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ABSTRACT The skyline path query is a novel extension of skyline queries. A skyline path query retrieves
a set of non-dominated paths from origin s to destination t . On a road network using multiple path criteria,
such as the distance, travel time, and number of travelers on a path, this paper extends the concept of skyline
path query by considering a new type of criteria referred to as the aggregate attribute of paths. The method
used for calculating this type of criteria is very different from that of existing criteria, and this can have a
notable effect on the processing of ordinary skyline path queries. This paper defines the aggregate attributes
of paths, discusses the impact of aggregate attributes on skyline path queries, and proposes a novel index
tree with an intelligent algorithm to find the skyline path while taking aggregate attributes into account.
Experiments demonstrate the effectiveness and efficiency of the proposed algorithm.

INDEX TERMS Databases, query processing, skyline query, path planning, indexed tree.

I. INTRODUCTION
Path planning is among the most common location-based
services, used for commercial purposes such transport man-
agement and resource allocation, as well as in everyday
life, such as planning routes using online maps (e.g. Bing
Maps [24], Google Maps [25], MapQuest [26], and Yahoo!
Maps [27]). Online maps differ in their path search criteria
(examples include the shortest distance, the shortest travel
time, or the fewest transfers on public transport), and searches
are usually limited to a single criterion. This limitation often
makes it difficult to obtain a suitable solution. The shortest
path may require that users cut through areas prone to con-
gestion, whereas the path with the shortest travel time may
require that users take toll highways. In response,
Tian et al. [21] and Kriegel et al. [15] proposed the concept
of the skyline path query. Given an undirected graph with
origin s and destination t , we use path p to connect s and t ,
where p possesses d attribute values [w1,w2, . . . ,wd ]. If p
is not worse than another path p’ in all attribute values and
is better in at least one attribute value, then p is said to
dominate p’. A skyline path query returns all paths that are
not dominated by other paths.

Figure 1 is an example of skyline path, where each vertex
is a bus station. Edges between vertices indicate that a bus
route runs between the bus stations, wherein the two attribute
values associated with each edge represent the travel time
in minutes and expense in dollars between the bus stations.

FIGURE 1. A skyline path example.

For example, edge (s, a) has values (3, 5), which indicates
that taking a bus from s to a requires 3 minutes and 5 dollars.
The paths in Figure 1 consists of multiple edges, wherein
the attribute values for the paths are obtained by summing
the attribute values of each constituent edge. For example,
path p1 is < s, a, c, t >, which indicates that this path
involves vertices s, a, c, and t . Figure 1 shows that taking
a bus from s to t via p1 would entail 3+4+7=14 minutes
and 5+6+6=17 dollars. A user could employ a skyline path
query to identify the path (bus route) from vertex s to t of
the shortest time for the least expense. First, the skyline path
query identifies all possible paths between s and t and then
calculates the total time and expense required for each of
these paths. The results of this query are tabulated in Table 1.
This table shows that p1 dominates p2 because the time and
expense of p1 are both smaller than those of p2. Moreover,
p1 cannot be compared with p7, because the time of p1 is
smaller than that of p7, despite the fact that the expense
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TABLE 1. The paths from vertex s to t and their time cost and money cost.

of p7 is smaller than that of p1. Based on this conception
of domination, the skyline path query in Table 1 returns
p1 and p7, because only these two paths are not dominated
by other paths.

TABLE 2. The number of customers who would travel between two
vertices.

The above example illustrates the most common method
used for the calculation of attribute values for a given path.
However, the attribute values can also be obtained using
other calculation methods. For example, the manager of the
bus company may decide to establish new bus paths using
Figure 1, where each vertex represents a bus station and the
edges between vertices represents new bus paths that could be
established between bus stations. The attribute values of each
edge represent the time and expense involved in traveling
between bus stations, respectively. The manager of the bus
company might also consider the average number of passen-
gers taking a given bus in either direction every day, as shown
in the lower triangular matrix of Table 2. For example, edge
(s, a) presents a value of 80, which denotes that an average
of 80 passengers embark at station s and disembark at
station a, or vice versa, every day. A bus traversing path
< s, a, c > in both directions could serve 80 passengers
wishing to travel between stations s and a. Moreover, a bus
traveling path < s, a, c > could serve passengers traveling
between stations s and a, s and c, and a and c. Thus, the total
number of passengers taking this bus per day would be the
sum of (s, a), (s, c), and (a, c), which is 150, as tabulated in
Table 2. This calculation method makes it possible to deter-
mine the number of passengers traveling along all possible
paths between station s and station t , as shown in Figure 1.
These results are tabulated in Table 3. Based on the concept of
domination, we can deduce from Table 3 that p1, p2, p5, and
p7 are skyline paths. Among these paths, p5 requires more
time and expense than do the other paths, while carrying the
greatest number of passengers, which makes it a skyline path.

Note that many applications, such as transportation and
city planning, have the same problem that the manager of the
bus company meets. For example, we could consider Table 2

TABLE 3. The paths from vertex s to vertex t and their time cost, money
cost, and number of customers.

as a representation of the average number of goods that are
moved by an express company between different cities every
day, and the manager of this company wants to arrange a
fixed daily route that costs less in terms of time and money
but moves more goods. Or Table 2 might present the number
of cars moving between different cities and the government
wants to design a highway to savemoney and timewhile serv-
ing more users. Both of these issues are effectively addressed
by the proposed method.

The above examples show that the path attributes in an
undirected graph can be calculated using two methods. The
first method involves accumulating all edge values along a
path, such as the time required to travel the path. This work
denotes an attribute obtained using this method as an ‘‘edge
attribute.’’ The primary characteristic of edge attributes is
that there is no change in the magnitude relationship between
edge attribute values and different paths when arbitrary edges
are added to these paths. For example, Figure 1 shows that
the total time required is 7 minutes for path < s, a, c >

and 11 minutes for path < s, b, d , c >. When edge (c, t),
which requires 7 minutes, is separately added to paths
< s, a, c > and < s, b, d , c >, their total required time
increases to 14 and 18 minutes, respectively. The time for
< s, a, c, t > is 4 minutes less than the time required for< s,
b, d , c, t >, as was true for their subpaths to which edge (c, t)
was added.

The second method involves accumulating all vertex com-
bination values along a path using a triangular matrix, and
then calculating the sum of these values, such as the total
number of passengers traversing a specific path. This work
denotes an attribute obtained using this method as an ‘‘aggre-
gate attribute.’’ Unlike an edge attribute, the magnitude rela-
tionship of aggregate attribute values may change, even when
the same edge is added to a different path. For example,
in Figure 1, a bus traveling along path < s, a, c > attracts
passengers traveling between stations s and a, s and c, and
a and c. Therefore, according to the triangular matrix of
Table 2, the total number of passengers taking this path can
be expressed as the sum of the passenger counts for the con-
stituent subpaths: (s, a)+ (s, c)+ (a, c)= 150. Alternatively,
the total number of passengers for path < s, b, d , c > can be
expressed analogously: (s, b)+ (s, d)+ (s, c)+ (b, d)+ (b, c)
+ (c, d)= 135, which is lower than the number of passengers
for path < s, a, c >. However, when edge (c, t) is added to
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these two paths, the passenger count for path < s, a, c >
must be augmented by the passenger counts between stations
s andt , a and t , and c and t: (s, a)+ (s, c)+ (a, c)+ (s, t)+ (a,
t) + (c,t) = 315. The passenger count for path < s, b, d , c >
must be augmented by the passenger counts between stations
s and t , b and t , d and t , and c and t: (s, b)+ (s, d)+ (s, c)+
(b, d)+ (b, c)+ (c, d)+ (s, t)+ (b, t)+ (d , t)+ (c, t) = 345.
The arithmetic relationship between the passenger counts for
paths < s, a, c > and < s, b, d , c > differ from that for the
paths obtained by adding edge (c, t). The incorporation of
such an attribute complicates skyline path queries and leads
to a considerable increase in the number of search queries.

FIGURE 2. The example of the greedy algorithm.

Current skyline path algorithms [15], [21] can use only the
edge attributes of road networks to identify skyline paths,
which means that they are unable to identify skyline paths
when road networks simultaneously possess both edge as
well as aggregate attributes. This is primarily because conven-
tional skyline path algorithms typically employ a greedy algo-
rithm, which selects optimal solutions using a step-by-step
approach from the origin to the destination. This approach is
suitable only for the identification of optimal solutions from
edge attribute values. In the following, we provide an example
to clarify this situation using Figure 2, which denotes
that p1 and p2 are feasible paths of vertices s and a. Suppose
that the greedy algorithm determined that p1 requires less
time than does p2. Then, any path with a minimum travel time
starting from s, passing a, and arriving at t must include p1
and not p2, due to the fact that the magnitude relationship of
edge attribute values along different paths do not change with
the addition of new edges. Thus, when edge (a, t) is separately
added to p1 and p2, the time required to travel from stations s
to t via p1 is still less that the path going via p2. This example
shows that optimal solutions calculated from edge attributes
using the greedy algorithm remain optimal even after the
addition of edges. However, the greedy algorithm is not
suitable for aggregate attributes. Referring again to Figure 2,
if p1 were identified by the greedy algorithm as the path with
the lowest aggregate attribute value between stations s and a,
this may or may not hold after adding edge (a, t). This is
because the magnitude relationship of aggregate attribute val-
ues on different paths may change with the addition of edges.
This means that a greedy algorithm is unable to reliably
identify the path with the lowest aggregate attribute value.
To identify skyline paths in road networks that simultane-
ously possess edge attributes as well as aggregate attributes,
the most naïve method would be to find all possible paths
between an origin and a destination, and then separately
calculate the edge attribute and aggregate attribute values of
all paths. All of the paths would then have to undergo dom-
ination checks before the skyline paths could be obtained.
This procedure is extremely time-consuming.

