f), but not the other three. This pattern is more
appropriate than P1 and P2 in our scenario. Hence, this type
of pattern is semantically richer than the other two because
minor changes can be ignored if necessary.

Third, we propose an Apriori-like algorithm for the new
problem and prove that the Apriori property holds for the new
type of patterns. We design a pruning technique to accelerate
the mining algorithm. To discover only strong patterns, we
need a slight change in the code.

We conducted experiments on a number of real-world
time series. Results show that 1) our algorithms are efficient,
especially with the use of our pruning technique, exponen-
tially reducing the running time of the system; 2) discovered
patterns matches subsequences with different lengths in the
original time-series; and 3) comparedwith patterns withwild-
card gaps, our pattern excludes dissimilar subsequences.

The remainder of this paper is organized as follows.
In Section II, we introduce the numeric data pattern dis-
covery and review two sequence pattern mining prob-
lems. We present our data conversion method and define
our new sequence pattern mining problem in Section III.
In Section IV, we present the pattern mining algorithm
and three subroutines. We provide experimental results in
Section V. Finally, we present our concluding remarks
in Section VI.

II. RELATED WORK
In this section, we focus on three concepts: numerical data
pattern discovery, symbolic sequence pattern discovery, and
symbolic sequence pattern discovery with wildcard gaps.

A. NUMERICAL DATA PATTERN DISCOVERY
Time series data mining has been widely used in differ-
ent applications. Examples of numerical time series include
stock prices [22], oil well production [23], product sales
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volume [24], and temperature [25]. A time series is a
sequence of real numbers, where each number represents a
value for an attribute of interest at a particular time instant.
Definition 1: [26] A time series T is a sequence of time-

ordered data.

T = {ti|i = 1, . . . , k + 1}, (1)

where t represents time, k + 1 is the number of observations
made during that period, and ti is the value measured at time
instant i.

Given a subsequence P of time series T , a similarity
measure such as Euclidian distance, and a similarity thresh-
old D, efficient algorithms have been developed [27]–[29]
to locate all subsequences similar to P in T . This problem
is often referred to as pattern matching [30] or subsequence
searching.

Lonardi and Patel [4] argued that finding previously
unknown, frequent patterns (also call motifs) are more inter-
esting. This task is referred to as pattern discovery [11] or pat-
tern mining [31]. Lonardi and Patel [4] essentially employed
two techniques to find frequent patterns. One is dimension
reduction, which reduces the number of data points.

t̄i =
w
k

k
w i∑

j= k
w (i−1)+1

tj. (2)

Simply stated, to reduce the time series from k dimensions to
w dimensions, the data is divided into w equal-sized parts.
In this way, the number of data points is decreased. For
example, we may be interested in the daily runoff of a river,
instead of hourly values.

The other is discretization. First, we obtain the piece-
wise aggregate approximation (PAA) of a time series using
Equation (2). Second, we need to determine the breakpoints
by looking them up in a statistical table. Finally, all PAA coef-
ficients that are below the lowest breakpoint are mapped to
symbol a. All coefficients higher than or equal to the smallest
breakpoint but lower than the second smallest breakpoint are
mapped to symbol b, and so on. In fact, this technique is quite
common in areas such as communication.

Many scholars have carried out a number of related studies
on the pattern discovery problem. Zhong et al [11] presented
an effective pattern discovery technique to find relevant and
interesting information. Tanaka et al [32] proposed a motif
discovery algorithm to extract a motif based on the Mini-
mum Description Length (MDL) principle. Mueen et al [33]
presented a tractable exact algorithm for finding time series
motifs. Tang and Liao [31] introduced a k-motif-based algo-
rithm that can discover original motifs with different lengths.

Sometimes the data are converted into symbols. However,
respective approaches [4], [31] are still based on a similarity
measure and distance threshold.

B. SYMBOLIC SEQUENCE PATTERN DISCOVERY
Examples of symbolic time series include ultrasonic
data [34], mechanical systems anomaly detection data [35],

and chaotic systems parameter estimation [36]. The respec-
tive research has been quite fruitful in recent years. In this
context, we are often not interested in the distance between
subsequences.

The starting point of sequence pattern mining is an
alphabet, which is fundamental in both natural and formal
languages.
Definition 2: An alphabet 6 is a non-empty finite set,

whose elements are called characters.
A symbolic sequence is a series of ordered characters.
Definition 3: Any S = s1s2 . . . sk , where si ∈ 6 for any

1 ≤ i ≤ k is a symbolic sequence, also called a string.
For example, 6 = {a, b} is an alphabet, S = ababb is a
symbolic sequence of the alphabet, and |S| = 5.

