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ABSTRACT The general-purpose networks-on-chip (GP-NoC) has recently attracted the attention of the
research and industry as a way to support the growing demands of computing systems. The design and the
development of the communications and networking functions for such a large-scale versatile systems require
knowledge of the traffic exchanged between the computing nodes. The object of the study in this paper is the
last-level shared cache interface that is likely to be a traffic bottleneck in future GP-NoC architectures. First,
using the direct measurements, we report on the stochastic traffic properties at large-scales, provide first two
moments and distribution functions. Complementing measurements with fine-grained cycle-accurate CPU
simulations, we then analyze the small-scale traffic behavior. We show that even for the simplest applications
such as reading or writing of data, the nature of the traffic is stochastic, depends on the number of active
cores, and irrespective of the application type, has an explicit batch structure. We further reveal that the batch
sizes and inter-batch intervals can be well approximated by geometric distribution and the approximation
becomes better when the number of active cores increases. These properties identify a simple arrival model
that can be used in the analytical or simulation-based performance evaluation studies of the shared interface
technologies in prospective NoCs.

INDEX TERMS Microprocessors, communication system traffic, cache memory, modeling.

I. INTRODUCTION
A NoC can be broadly defined as a unit featuring a
number of information processing elements. Single-purpose
NoCs (SP-NoCs) have been a topic of active research and
development over the last decade. There are several examples
of successful application of SP-NoC concept with graphi-
cal processing units being, possibly, the most widely-known
to large audience. The reason for an extraordinary increase
in performance of such systems that we have witnessed is
mainly due to the nature of tasks allowing for their perfect
parallelization, thus, leading to the simple structure of the
processing elements and clear understanding of the require-
ments imposed on the communications subsystem and the
cache coherence protocols.

The development of general-purpose central processing
units (GP-CPUs) has also reached the level, where it became
beneficial to scale the computational power horizontally by
parallelizing the computations than to continue increasing the

clock frequency. Addressing this issue, major manufactures,
Intel and AMD, presented their dual-core GP-CPUs in 2005,
spawning the era of multi-core CPUs. Starting from a simple
integration of two computing nodes on a single chip and pro-
viding shared access to RAM, they have nowadays evolved
to truly multi-core systems featuring 4, 6, 8 and beyond com-
puting nodes on a single ship with deep integration between
the components and dynamic threads redistribution between
the cores [1], [2].

The application of the NoC concept to GP-CPUs is not
straightforward as the computational tasks to be performed
greatly vary in their specifics and the level of ’’paralleliza-
tion’’ and, thus, may require intensive exchange of informa-
tion between computational elements placing new require-
ments on the design of the CPU communication subsystem.
Analyzing the recent literature on NoC design one could
notice a significant gap between the approaches taken by
computing and communications communities. The former
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mainly targets design of efficient memory coherence pro-
tocols for GP-NoCs while the communications subsystem
is assumed to be in place satisfying the intra-CPU traffic
requirements. The communications community approaches
the problem from the communications subsystem design per-
spective proposing new solutions targeting communications
and networking mechanisms and paying less attention to the
internal structure and the needs of a CPU including the ques-
tion of memory synchronization. The latter is, however, of
paramount importance as it often dictates the resulting perfor-
mance of a chip, thus, providing extremely strict requirements
on the loss and latency of the data delivery process.

The communications subsystem of modern GP-CPUs is
based on simple topologies and communications mechanisms
and is overprovisioned [1]–[3]. However, the increase in the
number of cores on a single chip will inevitably require more
efficient solutions. To understand the requirements imposed
on the choice of the communications and networking tech-
nologies the knowledge of the traffic exchanged at the bottle-
neck interfaces of a GP-CPU is needed.