In this study, we sought to develop a novel algorithm
to overcome this problem by dividing road networks into
multiple regions. This enables the algorithm to determine
skyline paths without having to identify all possible paths
between an origin and a destination. Figure 3(a) illustrates
a road network divided into regions. If the origin point is s,
destination t can be reached by a path going through one of
the following series of regions: < rs, r1, r2, rt >, < rs, r1,
r2, r3, r4, rt >, < rs, r3, r2, rt >, or < rs, r3, r4, rt >. If the
algorithm determines that no paths passing through r3 and r4
yield skyline paths, then the algorithm eliminates those paths,
leaving only < rs,r1,r2,rt > and < rs,r3,r2,rt > for further
analysis.

FIGURE 3. Example of a network being partitioned into regions in a way
that (a) suits a shortest-path algorithm, (b) does not suit a shortest-path
algorithm.

Caremust be taken in the assignment of vertices to a region.
Figure 3(b) presents an unsuitable assignment of vertices to
regions, as illustrated by the path < rs, r1, rt >, which
supposedly involves a path by which to reach destination t
from origin s, i.e, a potential skyline path. In actuality,
< rs, r1, rt > cannot possess skyline paths because no edge
connects vertices a and f in r1, which suggests that no feasible
paths exist between s and t , such that searching for skyline
paths in< rs, r1, rt > is a waste of time. In contrast, any two
vertices within a given region in Figure 3(a) are connected
by at least one path lying entirely within that region. This
means that a feasible path will inevitably be found among
the various combinations of regions in Figure 3(a). Thus, the
division-based method presented in Figure 3(a) is superior to
that shown in Figure 3(b).

During the division of road networks, traditional
R-tree [3], [9] and M-tree [7] solutions are plagued by the
problem in which vertices in the same region may not be
connected. These trees are able to place neighboring vertices
in the same region; however, there is no mechanism by which
to determine whether these vertices are connected in the
road network, thereby reducing the search efficiency of the
algorithm. Thus, we developed a novel tree (the one-hop
tree), for the division of road networks into multiple regions
and the indexing of vertices and regions within the road
network. Using the one-hop tree to divide regions ensures
that the vertices in each region are connected to other vertices
in the same region, thereby saving time in the search for
skyline paths. Finally, we conducted simulations to verify the
efficiency and performance of the algorithm.

4692 VOLUME 4, 2016



Y.-C. Chen, C. Lee: Skyline Path Queries With Aggregate Attributes

The remainder of this paper is organized as follows.
Section II discusses related work on the identification of
skyline paths. Section III defines the parameters used in this
paper. Section IV presents the structure and the algorithms of
the one-hop tree and outlined the proposed SPA algorithm.
Section V presents simulation results. Section VI concludes
the paper.

II. RELATED WORK
In this section, we introduce a number of previous works
related to this paper, including those dealing with skyline
queries and skyline queries on road networks.

A. SKYLINE QUERIES
Common skyline query algorithms include the Block Nested
Loops Algorithm, Divide and Conquer Algorithm, Sort and
Limit Skyline algorithm, and the Branch and Bound Skyline
algorithm. In the following, we present a brief outline of the
concepts underlying these four algorithms.

1) BLOCK NESTED LOOPS ALGORITHM (BNL)
The BNL algorithm [4] is the simplest and most straight-
forward skyline query method, the objective of which is to
build a candidate skyline set. This algorithm compares each
data point with every other point in the dataset. If it is not
dominated, then it forms part of the skyline; if it is dominated,
it is discarded. This comparison process is repeated for each
point in the dataset. The resulting candidate skyline set con-
stitutes the outcome of the skyline query. The BNL algorithm
requires that any two data points in the database be scanned
and tested for dominance; therefore, the time required for
computation increases as the volume of data grows.

2) DIVIDE AND CONQUER ALGORITHM (DAC)
The DAC algorithm [4] breaks down data into groups and
then conducts a skyline query in each group. The group
results are combined into a final skyline query to obtain
the ultimate outcomes. A number of data points can be
eliminated during the initial grouping process; however, this
method remain somewhat inefficient in recognizing and dis-
carding irrelevant data points. This has prompted researchers
to develop a number of other algorithms to identify and reject
dominated points, in order to increase the processing speed
of skyline queries.

3) SORT AND LIMIT SKYLINE ALGORITHM (SaLSa)
The SaLSa algorithm [2] uses a feature obtained from the raw
data as a threshold value with which to filter and discard data
points. The feature may be the total, minimum, or product
of all data dimensions. SaLSa arranges the data sequentially
based on the given feature. Before testing for dominance,
the algorithm checks each point to determine whether it falls
within that feature, which is essentially used as a skyline
threshold. If it is below the threshold value, it must be tested
for dominance. If it exceeds the threshold value, then subse-
quent points need not be tested for dominance. This approach

makes it possible to discard all points above the threshold
value quickly and easily.

4) BRANCH AND BOUND SKYLINE ALGORITHM (BBS)
The BBS algorithm [18] is currently the most popular skyline
query algorithm. The BNL and DAC algorithms require that
most of the data points be processed in order to complete
the skyline query comparison. In contrast, BBS employs an
index structure for the identification of skyline points, which
reduces the number of points that must be tested in order
to process a query. Figure 4(a) illustrates the first step in
building the index, where M0 is the root node comprising all
of the data points. In Figure 4(b), the root node is divided
into M1 and M2, wherein only M1 includes skyline points.
Thus, there is no need to process M2. The deconstruction
of M1, as well as M3 and M4, is shown in Figure 4(c). This
approach eliminates the need to process any points in M2,
which significantly reduces time and cost.

FIGURE 4. Example of the BBS algorithm (a) Initialization, (b) After M0 is
expanded, (c) After M1 is expanded.

B. SKYLINE QUERIES ON ROAD NETWORKS
Previous studies in which skyline queries were used to search
road networks can be classified into those endeavoring to
identify skyline landmarks and those endeavoring to identify
skyline paths.

1) IDENTIFYING SKYLINE LANDMARKS IN ROAD NETWORKS
Deng et al. [8] introduced the concept of searching for skyline
landmarks in road networks. The skyline landmark query
identifies landmarks that match user criteria when user is
traveling on a road network. For example, when a user travels
on a road network, skyline landmark query facilitates him/her
in identifying affordable high-end restaurants that are nearby.
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The algorithm proposed in this work characterizes landmark
attributes as static or dynamic. Static attributes have fixed
values, such as restaurant prices. Dynamic attributes have
variable values, such as the distance between the user and
a given landmark. The proposed algorithm first identifies
static skyline landmarks based on their static attribute values.
Then, when users perform searches, the algorithm identi-
fies all dynamic skyline landmarks based on their dynamic
attribute values, and combines search results with the static
skyline landmarks. Finally, the algorithm can retrieve skyline
landmarks that fit all attributes.

Huang and Jensen [13] proposed a different skyline
landmark search concept from that of [8]. They argued that
users’ travel in road networks should be based on a previ-
ously established path. Thus, when users search for skyline
landmarks, these landmarks should be determined based on
a preset path, and not from the location of the user. The
algorithm proposed in this work was similar to that proposed
by Deng et al. [8], which used the concepts of static and
dynamic attributes to identify skyline landmarks. The only
difference between the algorithms is the attribute calculation
method. Deng et al. [8] considered the distance between the
landmark and the search location of the user; whereas the
researchers of this work considers the distance between
the landmark and the path preset by the user.

A new type of query referred to a continuous skyline
query has recently been developed for the identification of
skyline landmarks in road networks. This type of query pre-
computes range R for each landmark l to ensure that if a
user u moves within R, then l will always be the skyline
landmark for u [14]. Since the development of this method,
numerous researchers have sought to modify the definitions
in [14] to fit other applications that are more difficult to
solve. For example, Son et al. [20] treated the distance on
road network as the Manhattan distance in the development
of Manhattan spatial skyline queries. Huang and He [12]
considered uncertain dimensional values within a Euclidean
space with moving objects, referring to it as the continuous
possible K -nearest skyline query. Pan et al. [17] integrated
the concept of probabilistic skyline queries with continuous
skyline queries on road networks, and proposed a number of
pruning methods. They reported that these innovations make
this process more efficiently than other related algorithms.

2) IDENTIFYING SKYLINE PATHS IN ROAD NETWORKS
Tian et al. [21] introduced the concept of skyline paths. Their
proposed algorithm would use the edge attributes of a road
network to find all skyline paths between the user-specified
starting vertex and destination. The algorithm would first
determine a single skyline path between a starting vertex and
destination whose summation of all attributes values is the
lowest among all paths. Then, the algorithm would identify
other skyline paths by (1) a greedy algorithm to find a possible
relay vertex a between starting vertex s and destination t ,
and (2) calculating the actual attribute values of path< s, a >
and estimating theminimum attribute values of path< a, t >.