To analyze a symbolic sequence, people often focus on
small parts of the sequence called patterns. Essentially, a
pattern P = p1p2 . . . pm is also a symbolic sequence. For
example, in natural language processing, each word can be
viewed as a pattern. To automatically extract keywords from
a paper, a common approach is to count the number of occur-
rences of each word or phrase.
Definition 4: Given sequence S = s1s2 . . . sk and pattern

P = p1p2 . . . pm, P matches S at position i iff ∀1 ≤ j ≤ m,
si+j−1 = pj.

The number of matches, also called occurrences, of P in S
is denoted as sup(P, S).
Definition 5: The frequency of pattern P in sequence S is

f (P, S) = sup(P, S)/k. (3)
This indicates the frequency with which P matches S at dif-
ferent positions. Given a frequency threshold ρ, P is frequent
iff f (P, S) ≥ ρ.

The following problem is formulated for finding frequent
patterns.
Problem 1: Frequent plain pattern mining
Input: sequence S and support threshold ρ.
Output: frequent pattern set P .
Example 1: Let S = ababb and P = ab. P matches S at

positions 1 and 3, sup(P, S) = 2, and f (P, S) = 2/5 = 0.4.
Let ρ = 0.3, P = {a, b, ab}.

C. SYMBOLIC SEQUENCE PATTERN DISCOVERY
WITH WILDCARD GAPS
Patterns with wildcards have garnered substantial attention
in real-world applications because of their flexibility. In busi-
ness, managers can adjust marketing methods or strategies
using frequency patternswithwildcards [37]. In biology, peri-
odic patterns with wildcards are valued for having significant
biological and medical utility [38], [39]. Li and Wang [40]
found that some frequent periodic patterns can be used in
feature selection.
Definition 6 [41]: A wildcard φ is a special symbol that

matches any character in 6. A gap g[N ,M ] is a sequence
of wildcards of minimal size N and maximal size M .
W = M − N + 1 is the gap flexibility of g[N ,M ].
g [N ,M ] is also denoted by [N ,M ] in a pattern.
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Definition 7 [41]: A pattern is a sequence of characters
and gaps that begins and ends with characters. A periodic
pattern has the following form:

P = p1[N ,M ]p2[N ,M ] . . . , [N ,M ]pm, (4)

where m is the length of the pattern.
The term periodic indicates that all gaps are identical,

rendering the analysis simpler.
Example 2: A[1, 3]C[1, 3]C is a pattern with periodic

wildcard gaps [1, 3].
Definition 8 [41]: If there exists a position sequence

1 ≤ i1 ≤ i2 ≤ · · · ≤ im ≤ k such that sij = pj for all
1 ≤ j ≤ m and N ≤ ij − ij−1 − 1 ≤ M for all 1 ≤ j ≤ m− 1,
then 〈i1, i2, . . . , im〉 is called an occurrence of P in S with the
g[N ,M ] gap constraint.
Example 3: Suppose we are given sequence S =

BBCCBCCDCDA and P = B[0, 1]C. The five occurrences
of P are 〈1, 3〉, 〈2, 3〉, 〈2, 4〉, 〈5, 6〉, and 〈5, 7〉. In contrast,
〈1, 4〉 and 〈1, 6〉 are not occurrences of P because they do not
satisfy the gap constraint.

Problem 2 can adequately consider the influence of noise
by setting thewildcard gap constraint. Thus, wemust redefine
the support of the pattern.
Definition 9 [8]: The pattern support ratio, also called

frequency, is

f (P, S) = sup(P, S)/ofs(P, S), (5)

where

ofs(P, S) = kWm−1, (6)

is the number of offset sequences of P in S.
If f (P, S) is greater than or equal to a pre-specified thresh-

old ρ, pattern P is a frequent pattern; otherwise, P is an
infrequent pattern.
Definition 10 [8]: If a sequence of indices I =

〈i1, . . . , im〉 is subject toN ≤ ij−ij−1−1 ≤ M for 2 ≤ j ≤ m,
I is an offset sequence of P with periodic wildcard gaps
[N ,M ] in S.
Definition 11 [8]:Given sequence S, pattern P, and offset

sequence I , we say that P matches S with respect to I if
sij = pj for all 1 ≤ j ≤ k .
Example 4: Suppose we are given sequence S =