This work is a joint effort of computing and commu-
nications groups, attempting to bridge these communities
together by identifying the crucial traffic properties at the
shared cache interface of modern x86 GP-CPUs with hierar-
chal memory coherence subsystem for further development
of efficient communications mechanisms. Carrying out both
the measurement and simulation campaigns we analyze traf-
fic properties of synthetic tests and real applications. Using
direct measurements we demonstrate that the traffic is stable
over long time periods possessing covariance stationarity and
ergodicity. We obtain ‘‘pure’’ application traffic character-
istics by getting rid of the background load and report on
quantitative metrics of measured traces including moments
and one-dimensional distributions. To make conclusions on
stochastic traffic properties we further perform fine-grained
cycle-accurate simulations using Gem5 CPU simulator.
We show that even for the simplest applications such as
sequential writing and reading, the traffic exchanged at the
shared cache interface is stochastic, depends on the number
of active cores and has clearly observable batch structure.
We further study parameters of the traffic process showing
that both batch sizes and inter-batch intervals can be well
approximated by the memoryless geometric distribution. The
latter is of special importance allowing to analyze the effect
of prospective communications mechanisms using simple
performance evaluation frameworks.

The paper is organized as follows. In Section II, we
summarize the related work reminding the x86 GP-CPU
architecture with hierarchical cache structure, describe traffic
estimation methodologies and report on recent results in the
area of interest. Further, in Section III, we introduce the
system implemented for direct measurements of intra-CPU
traffic and analyze basic statistical characteristics of traffic
patterns including ergodicity and stationarity. Detailed inves-
tigation of the shared cache traffic is performed in Section IV,
where we describe Gem5 experiments and report conclusions

about the traffic properties. Conclusions are drawn in the last
section.

II. BACKGROUND AND RELATED WORK
A. x86 GP-CPU ARCHITECTURE
Modern multi-core GP-CPUs (from now on, CPU) are an
extremely complicated hardware consisting of hundreds of
elements, such as computing cores, registers, cache memory
for both instructions and data, cache controllers, power man-
agement subsystem, and buses connecting them together. The
simplified vision of the modern CPU architecture is shown in
Fig. 1, where only the data exchange network is sketched.

FIGURE 1. The conventional GP-CPU architecture with three cache levels.

To decrease the data and instructions access delay, the
x86 architecture uses cache hierarchy. Three levels,
L1/L2/L3, are commonly used [4], [15]. Each computing core
has its own L1 and L2 caches, while the L3 cache is shared
between all the cores. The cache latency of different levels
depends on the cache size and grows from around 1 − 2ns
for 256KB L1 cache to 3 − 6ns for 256-512KB L2 cache
to 12 − 20ns for 8-20MB L3 cache [3]. When cores are
sending read/write requests to RAM the cache controllers
use prediction algorithms to store the data that will likely
be addressed in the future. The most recently accessed data
are stored in L1/L2 caches. We distinguish between inclusive
and exclusive hierarchical caches. In the former case the data
contained in L1/L2 caches are always mirrored in L3 cache
while in exclusive caches no data existing in L1/L2 caches
are stored in L3 cache.

In addition to data buffering, L3 cache plays the role of
the closest point along the way to the RAM, where the traffic
from two different cores canmeet. Thus, if core i is requesting
the data core j is currently working with, the data transfer will
be performed via L3 cache. To ensure the coherent view of
data to all the cores cache coherence protocols are used. Even
for such a simple hierarchal architecture providing memory
coherence is a complex task with the number of states in the
protocol state machine reaching few tens [13].

CPU vendors continue to evolve the current hierarchal
cache architectures. There are various reasons behind this
ranging from the miniaturization of the technological pro-
cesses allowing to fit up to 8 full-scale x86 cores and 20MB
of L3 cache on a chip [1] and promising extensions to
16 and 32 cores in the near future to development of
new concepts extending the current architecture such as
3D stacked designs [14] allowing for efficient short-distance
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TABLE 1. Comparison of cycle-accurate simulation environments.

interconnects between cores, etc. Preserving the classic hier-
archal cache design and possibly adding additional layers
whenever needed keeps the latency at satisfactory level.
However, increasing the number of cores the L3 cache might
become a bottleneck for the whole system. There are a
number of reasons for that ranging from the limited storage
space in L3 cache (L3 is embedded on chip and takes around
30 − 40% of chip space in x86 Intel processors [4], [15]) to
the lack of space for multi-lane interfaces to the complexity
of demultiplexing the access to L3 cache controller from a
number of cores. The aim of this study is to understand the
traffic dynamics at the shared cache interface providing the
crucial building block for performance analysis of prospec-
tive efficient communications technologies.