If skyline path domination was present after adding the two
values, then a cannot be part of a skyline path. In this instance,
the algorithm again employs the greedy algorithm to identify
other possible relay vertices or identify the next relay vertex
following a.
Kriegel et al. [15] also employed the greedy algorithm to

identify a possible relay vertex a between s and t . However,
rather than employing the most naïve estimation method;
Kriegel et al. [15] used a reference vertex x to support esti-
mations. When users perform a search and provide s and t ,
the algorithm calculates the actual attribute values of path
< x, t >. Then, whenever the greedy algorithm finds a relay
vertex a, the proposed algorithm would estimate the various
minimum attribute values of path < a, x >. In this instance,
because a, x, and t can form a triangle, the algorithm can use
< x, t >,< a, x >, and the triangle inequality to estimate the
minimum attribute values of path < a, t >. By using such a
method, they declared the method proposed in this work was
faster than that proposed in the work of [21].

Many researchers have sought to extend the works
in [15] and [21]. Aljubayrin et al. [1] discussed the problem
of skyline trips on multiple POI categories. Hsu et al. [10]
applied the idea of a skyline path to the planning of trips
to overcome the conventional problem of obtaining multi-
criteria answers. Wen et al. [22] extended the works of [10]
with the inclusion of personal keywords, and reported that
they can provide results of greater accuracy. Yang et al. [23]
combined GPS history data in their queries to help users plan
their skyline route under time-varying uncertainty. Unfortu-
nately, these works do not consider aggregate attributes in
road networks, which makes them inapplicable to the prob-
lems addressed in this study.

III. DEFINITIONS
In this section, we define some of the parameters used in this
work and specify our research goals.
Definition 1 (Vertices): V = {v1, v2, . . . , v|V|} denoting

a collection of vertices in an undirected graph, where |V|
represents the number of vertices. �
Definition 2 (Edges):E= {e1, e2, . . . , e|E|} denoting a col-

lection of edges in an undirected graph, where |E| represents
the number of edges. For all ei ∈ E, ei = (vj, vk), where vj,
vk∈V are two vertices and vj 6= vk. �
Definition 3 (Edge Attributes of an Edge): For all ei ∈ E ,

Eattr(ei) = {wi1,wi2, . . . ,wim} denoting a collection of
edge attributes of ei, where m is the number of edge
attributes. �
Definition 4 (Aggregate Attributes of Two Vertices): For

all vi, vj ∈ V , Aattr(vi, vj) =
{
uij1 , uij2 , ..., uijn

}
denoting

a collection of aggregate attributes of vi and vj, where n is
the number of aggregate attributes. Note that if vi = vj, then
uij1 − uijn are all equal to 0. �
Definition 5 (Path): A path p =< vk1, vk2, . . . , vk|p| >

is a sequence of vertices, where vki ∈ V , |p| indicating a
number of vertices of p, wherein any two vertices within p
are different. �
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In the present work, we did not consider paths in
which a given vertex was visited more than once,
because this would mean that the path contains a
loop. For example, the path < v11, v12, . . . , v1n, v,
v21, v22, . . . , v2n, v, v31, v32, . . . , v3n > could be simplified
as < v11, v12, . . . , v1n, v, v31, v32, . . . , v3n >.
Definition 6 (Edge Attributes of a Path): For a path

p =< vk1, vk2, . . . , vk|p| >, the edge attributes of a path are
PEattr(p) = {pw1, pw2, . . . , pwm}, wherem is the number of
edge attributes and pwi can be evaluated using

pwi =
|p|−1∑
j=1

wji, (1)

where wji is the ith edge attribute of ej and
ej = (vkj, vk(j+1)). �
Definition 7 (Aggregate Attributes of a Path): For a path

p =< vk1, vk2, . . . , vk|p| >, the aggregate attributes of a path
are PAattr(p) = {pu1, pu2, . . . , pun}, where n is the number
of aggregate attributes and pui can be evaluated using

pui =
|p|∑
j=1

|j|∑
k=1

ujki . (2)

�
Definition 8 (Path pi Dominates Path pj): Given two

paths pi and pj, pi is said to dominate path pj if pi is not
worse than pj in all edge attributes and aggregate attributes,
and proves better in at least one edge attributes or aggregate
attributes. �
Definition 9 (Skyline Path Query With Aggregate

Attributes): Given an undirected graph with start vertex s and
end vertex t , a skyline path query with aggregate attributes
returns all non-dominated paths from s to t . �

IV. LOOKING FOR SKYLINE PATHS IN A ROAD NETWORK
WITH AGGREGATE ATTRIBUTES
The most naïve approach to locating skyline paths in a road
network with aggregate attributes is to identify all of the paths
between the origin and destination in the network, calculate
the edge and aggregate attributes of the paths, and perform a
dominance check of all the attributes. Unfortunately, identi-
fying all of the paths [15], [21] and calculating all of the edge
and aggregate attributes can be extremely time-consuming.
Thus, we developed an algorithm for locating skyline paths
with aggregate attributes (SPA) without the need to identify
all possible paths. The SPA algorithm uses a one-hop tree to
divide the road network into multiple regions and then iden-
tify the regions through which the skyline paths cannot pass.
Any paths passing through those regions are immediately
eliminated, thereby reducing the search space. The concept
of one-hop trees is introduced in the following.

A. ONE-HOP TREE
A one-hop tree is a height-balanced indexing structure capa-
ble of dividing road networks into multiple regions and then

FIGURE 5. Example of one-hop tree: (a) Road network with one-hop tree;
(b) Tree structure of the one-hop tree.

indexing them. Figure 5 presents an example of such a tree:
Figure 5(a) presents the results of a road network using a
partitioned one-hop tree, and Figure 5(b) is the corresponding
one-hop tree. The vertices of the road network are stored
in leaf nodes to form a leaf region, such as R1 to R5 in
Figure 5(a).Multiple leaf nodes compose an internal node and
multiple internal nodes form internal regions in the network.
For example, in Figure 5(a), R1 to R3 make up R6, while
R4 and R5 constitute R7. What is unique to this tree is that any
vertex in any leaf region or internal region must be connected
to other vertices in the same region. This is because the
tree is based on the concept of single hops, which means
that any two vertices (or regions) must be connected by an
edge, such that only one hop is required to move from one
vertex (or region) to another. All leaf regions R are formed
as follows: R contains a center vertex c, and any vertices that
are one hop away from c (in other words, connected to c by
an edge) are included in R. Thus, even if vertex vi in R is
not connected by an edge to vertex vj, it remains connected
to vj through c. This ensures that any vertex in R is directly
or indirectly connected to all the other vertices. Note that an
attempt is made to select vertices of a high degree to serve as
the center vertex of leaf regions, where degree refers to the
number of vertices to which it is connected. In Figure 5(a),
R2 is an example of a leaf region with its center, g, connected
directly to h, i, and j. Thus, even though h, i, and j are not
connected by edges, they are linked to one another through g.
In internal region R’, a child region Rc (where Rc may or may
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not be a leaf region) serves as the center, and any other child
regions that are one hop away from Rc (i.e., connected to Rc
by an edge) are included in R’. In this situation, despite the
fact that child region Rx in R’ is not connected to another
child region Ry by an edge, Rx is nonetheless connected to Ry
through Rc. Furthermore, all of the vertices in a given region
are connected to one another, such that all of the vertices in
different child regions are also linked. For example, R6 in
Figure 5(a) is an internal region with R1 at its center. The
three regions within R6 (R1, R2, and R3) are all connected to
one another. In addition, any vertex in R6 is connected to all
other vertices in R6.

1) PARAMETERS IN A LEAF NODE
Each leaf node in a one-hop tree contains seven parameters
associated with the leaf region Rleaf . Four of these parameters
are records concerning the vertices and edges associated with
the leaf region and the other three are used by the SPA algo-
rithm. The first four parameters are as follows: Center(Rleaf ),
Vertex(Rleaf ), Out(Rleaf ), and Way(Rleaf ).
• Center(Rleaf ) records the center of Rleaf .
• Vertex(Rleaf ) lists all of the vertices in Rleaf that are

connected by an edge to Center(Rleaf ). Note that the
number of vertices saved in Vertex(Rleaf ) never exceeds
the degree of Center(Rleaf ) by more than one. This
is because only the vertices connected by an edge to
Center(Rleaf ) are included in Rleaf , with the additional
vertex referring to the Center(Rleaf ) itself.

• Out(Rleaf ) records the edges that connect Rleaf to other
leaf regions. As shown in Figure 5(a),Out(R1) notes that
R1 is connected to R8 through edges (e, j) and (d , g) and
linked to R3 through edges (f , k) and (f , l).

• Way(Rleaf ) registers the paths that any given path p can
take through Rleaf . For example, in Figure 5(a), path p
can enter and leave R3 by way of l and k , respectively,
including < l, m, k > and < l, k >. If p wishes to enter
R3 through l and leave through l, then the only alterna-
tive is< l >. Accordingly,Way(R3) would contain three
paths: < l, m, k >, < l, k >, and < l >. Note that < l,
m, k , l >would not be included inWay(R3), because the
definition of a path in this paper includes a stipulation
that no path can pass through the same vertex twice.

In the following, we introduce the three parameters in the
leaf region that are used in the SPA algorithm:Min_ A(Rleaf ),
MPV_E(Rleaf ), and MPV_A(Rleaf ).
• Min_ A(Rleaf ) registers the minimum value of the aggre-

gate attributes of the paths connecting any vertex in
Rleaf to another vertex outside Rleaf . Min_A(Rleaf ) is a
1 × n vector, where n denotes the number of aggregate
attributes in the road network. For example, if R5 in
Figure 5(a) contained two vertices, u and v, then,
Min_A(R5) would equal min(Aattr(u, a), Aattr(u, b), . . . ,
Aattr(u, t), Aattr(v, a), Aattr(vb), . . . , Aattr(v, t)).