BBCCBCCDCDA and P = B[1, 3]C. Because |S| = 11 and
W = 3 − 1 + 1 = 3, ofs(P, S) = 33. Then, sup(P, S) =
6 because there are six offset sequences (i.e.,〈1, 3〉, 〈1, 4〉,
〈2, 4〉, 〈2, 6〉, 〈5, 7〉, and 〈5, 9〉) producing matches. There-
fore, f (P, S) = 6/33 = 0.182.
Sequence pattern mining problems with wildcard gaps

can be described as follows: given a sequence, pre-specified
threshold, and variable gap length with wildcards between
every two consecutive letters, the task is to obtain all frequent
patterns with wildcard gaps.
Problem 2: Sequence pattern mining with wildcard

gaps.
Input: sequence S, support threshold ρ, and wildcard

gap g[N ,M ].

Output: frequent pattern set P with periodic wildcard
gaps.

III. PROPOSED PROBLEM
In this section, we define our new problem. First, we convert
the time series into a sequence using an exponential cod-
ing function. Once we obtain the sequence, we can employ
sequence mining techniques to process it. Second, we define
a new pattern mining problem based on weak-wildcard gaps.

A. DATA CONVERSION
Our objective is to discover what we can learn from the data,
howwe can grasp the characteristics of original data, and how
to support human experts in analyzing the data. According
to industry experts, the fluctuation can be more interesting
than the production. Hence, we propose a coding scheme to
convert the time series into a sequence.

Given a time series T = {ti|i = 1, . . . , k + 1}, the
fluctuation from time i to i+ 1 is given by

fi = (ti+1 − ti)/ti, (7)

where 1 ≤ i ≤ k + 1. We propose the exponential code table
shown in Table 1. Here, the alphabet is 6 = {A, B, C, D,
E, F, O, a, b, c, d, e, f}. Using fi and the code table, we can
convert T into sequence S = s1s2 . . . sk .
Example 5: Given a time series t = {1, 1.03, 1.07, 1.12,

1.17, 1.21, 1.26, 1.32, 1.44, 1.50, 1.66, 1.68}, the sequence is
S = BBCCBCCDCDA.
The advantage of Table 1 is that it fully reflects the weak

changes in the small signal. The small signal in the encoding
interval is relatively small, while the large signal on the
encoding interval is large.

TABLE 1. Exponential code table.

B. SEQUENCE PATTERN MINING WITH
WEAK-WILDCARD GAPS
According to Table 1, some characters such as F and f corre-
spond to major changes; hence, they are always important.
Others, such as O and A, correspond to minor changes,
and they can be ignored in the pattern matching process.
We define the concepts of weak-wildcard and patterns with
weak-wildcard gaps.
Definition 12: Let � ⊆ 6 be the set of weak characters.

A weak-wildcard ψ is a symbol that matches any character
in �. A weak gap w(N ,M ) is a sequence of weak-wildcards
of minimal size N and maximal size M .
Gap w(N ,M ) is also denoted by (N ,M ) in a pattern. Accord-
ingly, 6 −� is the set of strong characters.
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With weak gaps, we can define a new type of
pattern.
Definition 13: A periodic pattern with weak-wildcard

gaps (PW-pattern) is a sequence of characters and weak
gaps that begins and ends with weak characters. It has the
following form

P = p1(N ,M )p2(N ,M ) . . . (N ,M )pm, (8)

where m is the length of the pattern.
In some applications such as oil well production, weak

characters form the majority of the data. Most PW-patterns
are formed by weak characters. Examples include OOAOO
andOAOOO. These patterns are not quite meaningful. There-
fore, we propose the following concept.
Definition 14: A periodic strong pattern with weak-

wildcard gaps (PSW-pattern) P = p1(N ,M )p2(N ,M ) . . .
(N ,M )pm is a special case of PW-patterns, where for any
1 ≤ i ≤ m, pi ∈ 6 −�.
In other words, characters in the pattern should be strong.
Definition 15: Let S = s1s2 . . . sk be a sequence and