B. INTRA-CPU TRAFFIC ANALYSIS APPROACHES
To study intra-CPU traffic one may choose three different
approaches. According to the first, one could try to reveal
internal traffic characteristics observing the processing logic
of CPU subsystems. However, taking into account the com-
plexity of modern CPU mechanisms including pipelining,
replication and prediction, this approach does not appear
feasible even for rather limited number of computational
cores [15].

The second approach is based on measurements of traffic
characteristics. In most modern CPUs there are no direct
mechanisms to measure the traffic on an interface of interest.
However, using Intel CPUs one can infer the amount of traffic
indirectly, relying on the so-called ‘‘performance counters’’
provided starting from the Nehalem family of CPUs. Among
others, these counters provide the information on the number
of cache misses corresponding to a certain cache layer in an
interval of a certain duration. There are several tools available
for accessing these counters including perf [16] and Intel
Performance Counter Monitor (PCM, [17]). An attempt to
characterize the cache subsystem performance of Nehalem
CPU family using these counters has been taken in [3].
However, as no timing information is provided by the tool,
obtaining detailed traffic structure (e.g., time series of events)
at the intra-CPU interfaces is impossible. Nevertheless, this
approach allows to get distributions and moments of the
traffic patterns at intra-CPU interfaces revealing their basic
stochastic properties including stationarity and ergodicity as
demonstrated below.

The approach that allows to characterize the traffic struc-
ture on internal interfaces in detail is cycle-accurate CPU
simulation. There are a number of simulators supporting
x86 architecture with MARSSx86 [18], Gem5 [19], zSim

[20], and SST [21] being the most popular. The comparison
of these modeling environments is shown in Table 1.

In our studywe have implemented a typical x86CPU archi-
tecture with appropriate cache subsystem in Gem5. Gem5 is a
modular platform for computer-system architecture research
supporting the Alpha, x86, ARM, MIPS, Power and SPARC
ISAs. The simulator components are linked in Python envi-
ronment. Gem5 supports full system cycle-accurate simula-
tion, allows models of processor cores with different levels of
detalization to be integrated, as well as coherence protocols
and various DRAM models to be implemented. The project
is actively evolving, has a rich ecosystem and is well doc-
umented. The shortcomings of Gem5 include low execution
speed and limited scalability.

C. RELATED WORK
Over the last two decades, the question of analyzing intra-
chip traffic characteristics in modern CPU and NoC systems
has been addressed in several studies, within the computer
architecture community, see, e.g., [5]–[10], among others.
Since the focus of those investigations was mainly on refine-
ment and development of cache coherence protocols they
were performed using fine-grained cycle-accurate simula-
tions. Furthermore, the authors mostly concentrated on short-
scale behavior of traffic patterns. Nevertheless, a number of
important fundings related to the intra-CPU traffic charac-
teristics have been revealed so far. Particularly, most of the
authors agree that intra-CPU traffic patterns are characterized
by the batch structure, where long periods of interfaces’
inactivity interchange with long durations of data transmis-
sions. Synthetic traces demonstrating this behavior have been
obtained and discussed in [8] and [9]. It has also been shown
that the size of batches depends on the applications, number
of cores and cache coherence protocols [10]. Opinions on
the principal structure of the traffic vary with some studies
advocating purely stochastic nature while others highlighting
deterministic patterns.

In this paper we address the question of intra-CPU
traffic characteristics for communications subsystem design.
Thus, using the real measurement of operational CPU under
different loads we first concentrate on principal properties
of the traffic on the shared cache interface including its
stochastic nature, ergodicity and stationarity that are critical
for design of communications mechanisms. Further, using
cycle-accurate simulations we will deepen the knowledge
of descriptive statistics of intra-CPU traffic patterns con-
firming its batch structure even for simple write and read
applications. In contrast to the referenced studies we further
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proceed with traffic model inference for the shared cache
inference.