• MPV_E(Rleaf ) is a 1×m vector, where m is the number
of edge attributes in the road network, and ‘‘MPV_E’’
stands for minimum path value of edge attributes.

This parameter records the minimum values of edge
attributes obtained from all paths passing through Rleaf .
For instance, Figure 5(a) includes six paths that pass
through R1: < d , a, e >, < d , e >, < e, a, f >,
< e, d , a, f >, < d , a, f >, and < d , e, a, f >. Thus,
MPV_E(R1) = min(PEattr(< d, a, e >), PEattr(< d ,
e >), PEattr(< e, a, f >), PEattr(< e, d , a, f >),
PEattr(< d , a, f >), PEattr(< d , e, a, f >)) = min((2,
3), (3, 2), (6, 7), (9, 8), (6, 6), (9, 9))=(2, 2). Note that if it
were possible to use the same vertex v to enter and leave
Rleaf , then all of the values in MPV_E(Rleaf ) would
be 0. This is because all of the paths that pass through
Rleaf must include < v > and all of the associated edge
attributes are 0. For example, the paths passing through
R3 in Figure 5(a) include < l >, with the result that all
of the values in MPV_E(R3) are 0.

• MPV_A(Rleaf ) is a 1 × n vector, where n denotes the
number of aggregate attributes in the road network, and
‘‘MPV_A’’ stands for minimum path value of the aggre-
gate attributes. This parameter records the minimum
values of aggregate attributes from all paths passing
through Rleaf . The paths that pass through R1 in
Figure 5(a) include < d , a, e >, < d , e >, < e, a, f >,
< e, d , a, f >, < d , a, f >, and < d , e, a, f >. Thus,
MPV_A(R1) = min(PAattr(< d , a, e >), PAattr(< d ,
e >), PAattr(< e, a, f >), PAattr(< e, d , a, f >),
PAattr(< d , a, f >), PAattr(< d , e, a, f >)). Table 4
shows that this formula would result in min((13, 12),
(4, 6), (16, 12), (30, 20), (11, 5), (30, 20))=(4, 5). Note
that if it were possible to use the same vertex v to enter
and leave Rleaf , then all of the values in MPV_A(Rleaf )
would be 0, for the same reason that was outlined
previously.

Note thatMPV_E(Rleaf ) andMPV_A(Rleaf ) are also values
that must be included in the edge attributes and aggregate
attributes of all paths p passing through Rleaf . Suppose that
path p passed through R1 in Figure 5(a). Then, path p would
pass through one of the following six combinations: < d , a,
e >, < d , e >, < e, a, f >, < e, d , a, f >, < d , a, f >,
and < d , e, a, f >. Thus, the edge attribute of p(PEattr(p))
must include the minimum value of the edge attributes of
these paths (MPV_E(R1)), and the aggregate attribute of p
(PAattr(p)) must include the minimum value of the aggregate
attributes of these paths (MPV_A(R1)).

2) PARAMETERS IN AN INTERNAL NODE
The internal nodes of a one-hop tree store seven parameters
associated with internal region Rinternal , four of which record
the vertices and edges pertaining to the internal region with
the other three used in the SPA algorithm. The first four are as
follows: Center(Rinternal), Child(Rinternal), Out(Rinternal), and
Way(Rinternal).
• Center(Rinternal) registers the center of Rinternal , which

can be a leaf region or an internal region.
• Child(Rinternal) records all of the child regions in
Rinternal , whichmust be connected toCenter(Rinternal) by
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TABLE 4. Aggregate attributes between vertices in R1 and R2.
(a) Aggregate attribute 1. (b) Aggregate attribute 2.

an edge. Note that the number of child regions stored in
Child(Rinternal) equals the degree of the Center(Rinternal)
plus one. This is because only the child regions con-
nected to Center(Rinternal) by an edge are included in rf
and the additional one refers to Center(Rinternal) itself.

• Out(Rinternal) registers the edges that connect Rinternal to
other internal regions. As shown in Figure 5(a), Out(R6)
indicates that R6 is connected to R7 through edges (l, u),
(i, s), and (j, s).

• Way(Rinternal) records the series of child regions that any
given path p can take through Rinternal . For the sake of
convenience, we refer to a series of child regions as a
combination of child regions (CCR). For example, in
Figure 5(a), p has two alternative routes in its passage
through R6: (1) R6 is entered through vertex l and exited
through vertex i or j (i.e., p passes through R3, R1, and R2
inR6) and (2)R6 is entered through i and exited through j
(i.e., p only passes through R2 in R6). Thus, Way(R6)
contains two CCRs: < R3, R1, R2 > and < R2 >.

The three parameters in the internal region that are used
in the SPA algorithm are as follows: Min_ A(Rinternal),
MPV_E(Rinternal), and MPV_A(Rinternal).
• Min_ A(Rinternal) registers the minimum value of the

aggregate attributes of paths connecting any vertex
in Rinternal to other vertices outside Rinternal ; Min_
A(RRinternal) is a 1 × n vector, where n denotes the
number of aggregate attributes in the road network.
If Rinternal contained child regions Rc1, Rc2, . . . ,Rcn,
then, Min_ A(Rinternal) would equal min(Min_ A(Rc1),
Min_ A(Rc2), . . . ,Min_A(Rcn)).

• MPV_E(Rinternal) is a 1 × m vector, where m repre-
sents the number of edge attributes in the road network.
This parameter records the minimum values of the edge
attributes in all paths associated with the various CCRs

in Rinternal . From Way(Rinternal), we can derive that
Rinternal contains k CCRs, ranging from CCR1 to CCRk .
We can then write out CCRi as < Ri1, Ri2, . . . ,Riq >.
Thus,

MPV_E (Rinternal) = min
i=1∼k

 q∑
j=1

MPV_E
(
Rij
),

(3)

where
∑q

j=1MPV_E
(
Rij
)
is the sum ofMPV_E(•) from

all child regions in CCRi. For example, Way(R6) in
Figure 5(a) includes two CCRs (< R3, R1, R2 > and
< R2 >), with the result that MPV_E(R6) equals
min((MPV_E(R3) + MPV_E(R1) + MPV_E(R2)),
MPV_E(R2)) = min(((0, 0) + (2, 2) + (1, 1)), (1, 1)) =
min((3, 3), (1, 1)) = (1, 1).

• MPV_A(Rinternal) is a 1 × n vector, where n is the
number of aggregate attributes in the road network. This
parameter records the minimum values of all aggregate
attributes from all paths associated with the various
CCRs in Rinternal . Suppose that Way(Rinternal) contains
k CCRs, ranging from CCR1 to CCRk . Then, CCRi can
be written as < Ri1, Ri2, . . . ,Riq >. Thus,

MPV_A (Rinternal) = min
i=1∼k

 q∑
j=1

MPV_A
(
Rij
),

(4)

where
∑q

j=1MPV_A
(
Rij
)
is the sum of MPV_A (•)

from all child regions in CCRi. For example,Way(R6) in
Figure 5(a) includes two CCRs (< R3, R1, R2 > and <
R2 >), such thatMPV_A(R6) equals min((MPV_A(R3)+
MPV_A(R1) + MPV_A(R2)), MPV_A(R2)). Further-
more, Table 4 shows that this formula results in
min((0, 0)+(4, 5)+(1, 4), (1, 4)) = (1, 4); therefore,
MPV_A(R6) = (1, 4).

Note that MPV_E(Rinternal) and MPV_A(Rinternal) are
values that must be included in the edge attribute and aggre-
gate attribute for any path p passing throughRinternal . Suppose
that path p passes through R6 in Figure 5(a). Then, the edge
attribute of p(PEattr(p)) must include the minimum value of
the edge attributes associated with these paths (MPV_E(R6)),
and the aggregate attribute of p(PAattr(p)) must include the
minimum value of the aggregate attributes associated with
these paths (MPV_A(R6)).

3) TREE FORMULATION
The tree is created from the bottom up, starting from a leaf
node and working upwards layer by layer until the first root
node is established. In the formulation of leaf nodes, the
algorithm first identifies the vertex with the highest degree,
vertex v1, and marks it as the center of the first leaf node
Rleaf 1. All of the vertices connected to v1 through edges
are added to Vertex(Rleaf 1). Once Rleaf 1 is established, the
algorithm selects the vertex with the highest degree among
the remaining vertices, vertex v2, which is designated the
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center of the second leaf node, leaf node Rleaf 2. The vertices
connected to v2 by edges that have not been included in
Vertex(Rleaf 1) are added to Vertex(Rleaf 2). Note that when the
degrees of more than one vertex are the same, the algorithm
processes the vertices according to the time they were listed,
which does not affect the results. The method used for for-
mulating the remaining leaf nodes is the same as that used
for the second leaf node, and this process continues until all
vertices in the road network have been added to leaf nodes.
When all of the leaf nodes have been identified, we can
calculate the five parameters for each:Way(Rleaf ),Out(Rleaf ),
Min_ A(Rleaf ), MPV_E(Rleaf ), and MPV_A(Rleaf ).