P = p1(N ,M )p2(N ,M ) . . . (N ,M )pm be a PW-pattern.
If there exists a position sequence 1 < i1 < i2 < · · · <
im < k such that sij = pj for all 1 ≤ j ≤ m and N ≤
ij − ij−1 − 1 ≤ M for all 1 ≤ j ≤ m − 1, ∀ij−1 < c < ij,
sc ∈ �, I = 〈i1, i2, . . . , im〉 is called an occurrence of P in S
with the (N ,M ) gap constraint.
Example 6: Suppose we are given S =BBCCBCCDCDA,

� = {O,A,B, a, b}, and P1 = B(0, 1) C(0, 1)C . In this case,
P1 has three occurrences in S, and the position sequences are
〈1, 3, 4〉, 〈2, 3, 4〉 and 〈5, 6, 7〉. In contrast, the pattern with
wildcard gaps P2 = B[0, 2]C[0, 2]C has two more matches
in S, and its position sequences are 〈2, 4, 6〉 and 〈5, 7, 9〉.

Similar to Problems 1 and 2, we define the following
problem.
Problem 3: Pattern mining with weak-wildcard gaps

(PW-pattern mining).
Input: sequence S, support threshold ρ, set of weak char-

acters �, and weak-wildcard gap (N ,M ).
Output: set of all frequent PW-patterns P .
The reason why we do not consider the problem of

PSW-pattern mining here is discussed in the next
section.

According to the definition of weak-wildcards, we can use
them to accurately express the level of noise in the signal. By
introducing weak-wildcards, Problem 3 can more accurately
express the degree of noise that wewant to ignore. This allows
an expert to better determine the frequent sequence patterns
of higher practical value.

Plain patterns are also called type I patterns. We refer
to patterns with periodic wildcard gaps as type II patterns,
PW-patterns as type III patterns, and PSW-pattern as type IV
patterns.
Remark 1: A type I pattern can be regarded as a special

case of a type II pattern where the wildcard gaps are [0, 0].
A type II pattern can be regarded as a special case of
a type III pattern for which � = 6.

Therefore, type III patterns are natural extensions of
type I and II patterns and can be applied to a wider range
of applications.

The concepts of sub-pattern and super-pattern are dis-
cussed in [8]. For type III patterns, a sub-pattern is con-
structed as follows.
Definition 16: Given P = p1(N ,M ) p2(N ,M ) . . .

(N ,M )pm and 1 ≤ i ≤ j ≤ m, the sub-pattern of P starting at
i and ending at j is given by

sub(P, i, j) = pi(N ,M )pi+1(N ,M ) . . . (N ,M )pj. (9)

Conversely, P is a super-pattern of sub(P, i, j).
For a sequence, we define a subsequence as follows.
Definition 17: The sub-sequence of S = s1s2 . . . sk start-

ing at i and ending at j is given by

sub(S, i, j) = sisi+1 . . . sj. (10)

Conversely, S is a super-sequence of sub(S, i, j).
The Apriori property is essential for frequent item-set min-

ing problems [42] as well as frequent pattern mining prob-
lems [8]. We therefore examine this property for Problem 3.
Similar to [8], the property is described as follows.
Theorem 18: Let P′ be a sub-pattern of P,

f ∗(P, S) ≤ f ∗(P′, S). (11)
Proof: We only need to consider the condition

where P′ contains one less character than P. Formally, let
P′ = p1g(N ,M )p2 · · · g(N ,M )pl−1 and P = p1g(N ,M )p2
· · · g(N ,M )pl−1g(N ,M )pl . According to Equation (6),

ofs∗(P, S) = ofs∗(P′, S)W . (12)

Each match of p′ corresponds to at most W matches of P,
i.e.,

N (P, S) ≤ N ∗(P′, S)W . (13)

Therefore,

f ∗(P, S) =
N (P, S)
ofs∗(P, S)

≤
N (P′, S)
ofs∗(P′, S)

= f ∗(P′, S). (14)

IV. ALGORITHM DESIGN
In this section, we present the algorithm for frequent
PW-pattern mining. This algorithm is called the PWM algo-
rithm. Because we only discuss our newly defined type of
pattern, we also denote P = p1p2 . . . pm for simplicity when
N and M are indicated.

A. PWM ALGORITHM
Algorithm 1 is the main function of the PWM algorithm.

Weak character set � and the weak-wildcard gap minimal
size N and maximal size M are viewed as constants. They
are not included in the parameter list.

Line 1 constructs the set of frequent 1-patterns. The cor-
responding function is listed in Algorithm 2. This set is
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TABLE 2. Notations.