In the following, Figure 5(a) is used as an example to
illustrate the establishment of leaf nodes. First, vertex a,
the vertex with the highest degree in the road network
(degree = 5) is designated the center of leaf node R1. Then,
b, c, d , e, and f , which are connected to a by edges, are
included in Vertex(R1). The second step involves processing
the vertex with the highest degree among the remaining ver-
tices. Although the degrees of g and l are both 4, g was listed
first and is therefore processed first. This means that g is
designated as the center of R2, whereupon h, i, and j (which
are linked to g) are added to Vertex(R2). Note, that as long
as d is connected to g, it is included in Vertex(R1) rather than
being added to Vertex(R2). The method used for formulating
R3 to R5 is the same as that used for R2. Once all of the
leaf nodes have been established, it is possible to calculate
Way(•), Out(•), Min_ A(•), MPV_E(•), and MPV_A(•) for
R1 through R5. Once completed, the results can be obtained
as shown in Figure 5(a).

The formulation of internal nodes is outlined in the
following. First, the algorithm identifies the leaf node with
the highest degree, leaf node Rc1, and designates it the center
of first internal node Rinternal1. All other leaf nodes connected
to Rc1 by an edge are included in Child(Rinternal1). Once
Rinternal1 is established, the leaf node with the next highest
degree is classified as Rc2 and designated the center of the
second internal node Rinternal2. The leaf nodes connected to
Rc2 by an edge and not included in Child(Rinternal1) are added
to Child(Rinternal2). Note that when multiple leaf nodes have
the same number of degrees, the algorithm selects the leaf
node with the greatest number of vertices for processing,
because eliminating this node would eliminate the greatest
number of paths. The remaining internal nodes are formulated
in the same manner as Rinternal2, and the process continues
until all of the leaf nodes have been added to internal nodes.
Finally, when all of the internal nodes have been defined, we
can calculate Way(Rinternal), Out(Rinternal), Min_ A(Rinternal),
MPV_E(Rinternal), and MPV_A(Rinternal) for each internal
node.

In the following, we use Figure 5(a) as an example to
illustrate the process of establishing internal nodes. First,
the leaf node with the highest degree in the road network
is identified and designated as the center of the first internal
node. Although the degrees of leaf nodes from R1 to R5 are
all 2, R1 has a greater number of vertices and is therefore

designated the center of internal node R6. Then, R2 and R3,
which are linked to R1 by an edge, are added to R6. The
remaining leaf nodesR4 andR5 both have 2 degrees; however,
R4 contains a greater number of vertices and is therefore
designated the center of internal node R6. R5 is connected to
R4 by an edge; therefore, it is added to R6. When all of the leaf
nodes have been added to internal nodes, we can calculate
Way(•), Out(•), Min_ A(•), MPV_E(•), and MPV_A(•) for
R6 and R6.

Even though the results may include a large number of
internal nodes, the same method is applied to all of them
to formulate internal nodes at a higher level. The process is
continued until only a single node remains, which is the root
node of the first level in the one-hop tree. For example, the
root node in Figure 5(a) is R8.

B. SPA ALGORITHM
Given origin s and destination t , the objective of the SPA
algorithm is to identify the skyline paths between these two
vertices without the need to search through every possi-
ble alternative. The SPA algorithm is based on the concept
of sequential regions (SRs), which refers to a sequence of
regions within the same layers of a one-hop tree, denoted
as < r1, r2, . . . , rn >, in which edges connect r1 and r2,
r2 and r3, . . ., with rn−1 and rn. Road networks can include
multiple SRs connecting s and t(s and t are situated within
r1 and rn in the SR, respectively), as well as SR α, which can
include more than one path (paths p1, p2, . . . , pm) connecting
s and t . The SPA algorithm calculates the minimum value
of edge attributes, MPV_E(α), from p1 to pm in α as well
as the minimum value of aggregate attributes, MPV_A(α),
where MPV refers to the minimum path value, E denotes
edge attributes, and A signifies aggregate attributes. If we
identify any skyline path ps in whichMPV_E(α) is dominated
by PEattr(ps) and MPV_A(α) is dominated by PAattr(ps),
then we can conclude that paths p1 to pm in α cannot be
skyline paths and eliminate them. In all other cases, the SPA
algorithm assumes that paths p1 to pm in α are potential
skyline paths, and thus expands α into multiple child SRs or
paths. The SPA algorithm continues evaluating the candidacy
of these child SRs or paths in becoming skyline paths until all
possibilities have been explored.

The SPA algorithm requires a heap to maintain the SRs
and paths as well as a list to store the skyline paths that
have already been identified. Figure 6 exhibits the procedures
preceding the implementation of the SPA algorithm, which is
divided into an initialization phase and an examination phase.

1) INITIALIZATION PHASE
As shown in Figure 6, given origin s and destination t , the
initialization phase comprises four actions: (1) identifying
nodes rs and rt where s and t are located in the one-hop tree,
(2) identifying all SRs connecting rs and rt , (3) calculating
the minimum edge attribute and aggregate attribute values
MPV_E(•) and MPV_A(•) of all paths in the identified SRs,
and (4) inserting these SRs into the heap. The first action
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FIGURE 6. Flow chart of the SPA algorithm.

FIGURE 7. Example evaluation of MPV_E(α) and MPV_A(α).

begins with leaf nodes of the one-hop tree, which involves
searching each layer from the bottom up for nodes rs and rt
within the region of s and t . This is continued until rs and rt
are contained within the same parent node. For example, let
us assume that we want to find nodes in the region of vertices
a and t in Figure 6(a). By checking all of the leaf nodes, we
would determine that a and t are in R1 and R4, respectively.
However, R1 and R4 are not included in the same parent node;
therefore, we continue the checking process in the layer above
the leaf node. After checking the internal node of this layer, it
would be revealed that a and t are in R6 and R7, both of which
are in root node R8. The action would stop here with rs ∈ R6
and rt ∈ R8.
The second action involves identifying all of the SRs

connecting rs and rt . Note that during the execution of this
action, rs and rt are generally located in higher levels of the
one-hop tree. Thus, most road networks contain fewer than
20 regions, which reduces the time required to locate SRs.

The third action involves calculating the values of min-
imum edge attributes and aggregate attributes, MPV_E(•)
and MPV_A(•), of all paths in the SR. However, we must
first elucidate the relationship between SRs and the paths
within them. Figure 7 presents an example of SR α,
< r1, r2, . . . , rn >with the text adjacent to each region in the

one-hop tree listing the corresponding parameters. Regions
in the figure are interconnected by one or more edges, and
r1 and rn include origin s and destination t , respectively. One
path pmust exist within α, starting from s in r1, moving along
one of the edges between r1 and r2, passing r2, moving along
one of the edges between r2 and r3, . . ., moving along one
of the edges between rn−1 and rn, to reach t in rn. In other
words, p in α passes (1) region ri (2≤ i ≤ n− 1) and (2) the
edge between ri and ri+1 (1 ≤ i ≤ n − 1). Thus, calculating
the minimum edge attribute value of all paths in α requires
that we consider two other values: (1) the addends that must
be included in the edge attributes of p (PEattr(p)) when p
passes ri (2 ≤ i ≤ n − 1) and (2) the addends that must
be included in PEattr(p) when p passes the edges between
ri and ri+1 (1 ≤ i ≤ n − 1). The first value has the same
value as the MPV_E(ri) recorded in the one-hop tree, and
therefore need not be re-calculated. Calculating the second
value involves identifying edges ei1, ei2, . . . , eim, which are
the edges connecting ri and ri+1 in the Out(ri) of the one-hop
tree. The use of min(Eattr(ei1), Eattr(ei2), . . . ,Eattr(eim))
makes it possible to determine the minimum value of the
edge attribute, which is the value that must be included in
PEattr(p) (i.e., addend of PEattr(p)) when p passes the edges
between ri and ri+1. In Figure 7, the three edges linking
r1 to r2, have two edge attributes: (1, 6), (2, 5), (3, 9). Thus,
we can conclude that when p passes from r1 to r2, PEattr(p)
must include min((1, 6), (2, 5), (3, 9)) = (1,5). Finally, from
the two values above we derive the following:

MPV_E (α) =
n−1∑
i=2

MPV_E (ri)

+

n−1∑
i=1

min (Eattr (ei1) ,Eattr (ei2) , ...,Eattr (eim)).

(5)

Note that the above formula does not considerMPV_E(r1)
or MPV_E(rn) because they are values that must be included
in PEattr(p) when p passes through r1 and rn. However, p
does not actually pass through r1 and rn in the SR, and there-
foreMPV_E(r1) and MPV_E(rn) cannot be directly included
in the formula. As shown in Figure 7, p starts at point s in r1
but does not actually pass all the way through r1. Similarly,
after entering rn, p stops at t without passing all the way
through rn. It is possible to calculate the values that must
be included in PEattr(p) when p passes through r1 and rn;
however, this would incur additional computation costs and
should therefore be avoided.
Calculating the minimum aggregate attribute value of all

paths in α, MPV_A(α) requires that we also consider two
values: (1) the addends that must be included in the aggregate
attributes of p (PAattr(p)) when p passes ri (2 ≤ i ≤ n − 1)
and (2) the addends that must be included in PAattr(p) when
p passes the edges in other regions ri and rj (2 ≤ i, j ≤ n− 1,
i 6= j). Again, we already know that the first value is the
same as the one recorded forMPV_A(ri) in the one-hop tree.
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The computation process for the second value is more com-
plex; therefore, Figure 7 is used to illustrate the values that
must be included inPAattr(p) when p passes through different
regions. Suppose that p only passes through r2 and r3 in
Figure 6. From the one-hop tree, we can derive the mini-
mum value of the aggregate attributes from any given vertex
in r2 to any other vertex outside of r2, i.e., Min_ A(r2).
We can also derive the minimum value of the aggregate
attributes from any given vertex in r3 to any other vertex
outside of r3, i.e., Min_ A(r3). As shown in Figure 7, when
p passes through r2, it passes vertices d and e; when pass-
ing through r3, it passes vertices g and h. Consequently,
when passing through r2 and r3, the addends of PAattr(p)
must include the following four aggregate attribute values:
Aattr(d , g), Aattr(d , h), Aattr(e, g), and Aattr(e, h). The min-
imum sum of these values is min(Min_ A(r2),Min_ A(r3))×
2 × 2. As shown in this example, calculating the values that
must be included inPAattr(p) when p passes through different
regions in an SR requires (1) the minimum aggregate attribute
values from any given vertex in ri to any vertex outside of ri,
which is a value equal to Min_ A(ri) in the one-hop tree,
and (2) the number of vertices that p must pass on its way
through ri. The latter can be calculated using Way(ri) of the
one-hop tree and written as min|Way(ri)|, where | • | denotes
the number of vertices in the path. Accordingly, the second
value is obtained as follows:

n−1∑
i=2

n−1∑
j=2

(
min

(
Min_A (ri) ,Min_A

(
rj
))

×min |Way (ri)| ×min
∣∣Way (rj)∣∣

)
, (6)

and MPV_A(α) equals

n−1∑
i=2

MPV_A (ri)

+

n−1∑
i=2

n−1∑
j=2

(
min

(
Min_A (ri) ,Min_A

(
rj
))

×min |Way (ri)| ×min
∣∣Way (rj)∣∣

)
, (7)

The above formulas do not consider r1 or rn, due to the
fact that p does not pass through r1 or rn in the SR; therefore,
MPV_A(•), Min_ A(•), and Way(•) cannot be used directly.
Of course, we can calculate the values that must be included
in PAattr(p) when p passes through r1 and rn, but this would
incur unnecessary computational costs.

The fourth action of the initialization phase involves
adding the totals of the various dimensions ofMPV_E(•) and
MPV_A(•) from all SRs between s and t and inserting them in
the heap in ascending order. The total number of dimensions
serves as the basis for ranking, which is based on the fact
that paths with smaller dimension totals are more likely to
be skyline paths [6], [18]. Placing the SRs with the smaller
total dimensions at the front of the heap makes it possible to
obtain the skyline path results from the heap more quickly
and eliminate the SRs and paths that do not qualify as skyline
paths.

2) EXAMINATION PHASE
In the examination phase, the first element (which can be a
path or an SR) is selected from the heap and a dominance
check is performed using the skyline paths in the list. Each
dominance check produces one of five outcomes as shown
in Figure 6: (1) the first element is path p, which is dom-
inated by one of the skyline paths in the list; (2) the first
element is path p, which is not dominated by a skyline path
in the list; (3) the first element is SR α in which MPV_E(α)
and MPV_A(α) are dominated by PEattr(ps) and PAattr(ps)
of skyline path ps; (4) the first element is SR α in which
MPV_E(α) and MPV_A(α) are not dominated by PEattr(ps)
and PAattr(ps) of any skyline path ps; or (5) the first element
does not exist. The handling of these five outcomes proceeds
as follows.
Case 1 (The First Element Is Path p, Which Is Dominated

by a Skyline Path in the List): In this situation, p is dominated
by another path and therefore cannot be a skyline path. It is
eliminated from the heap.
Case 2 (The First Element Is Path p, Which Is Not

Dominated by Any Skyline Path in the List): In this situation,
as (1) p is not dominated by any skyline path, (2) the other
possible paths in the heap cannot dominate p because their
total dimensions exceed that of p [6], [18]. Thus, we surmise
that no existing path can dominate p; i.e., it must be a skyline
path and is added to the list.
Case 3 (The First Element Is SRα inWhichMPV_E (α) and

MPV_A (α) Are Dominated by PEattr (ps) and PAattr (ps) of
Existing Skyline Path ps): In this case, all of the paths in α are
dominated by ps; therefore, none of the paths in α could be
skyline paths. Thus, we eliminate α from the heap.
Case 4 (The First Element Is SRα inWhichMPV_E (α) and

MPV_A (α) Are Not Dominated by PEattr (ps) and PAattr (ps)
in Any Skyline Path ps): In this situation, the paths in α are not
dominated by any existing skyline paths; therefore, they may
qualify as skyline paths themselves. Thus, we must identify
all child SRs or paths in α (this method is discussed later),
which are to be replaced in the heap according to their total
dimensions for further evaluation by the algorithm.
Case 5 (The First Element Is a Blank): In this case, the

algorithm has already checked all of the SRs and paths in the
heap, such that the algorithm is terminated. The skyline paths
registered in the list at this point become the final answers to
the skyline path query.

The algorithm requires two steps to find all of the child SRs
or paths in an SR < r1, r2, . . . , rn >. The first step involves
identifying all possible CCRs or paths that could be taken in
order to pass through the SR. The second step involves using
a lattice structure to string these CCRs or paths into a child
SR or a path linking the origin to the destination. Below, we
describe these two steps in detail.

The first step depends on the type of region. To find the
CCRs or paths that pass through r2, r3, . . . , orrn−1 in SR
< r1, r2, . . . , rn >, the algorithm only needs to read the
Child(•) or Way(•) from r2 to rn−1, in which the CCRs and
paths that pass through r2, r3, . . ., or rn−1 were stored when
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the one-hop tree was formulated. To find the CCRs or paths
that pass through r1 and rn in SR < r1, r2, . . . , rn >, the
algorithm is unable to use the Child(•) orWay(•) of r1 and rn
because p does not actually pass through them. In this case,
we can apply the brute force approach to identify the CCRs
or paths that may be taken by p in r1 and rn. Note that the use
of brute force algorithm in this instance does not waste very
much time because the number of child regions or vertices
stored in each region r in the one-hop tree is at most equal
to the degree of Center(r) plus 1. Thus, even a brute force
algorithm can quickly find all possible CCRs or paths in any
region.

FIGURE 8. Lattice structure used in the SPA algorithm.

The second step involves the use of a lattice structure to
string the CCRs or paths derived in the first step into a child
SR or path connecting the origin to the destination. We first
use the lattice structure in Figure 8 to identify all of the child
SRs in SR< r1, r2, r3 >. The lattice structures of all paths in
the SR can be derived from this figure by analogy. Layer i
of the lattice structure records all of the CCRs in region i
in the SR. In Figure 8, Layer 1 registers CCRs <rcs, rc11,
rc12 > and<rcs, rc13 > in r1, where rcs is the child region in
which origin s is located. Layer 2 records CCRs <rc21, rc22,
rc23 > and <rc22 > in r2. Layer 3 contains CCRs <rc31,
rct > and<rct > in r3, where rct is the child region in which
destination t is located. The number of edges between layers
is also recorded in the lattice structure. On the left of Figure 8,
we can see a number 1 between r1 and r2, which indicates that
there is one edge connecting them. The number 2 between
r2 and r3 indicates that there are two edges connecting them.
The CCRs of different layers are also linked by arrows, indi-
cating the presence of an edge connecting them. For example,
<rcs, rc13 > in Layer 1 and<rc22 > in Layer 2 are connected
by an arrow, which means that an edge connects<rcs, rc13 >
and <rc22 >. Figure 8 also lists combinations of CCRs as an
indication of the paths that can be taken from rcs to reach the
selected CCR. For example, we can see [<rcs, rc11, rc12 >,
<rc22 >] and [<rcs, rc13 >, <rc22 >] below <rc22 > in
Layer 2, which means that rcs can reach <rc22 > through
rc11, rc12, or rc13. Furthermore, [ ] beneath a CCR indicates
that rcs is unable to reach this CCR. For example, [ ] beneath

<rc21, rc22, rc23 > in Layer 2 indicated that rcs is unable to
reach <rc21, rc22, rc23 >.

FIGURE 9. Example of a path running back and forth between two layers.