Algorithm 1 PWM
Input: sequence S = s1s2 . . . sk and support threshold ρ.
Output: frequent PW-pattern set P .
Constraint: ∀P ∈ P , f (P, S) ≥ ρ.

1: P1 = findFrequent1Patterns(S, ρ);
2: P2 = constructLength2Patterns(S, ρ);
3: for (i = 3; Pi−1! = ∅; i ++) do
4: Pi = ∅;
5: Ci = aprioriGenerate(Pi−1);
6: for (each P ∈ Ci) do

7: sup(P, S) =
k−|P|+1∑
j=1

computeSupport(sub(S, j, k),P);

8: f (P, S) = sup(P,S)
k(M−N+1)|P|−1

;
9: if (f (P, S) ≥ ρ) then
10: Pi = Pi ∪ {P};
11: end if
12: end for
13: end for
14: return P = ∪i−1j=1Pj;

denoted by P1. We generate the P2 in order to improve the
effectiveness of the algorithm.

Patterns with longer lengths are then mined in the for
loop, which continues until no frequent pattern of the current
size exists.

Line 5 generates candidate patterns with length i based
on frequent patterns with length i − 1. The corresponding
function is listed in Algorithm 3. This set is denoted by Ci.

Line 7 computes the support of each candidate pattern,
which is the sum of the occurrences of P starting from dif-
ferent positions in S. The corresponding function is listed

Algorithm 2 findFrequent1Patterns
Input: sequence S and support threshold ρ.
Output: frequent 1-patterns P1.

1: P1 = ∅;
2: for each a ∈ 6 do
3: P = a;
4: if (f (P, S) ≥ ρ) then
5: P1 = P1 ∪ {P};
6: end if
7: end for
8: return P1;

in Algorithm 4. Note that this step is more time consuming
than pattern generation.

Line 8 computes the frequency of the candidate pattern.
Line 9 selects patterns whose frequency meets the thresh-

old. The result set is denoted by Pi.
Finally, Line 14 constructs and returns the set of all fre-

quent patterns. This set is denoted by P .
We use the following example to illustrate the process.
Example 7: Let S = DABCDBACDA, ρ = 0.1, N = 0,

M = 1, and � = {O, A, a}.
After the execution of Line 1, we have P1 ={A, B, C, D}.
Next, we have C2 = {AA, AB, AC, AD, BA, BB, BC,

BD, CA, CB, CC, CD, DA, DB, DC, DD} after the execution
of Line 5. This shows all of the possible combinations that
can be formed from P1.
For each pattern in C2, the support is calculated. For exam-

ple, let P = BC, after executing Line 6, we have f (P, S) =
2/20 = 0.1. According to Line 9, f (P, S) ≥ ρ, and BC will
be included inP2. After the execution of Lines 6–12, we have
P2 = {BC, CD, DA, DB}.
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Algorithm 3 aprioriGenerate
Input: frequency sequence patterns Pi−1 and P2.
Output: candidate sequence patterns Ci .

1: for (each P ∈ Pi−1) do
2: for (each P′ ∈ P2) do
3: C = P⊕ P′;
4: if (C == ε) then
5: continue;
6: end if

//prune
7: if (sub(C, 2, |C|) 6∈ Pi−1) then
8: continue;
9: end if
10: Ci = Ci ∪ {C};
11: end for
12: end for
13: return Ci;

Similarly, we have P3 = {BCD, DBC}, P4 = {DBCD}
and P5 = ∅. Therefore, we do not need to compute P5, and
the for loop terminates.
Finally, we have P = {A, B, C, D, BC, CD, DA, BCD,

DBC, DBCD}.
Because the algorithm is based on the Apriori property

(Theorem 18), it is complete.
Property 1: The output of Algorithm 1 is complete.
Proof: Suppose that there exists a pattern P =

p1p2 . . . pm, P 6∈ Pm, and f (P, S) ≥ ρ. Then P should
not be tested in Algorithm 1. According to Lines 2 through
11, P′ = Pm−1 = p1p2 . . . pm−1 should not be tested and
Pm−1 6∈ Pm−1. For the same reason, Pm−2,Pm−3, . . . ,Pm are
not tested in Algorithm 1. However, P1 is a pattern with only
one character. According Line 1, it must be tested. Therefore,
the hypothesis does not hold, indicating that the algorithm is
able to mine all frequent patterns.

B. PATTERN GROWTH ALGORITHM
Algorithm 3 generates Ci fromPi−1. Note that Ci is a superset
of Pi. Pattern growth entails concatenating two patterns. Let
P = p1p2 . . . pm and P′ = p′1p

′

2 . . . p
′

m′ be two patterns with
weak-wildcard gaps (N ,M ). The concatenation operation is
defined as

P⊕ P′ =
{
p1p2 . . . pmp′2 . . . p

′

m′ , if p′1 = pm;
ε, otherwise .

(15)

Here, ε is the empty string. In other words, P and P′ can be
concatenated iff p′1 = pm.
In Line 3, we always concatenate pattern P with another

pattern P′ ∈ P2. In this way, the algorithm is complete. This
is discussed in Property 1.

Lines 4 through 6 filter out empty patterns. According
to Equation (15), empty patterns indicate that the respective
patterns cannot be concatenated.

Algorithm 4 computeSupport
Input: sequence S = s1s2 . . . sk and pattern P = p1p2 . . . pm.
Output: occurrence count.
1: if (s1! = p1) then
2: return 0;//The first position does not match
3: end if
4: if (m == 1) then
5: return 1;//One occurrence
6: end if

//Try to match the remaining part of P
7: for (i = N + 1; i ≤ M + 1; i ++) do
8: if (i+ 1 ≥ k) then
9: break; //Exceeds the bound
10: end if
11: if (si 6∈ �) then
12: break; //Cannot be viewed as a weak-wildcard
13: end if
14: count += computeSupport(sub(S, i + 1, k),

sub(P, 2,m));
15: end for
16: return count;

Lines 7 through 9 correspond to the pruning technique.
Here, sub(C, 2, |C|) is the sub-pattern of C without the last
characters. According to Theorem 18, C is infrequent if
sub(C, 2, |C|) is infrequent. This technique facilitates the
removal of some candidate patterns. In fact, the algorithm
can obtain the correct output even without this technique.
However, as discussed in Section V-A, it can reduce the
runtime significantly.

C. COMPUTING THE PATTERN OCCURRENCES
Algorithm 4 computes the number of occurrences of a

pattern starting at the first position. Note that the support of
a pattern in the sequence is computed in Algorithm 1, where
all positions are considered.

In Lines 1 through 3, the result is set to zero if the pattern
does not match the first position of S. Lines 4 through 6
indicate that there is exactly one match if the length of P
is one. Lines 7 through 15 attempt to skip some characters
matching weak-wildcards. Lines 8 through 10 ensure that the
bound of the sequence is not exceeded. Lines 11 through 13
verify if the character is weak.

Line 14 is the core code and invokes the function recur-
sively with a shorter sequence and shorter pattern.
Example 8: Let S = BBCBCCA, N = 1, M = 2,

� = {A, B}, P1 = CBC, and P2 = BCC. Denote
Algorithm 4 as cr(P, S).
We have cr(P1, S) = 0 because s1 = B while p1 = C.
Tracking through the algorithm gives us

cr(P2, S) = cr(BCC,BBCBCCA) = cr(CC,CBCCA) +
cr(CC,BCCA)
= cr(C,CCA)+ cr(C,CA)+ 0 = 1+ 0 = 1.

We now analyze the time complexity of Algorithm 4.
In the worst case, all possible position indices are checked.
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Therefore, the time complexity is

O(Wm), (16)

which is exponential with respect to the length of P. Accord-
ing to Line 6 of Algorithm 1, the time complexity of comput-
ing sup(P, S) is

O(kWm). (17)

D. FREQUENT PSW-PATTERN MINING
As discussed in Definition 14, we would sometimes like to
represent patterns with only strong characters. There are two
approaches to the mining of this type of pattern. If frequent
patterns have already been mined, we can filter out these
strong patterns. Otherwise, we mine them directly from the
sequence. We only need to replace a ∈ 6 with a ∈ 6 − �
in Algorithm 2.
Example 9: Let S = DBCDBACD, ρ = 0.1, N = 0,

M = 1, and � = {O, A, a}.
The set of PSW-patterns is P = {B, C, D, BC, CD, DB,

BCD, DBC, DBCD}.

V. EXPERIMENTAL RESULTS
In this section, we first demonstrate the efficiency of the
pruning technique. Next, we present a frequent pattern and
reproduce it accurately in the original time series. Third,
we prove that we can effectively solve the variable-length
problem in [4] through a set of comparative experiments.

FIGURE 2. Runtime comparison with and without the pruning technique.