To identify the child SRs, we start from the first layer
of the lattice structure and progress through them layer by
layer. Each layer requires three actions. Suppose that the layer
currently being processed is Layer i. The three actions would
be as follows: (1) Identify the CCRs in Layer i − 1 that are
connected to CCRs in Layer i by an edge, and link the two in
the lattice structure. (2) Check whether a path can run back
and forth between CCRs in Layer i − 1 and CCRs in Layer
i, and take this into consideration in the lattice structure as
well. Running back and forth would require the existence
of at least three edges between the two layers. This would
enable a path to run from Layer i − 1 to Layer i and then
from Layer i to Layer i − 1, and finally from Layer i − 1
to Layer i again. Figure 9 presents an example of a path
running back and forth between different layers. As can be
seen, ri−1 reaches ri via edge (c, f ), whereupon ri goes back
to ri−1 via edge (g, d) and finally returns to ri via edge (e, h).
In other words, the addition of paths to < ri−1, ri > in
Figure 9 requires that we take into account how the paths
run in < ri−1, ri, ri−1, ri > and add these situations to the
lattice structure. (3) For each CCR combination β in Layer i,
we calculate the addends of the edge attributes and aggregate
attributes of path p passing through this CCR combination,
namely MPV_E(β) and MPV_A(β). We then check whether
MPV_E(β) and MPV_A(β) are dominated by the PEattr(ps)
and PAattr(ps) of skyline path ps. Note that the methods used
to calculateMPV_E(β) andMPV_A(β) in this step are similar
to those used for the MPV_E(•) and MPV_A(•) of an SR.
This is because the calculation objectives of the two are the
same, and CCRs and SRs both consist of multiple regions
on the same layer of a one-hop tree. The only difference is
that an SR considers regions rs and rt in which the origin
and destination are located, while a CCR only considers
region rs where the origin is located. Suppose that CCR β

is < r1,r2, . . . , rn >, then r1 contains origin s, and edges ei1,
ei2, . . ., and eim connects ri and ri+1. From Equation (5), we
determine MPV_E(β) as follows:

MPV_E (β) =
n∑
i=2

MPV_E (ri)

+

n−1∑
i=1

min (Eattr (ei1) ,Eattr (ei2) , ...,Eattr (eim)), (8)
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where n-1 in Equation (5),
∑n−1

i=2 MPV_E (ri), becomes n in
Equation (8). This is because the last region rn in a CCR
does not include final destination t as the last region. Even
though a path does not pass through the final region in an SR,
it does pass through the final region of a CCR; therefore, we
must consider rn in Equation (8). Similarly, supposing that
CCR β is< r1, r2, . . . , rn >, then Equation (7) would render
MPV_A(β) as follows:

MPV_A (β) =
n∑
i=2

MPV_A (ri)

+

n∑
i=2

n∑
j=2

(
min

(
Min_A (ri) ,Min_A

(
rj
))

×min |Way (ri)| ×min
∣∣Way (rj)∣∣

)
, (9)

where n− 1 in Equation (7) becomes n in Equation (9). The
reason is the same as that in Equation (8); i.e., even though a
path does not pass through the final region in an SR, it does
pass through the final region of a CCR and therefore, rn must
be considered in Equation (9).

FIGURE 10. Example of using the lattice structure to find child SRs.

In the following, Figure 10 is used to explain the methods
involved in identifying all child SRs in SR < r1, r2, r3 >
using a lattice structure with three edges connecting r1 and r2
and two edges connecting r2 and r3. Note that all of the paths
in the lattice structure can be derived using this simple exam-
ple. We begin by processing Layer 1 of the lattice structure.
Note that this layer does not require the first or second actions
because it is the first layer. The third action involves calcu-
lating the MPV_E(•) and MPV_A(•) of [<rcs, rc11, rc12 >]
and [<rcs, rc13 >] using Equations (8) and (9), respectively.
Suppose that the results indicate that MPV_E(<rcs, rc11,
rc12 >) is dominated by the PEattr(ps) of skyline path ps,
and MPV_A(<rcs, rc11, rc12 >) is dominated by PAattr(ps).
If none of the paths in < rcs, rc11, rc12 > can become a
skyline path, we can draw a line through [<rcs, rc11, rc12 >]
in Figure 10, which eliminates the paths in this branch from
further consideration.

The first step in processing Layer 2 in the lattice structure
involves identifying the CCRs connected by edges between
Layers 1 and 2. The algorithm first finds the last child region
rc13 of the remaining CCR <rcs, rc13 > in Layer 1 as well
as the first child regions of CCRs <rc21, rc22, rc23 > and
<rc22 > in Layer 2: rc21 and rc22. Suppose that Out(rc13) in

the one-hop tree indicates that rc13 is connected to rc22 but
not to rc21. We would then connect <rcs, rc13 > to <rc22 >
in Figure 10 but not<rcs, rc13 > to<rc21, rc22, rc23 >. This
would be the same under <rc21, rc22, rc23 > [ ]. The second
step involves checking whether any paths can run back and
forth between the CCRs in Layer 1 or those in Layer 2. More
than three edges connect Layers 1 and 2; therefore, there may
be paths running back and forth between the CCRs in Layer
1 and/or the CCRs in Layer 2. Furthermore, the results of the
first action tell us that rc13 and rc22 share the only connection
between Layer 1 and Layer 2. The algorithm then utilizes
the brute force approach to determine whether any paths run
back and forth between rc13 and rc22. If any were identified,
then we would add CCR <rc22, rc13, rc22 > to Layer 2 in
Figure 10 in addition to the original <rc22 > and connect
<rc22, rc13, rc22 > to <rcs, rc13 > using a dashed line. The
third action in Layer 2 involves calculating theMPV_E(•) and
MPV_A(•) of [<rcs, rc13 >, <rc22 >] and [<rcs, rc13 >,
<rc22, rc13, rc22 >] using Equations (8) and (9), respectively.
Doing so indicates that a skyline path dominates the CCR
combination [<rcs, rc13 >, <rc22, rc13, rc22 >]; therefore,
we draw a line through this CCR combination to indicate that
it has been eliminated.
The first step in Layer 3 involves identifying the CCRs con-

nected by edges in Layers 2 and 3. In this case, rc31 and rct are
connected to rc22; therefore, we draw lines linking<rc22 > to
<rc31, rct > and <rct >. The second step involves checking
whether any paths run back and forth between Layer 2 and
Layer 3. As shown in Figure 9, only two edges connect the
two layers; therefore, this is not possible and no action is
required. The third action involves calculating theMPV_E(•)
andMPV_A(•) of [<rcs, rc13 >, <rc22 >, <rc31, rct >] and
[<rcs, rc13 >,<rc22 >,<rct >] using Equations (8) and (9).
The results fail to identify any skyline paths dominating the
two CCR combinations; therefore, they are retained in the
lattice structure. This is the last layer of the lattice structure;
therefore, <rcs, rc13, rc22, rc31, rct > and <rcs, rc13, rc22,
rct > are the child SRs of SR < r1, r2, r3 >.

C. TEMPORAL AND SPATIAL COMPLEXITY
In this section, we examine the performance of the pro-
posed method from the perspective of temporal and spa-
tial complexity. Generally speaking, the ideal situation for
a skyline-related query would involve only one result in the
dataset. Thus, using the proposed method to obtain the final
result for a given query would involve traversing the one-
hop tree from root to leaf only once. If the height of the
one-hop tree were h, then the temporal complexity would
be O(h). Thus, the spatial complexity would be O(h ∗ l),
where l is the size of the space used by each node in a
hop-tree.
In contrast, theworst case for a skyline-related querywould

be a situation in which most of the points in the dataset are
answers. In this work, that would be a situation in which
most of paths between the origin and destination end up as
results for the query. In other words, even if all of the nodes
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and edges in the road network were pre-indexed, they would
still have to be accessed, such that the temporal complexity
would be equal to that of the naïve method. Furthermore,
all of the nodes in the hop-tree would have to be expanded,
but the proposed method would be unable to take advantage
of the naïve method. This lends credence to the argument
proposed by Sheng and Tao [19] that the complexity of all
index-based skyline methods necessarily equals to that of the
naïve method. Nonetheless, the fact that worst-case situations
are seldom encountered means that the proposed method is
still a viable solution.

V. SIMULATIONS
In the following section, we describe a series of simulations
used to evaluate the efficiency with which skyline paths can
be found using the SPA algorithm with one-hop tree. This is
the first study to seek skyline paths from a road network with
aggregate attributes; therefore, we also examined the influ-
ence of aggregate attributes and edge attributes on skyline
paths.

TABLE 5. A summary of simulation parameters.

The dataset used in this simulation was a bus network
generated from the road network of Oldenburg, Germany,
which is a benchmark road network comprising 6,105 inter-
sections and 7,036 road segments [2], [7], [10]. Simulating
a real-world bus network involved the random selection of
intersections on the Oldenburg road network to serve as bus
stops (represented as vertices). Bus stops were randomly
connected to a number of adjacent bus stops (represented
as edges). Following the construction of the bus network,
the values of edge attributes and aggregate attributes were
randomly generated within a range 0 to 1. Table 5 summarizes
the three related parameters, the default parameters of which
are listed in bold type. The number of vertices corresponds
to the number of bus stops and the maximum degree of the
vertices corresponds to the maximum number of bus stops
that could be connected to a given bus stop. NE and NA indi-
cate the number of edge attributes and aggregate attributes,
respectively. These were set to ensure that every scenario
included at least two edge attributes or at least two aggregate
attributes. Tomediate the influence of different road networks
and different sets of origin and destination points, the final
results were averaged from 900 experiments. We began by
generating 30 bus networks on the Oldenburg road network
and then randomly assigning 30 sets of origin and destination
points for each bus network. All of the experiments were
performed on a computer running Microsoft Windows XP on
an Intel i7-3770 CPU at 3.40GHzwith 4 GB ofmainmemory.
All programs were written in MATLABr.

A. INFLUENCE OF AGGREGATE ATTRIBUTES AND EDGE
ATTRIBUTES ON SKYLINE PATHS
We used the average number and average length of skyline
paths to analyze the influence of aggregate and edge attributes
on skyline paths. Note that the average length of skyline paths
indicates the average number of vertices included in a skyline
path.

FIGURE 11. Simulation results from varying NA and NE for (a) the average
length of a skyline path, (b) the average number of skyline paths. In both
graphs, the ‘‘aggregate’’ data have the number of ‘‘edge attributes’’ fixed
at 2, and likewise for the ‘‘edge’’ data.

Figure 11 shows how the values of NA and NE affected the
average length and average number of skyline paths. Note
that for the aggregate curve in Figure 11, the number of
aggregate attributes varied from one to five and the number
of edge attributes was fixed at 2. For the edge curve, the
number of the edge attributes varied from one to five and the
number of aggregate attributes was fixed at 2. Figure 11(a)
indicates that the average length of skyline paths increased
with an increase in NA + NE . This is because the aggregate
attribute values and the edge attribute values of path p both
increased with the length of p. Thus, when NA+NE is small,
a shorter path is more likely to dominate a longer path, such
that most of the skyline paths end up being quite short, which
reduces the average length of the skyline paths. However,
when NA + NE is larger, the likelihood that a shorter path
will dominate a longer path decreases, with the result that
longer paths have a greater chance of being selected and the
average length of the skyline path is extended. Figure 11(a)
also shows that compared to an increase in NE , an increase
in NA would produce a slower increase in the average length
of the skyline paths. This is because the values of aggregate
attributes present a pronounced increase with the length of
the path; however, the values of edge attributes present only
a slight increase. For example, when a new vertex is added
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to path p with length n, the aggregate attribute values of p
need to add additional n values. However, only one value
needs to be added to the edge attribute values of p. Under
these conditions, the values of aggregate attributes for p
with a longer path are far greater than for p’ with a shorter
path. Thus, even when NA is increased, p is still likely to
be dominated by p’, thereby reducing its chance of being a
skyline path, which reduces the average length of the skyline
paths. In contrast, increases in the value of edge attributes due
to an increase in the length of the path are not as pronounced
as similar increases in aggregate attributes, with the result that
longer paths still have a chance of being a skyline path when
NE is increased, ultimately increasing the average length of
the skyline paths.

Figure 11(b) presents the average number of skyline paths
in the road network with various values for NE and NA. The
number of skyline paths increased with an increase in the
number of either type of attribute. This is because when
NA + NE increases, longer paths are more likely to be
selected as skyline paths, thereby increasing the number of
skyline paths. Figure 11(b) also indicates that, compared to an
increase in NE , an increase in NA results in a less pronounced
increase in the average number of skyline paths. This is
because longer paths do not become skyline paths, even if
NA is increased, with the result that the number of skyline
paths grows more slowly. In contrast, increasingNE increases
the likelihood that a longer path will become a skyline path,
such that the number of skyline paths grows more rapidly.
The above analysis demonstrates that the influence of NE on
skyline paths is more pronounced than that of NA.

B. EFFICIENCY OF SPA ALGORITHM WITH ONE-HOP TREE
In this section, we compare the performance of the SPA
algorithm in conjunction with the one-hop tree (SPA-one) to
the SPA algorithm with the R-tree (SPA-R). Other skyline
path algorithms were not included in this analysis because
existing skyline path algorithms are unable to find skyline
paths when aggregate attributes are present in the road net-
work. The brute-force algorithm was also excluded because
it must identify all paths between the origin and destination
points, calculate the edge and aggregate attributes, and per-
form dominance checks for the paths, making it a highly
inefficient method for finding skyline paths in road networks
with aggregate attributes. Three experiments were conducted
to investigate how the performance of SPA-one would be
affected by (NE , NA), the number of vertices, and the max-
imum number of degrees for each vertex.

Figure 12 lists the average number of paths that were
checked and the time required by SPA-one and SPA-R
with NE and NA set to various values. Note that for the
‘‘SPA-one (A)’’ and the ‘‘SPA-R (A)’’ curves in Figure 12,
the number of aggregate attributes varies between one and
five, whereas the number of edge attributes is fixed at 2. For
the ‘‘SPA-one (E)’’ and ‘‘SPA-R (E)’’ curves, the number of
the edge attributes varies between one and five, whereas the
number of aggregate attributes is fixed at 2. In each of the

FIGURE 12. Simulation results for various values of NA and NE , showing
for SPA-one and SPA-R, (a) number of paths checked, (b) time cost.

diagrams, a logarithmic scale was applied to the y-axis to
depict several orders of magnitude. As shown in Figure 12,
the number of paths that were checked and the time required
increased with the number of attributes, regardless of which
attributes were changed and which algorithm was used. This
can be attributed to an increase in the number of skyline paths
following an increase in the number of attributes. Figure 12
also shows that the number of paths that were checked and
the time required for SPA-one were at least an order of
magnitude lower than for SPA-R. This is because the one-hop
tree attempts to involve the greatest number of vertices and
viable paths for each region. By determining that no skyline
path enters a particular region, the algorithm greatly reduces
the number of paths to be checked and the subsequent time
required for calculation. Furthermore, the definition of an
R-tree does not require that any two vertices within a given
region be connected, which means that a region may include
only a few or perhaps no viable paths. Thus, even if these
regions are eventually removed by the algorithm, the number
of paths and degree towhich computation time can be reduced
using SPA-R is limited. In short, SPA-R needs to check more
paths and therefore requires more time.

Figure 12 also indicates that regardless of whether
SPA-one or SPA-R were used, an increase inNE would result
in a greater number of paths and longer computation time,
compared to an increase in NA. This is because NE is able
to produce a greater number of skyline paths, as shown in
Figure 11. Finally, Figure 12(a) shows that regardless of
which attribute was increased, SPA-R checked 10 times as
many paths as did SPA-one, and required 100 times as much
time, as shown in Figure 12(b). This can be attributed to
the fact that SPA-R needs to reconfigure a path whenever it
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discovers vertices at the boundary of a particular region that
are not connected within that region. In contrast, the one-hop
tree ensures that any two vertices within a given region are
connected by at least one path that lies entirely within that
region.

FIGURE 13. Simulation results for various numbers of vertices, showing
for SPA-one and SPA-R, (a) number of paths checked, (b) time cost.

Figure 13 lists the average number of paths checked and
the time required by SPA-one and SPA-R using various
numbers of vertices. Again, we applied a logarithmic scale
to the y-axes of the two diagrams to depict several orders
of magnitude. Figure 13 clearly shows that regardless of
which algorithm was used, an increase in the number of
vertices resulted in an increase in the number of paths that
were checked as well as an increase in the time required
for computation. This is because increasing the number of
vertices increases the number of possible paths. Figure 13
also shows that the results were much lower for SPA-one
than for SPA-R. As shown in Figure 12, each region of a
one-hop tree contains a greater number of vertices and paths,
compared to the regions associatedwith an R-tree. As a result,
SPA-one eliminates a greater number of paths and saves more
time. Figure 13 illustrates how the disparity between
SPA-one and SPA-R expands with the number of vertices.
This is because a small number of vertices limits the number
of paths in a road network, which also limits the number
of paths that could be eliminated, regardless of whether
SPA-one or SPA-R were used. Hence, differences between
the two algorithms are less pronounced. Increasing the num-
ber of vertices increases the number of paths in the road
network that could be eliminated by SPA-one. This clearly
illustrates the reasons for the immense differences between
the two algorithms with regard to the number of paths to be
checked and the time required for computation.

FIGURE 14. Simulation results for various maximum degrees of vertices,
showing for SPA-one and SPA-R, (a) number of paths checked, (b) time
cost.

Figure 14 presents the average number of paths that are
checked and the time required by SPA-one and SPA-R using
various values for the maximum degree of vertices. A loga-
rithmic scale was applied to the y-axes of the two diagrams.
When the maximum degree was lower than 12, all four curves
grew until they reached 12, whereupon they leveled off. This
is because an increase in degree from 4 to 12 increases the
number of viable paths in the road network by increasing
the number of bus stops to which each bus stop could be
connected. This would increase the number of potential paths
and skyline paths that would have to be checked between the
origin and destination. However, increasing the degree from
12 to 20 would probably not increase the number of skyline
paths, even if a new connectible bus stop v′ were added to
bus stop v. When a bus network is being established, each
bus stop with first priority connects to adjacent bus stops
before connecting to more distant stops. When the degree
is greater than 12, the newly connected bus stops are those
located furthest away. In the event that a bus travels from v
(the original bus stop) to v′ (a newly-connected distant bus
stop), a detour might be required to follow a path that is
longer. However, as discussed in Section A of this chapter,
a longer bus path is less likely to become a skyline path. Even
if v and v′ are connected, the number of skyline paths in the
road network will not increase, such that the paths that need
to be checked and time required by the algorithm will not
increase either.

VI. CONCLUSION
This paper presents a novel query method for the identifica-
tion of skyline paths in cases involving aggregate attributes
in a road network. We began by outlining the difficul-
ties involved in identifying skyline paths when aggregate
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attributes are present in road networks, as well as the rea-
sons for the inability of existing skyline path algorithms to
overcome them. This study presented a one-hop tree and SPA
algorithm to overcome this limitation, and simulation results
demonstrate the efficacy of this approach.

The value of this study lies in its wide-scale applicability.
This work could be extended to support what is referred
to as skyline network queries. For example, the manager
of a metro company might seek to develop a new metro
system comprising several metro routes on a road network
with aggregate attributes. In such cases, the algorithm devel-
oped in this study would be limited in the following two
respects: (1) The proposed algorithm would be able to find
only one skyline path at a time, such that the selection of
multiple skyline paths would require running the algorithm
multiple times. (2) The fact that each vertex in the metro
network can connect with any other vertex would increase
the complexity involved in calculating edge and aggregate
attributes. Thus, performing a skyline network query on a
real-world road network would require an algorithm capable
of finding multiple skyline paths. The calculation of edge and
aggregate attributes could be accelerated through the use of
pruning methods to reduce the number of vertices and edges
considered by the algorithm. The developments in this paper
represent a major advancement in the application of skyline
queries to networks in the real world.
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