A. EFFICIENCY OF THE PRUNING TECHNIQUE
Fig. 2 compares the runtime with and without our pruning
technique. For the algorithm without the pruning technique,
the runtime does not increase significantly when the sequence
length is no more than 2,000. In this situation, the runtime
is essentially determined by the program overhead. How-
ever, the runtime increases exponentially as day increases
beyond 2,000. This is because too many candidate patterns

are generated, and the time complexity of the pattern support
computation is exponential with respect to the pattern length,
as shown in Equation (17). In contrast, with the pruning
technique, the runtime increases only marginally, even for
sequences with day > 10, 000. This indicates that many
candidate patterns are successfully pruned. Thus, the pruning
technique is effective and necessary.

FIGURE 3. Pattern discovery based on the Apriori property.

FIGURE 4. Pattern discovery based on Euclidean distance.

B. PATTERN DISCOVERY
We adopt two methods for discovering the effective patterns
using the same data sets. First, we use the PWM algorithm
proposed in this paper for pattern mining, which can discover
many meaningful patterns. Fig. 3 lists the three appearances
of the pattern BbCBD in the original time series. Second, we
use the EMMA algorithm [4] to discover frequent patterns
based on the Euclidean distance. Three occurrences of pattern
BbCBD in the original time series are shown in Fig. 4.
From the figure, it is clear that both methods can discover
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meaningful patterns from the time series. Moreover, they can
identify all appearances accurately in the original time series.

C. DISCOVERING FREQUENT PATTERNS
OF DIFFERENT LENGTHS
In Fig. 4, it appears that we can only discover frequent
patterns of equal length using the method in [4]. However,
time delays are ubiquitous in the real environment, leading to
a certain signal shift. Thus, there is a large number of variable-
length patterns in practice.

As seen in Fig. 5, we can solve the variable-length problem
by the introduction of wildcards. We discover the patterns
from the same motif of lengths 6, 8, 9, and 10. However, a
serious problem is that one may find completely dissimilar
patterns, such as patterns 7, 8 and 9 in Fig. 5. This is intoler-
able in practical applications.

FIGURE 5. Frequent patterns with wildcard gaps.

FIGURE 6. Frequent patterns with weak-wildcard gaps.

In Fig. 6, dissimilar patterns were successfully ignored,
and pattern 6 was discovered. Pattern 6 has a different data

starting point, but it is similar to patterns 1, 2, 3, 4 and 5.
Clearly, they all come from the same motif. Thus, we can
solve the variable-length problem with high similarity.

TABLE 3. Some PSW-patterns from oil production data.

Table 3 lists some PSW-patterns from a petroleum pro-
duction time series. Here, we let W = {O, a,A}, that is,
only fluctuations smaller than 2% are viewed as ignorable.
The length of all these patterns is 5. We observe that they
have different shapes, which might be explained by experts
as meaningful.

VI. CONCLUSIONS
In this paper, we proposed a new approach for analyzing time-
series data using a sequence patternmining algorithm. Specif-
ically, we designed a code table to convert the time series
into a sequence. We defined the concept of weak-wildcard
and PW-patterns, and proposed the PWM algorithm to find
frequent PW-patterns and PSW-patterns. Experiments on a
petroleum production data set show that the new algorithm
can find similar patterns while filtering out dissimilar ones.
Moreover, the pruning technique is very effective.

From the viewpoint of algorithms and applications, the
following research topics merit further investigation:

1) The code table determines the granularity [13]–[16] of
the data. Hence, it is essential for applications. In this
paper, we use an exponential code table, but other types
of code tables are also feasible. The code table can be
adjusted considering user feedback.

2) The incorporation of human expert feedback in this
work is quite basic. Further feedback could facilitate
pattern evaluation and parameter adjustment. New sce-
narios and their corresponding algorithms are required
to enhance the usability of the system.
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3) Each pattern can be viewed as a feature of a well.
With these features, we can study the characteristics
of each well or calculate the similarity between wells.
The related feature extraction topic is relevant for major
machine learning problems [43]–[45].

4) We can explore other applications for our data conver-
sion, sequence mining algorithm, and pattern filtering
techniques because they are valid for any time series.
We can apply these techniques to any time-series data
including stock pricing and weather forecasting. The
characteristics intrinsic to the respective applications
should then be addressed.

Our novel approach and findings are useful and directly
applicable to petroleum data mining, time-series analysis,
sequence pattern mining, and granular computing research.
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