III. MEASUREMENTS: BASIC TRAFFIC PROPERTIES
In this section, we describe our system for traffic mea-
surements. We then illustrate basic properties of the traf-
fic at the shared cache interface highlighting its stochastic
nature, ergodicity and covariance stationarity. Finally, we
report on statistical characteristics of obtained traces includ-
ing moments and one-dimensional distributions.

A. DESCRIPTION OF EXPERIMENTS
In our experiments we have used the eight-cores
Intel Core i7-5960X with Haswell architecture featuring
20Mb of L3 cache. We performed our experiments at the
operating frequency 3.0GHz. The reference build of Linux
Kubuntu 14.10 with kernel version 3.16 has been used.
To access performance counters we have used PCM soft-
ware [17].

Since measurements were performed on running operating
system (OS) the measured data contain a certain amount of
background load generated by OS services. On top of this,
PCM itself impose additional load on CPU. Thus, there is
a trade-off between the amount of reporting data per slot
and the measurements accuracy. Using pilot experiments we
have selected the reporting frequency of 5 measurements per
second as the most suitable for our study.

TABLE 2. Selected applications and their specifics.

The applications we have considered and their details are
summarized in Table 2. We specifically decided to rely real
applications rather than on synthetic tests such as SPEC [11]
or PARSEC [12], designed for CPU testing. We have also
developed two artificial tests simulating the biggest and the
smallest CPU loads, referred to as 1B and 64B. In both tests
1GB ofmemory was first allocated, and then reading from the
array was initiated. In 1B test data are read sequentially, byte-
by-byte, imitating the so-called ’’good programming style’’.
As CPU reads data from the memory using cache lines of
64B in length, in 1B test we guarantee that the number of
L2 misses is minimized imposing the lowest load on the
shared cache interface. In 64B test we read each 64th byte
ensuring that every time we address a new byte the shared
cache interface is used. We call it ’’bad programming style’’.
Note that both 1B and 64B test should generate deterministic
load. However, the presence of background OS traffic and

specifics of cache coherence protocol force us to handle their
statistics using the general framework of stochastic processes.
All tests lasted for 20 minutes resulting in 6000 samples. For
all the tests we have performed two runs. All cores were kept
operational simultaneously, running their instances of the test.

The load imposed at the shared cache interface was com-
puted as follows. The recorded PCM data provides the values
of counters, with ‘‘L2MISS’’ counter, describing the num-
ber of L2 cache misses. The shared cache interface is only
used when there are no lines containing addressed byte in
L1/L2 caches. In this case, the read request to L3 cache is
sent. Processing this request, L3 cache controller finds the
requested line in L3 or RAM and sends it back to L2 cache.
The total amount of cache lines sent per time unit equals to
the value of L2 misses happened during this period. In 64-bit
CPU architecture, the cache line size is 64 bytes, while the
read request length is 8 bytes. Thus, the total traffic on shared
cache interface is

T = L2m(8+ 64), (1)

L2m is number of L2 misses per time unit.
We have performed statistical analysis for all considered

applications.We report detailed results for four tests, 1B, 64B
and Skype, as well as for OS background traffic. Selected 1B
and 64B tests are very specific while the results of Skype tests
are similar to those obtained for other applications.

B. TIME SERIES AND ANALYSIS METHODOLOGY
Fig. 2 illustrates the recorded time series of randomly chosen
50 successive samples for selected tests. We clearly notice
the difference in the range of data: the load generated by
64B test is significantly higher than that of 1B and Skype
tests. The load generated by Skype application is close to that
of background traffic. Visual analysis of provided data allows
to identify the general structure of traffic at shared cache
cache interface. As we expected, the Skype trace demon-
strates rather stochastic behavior. The background traffic is
characterized by high peaks at non-random times reflecting
the scheduled nature of OS processes. The 1B test trace
is structurally similar to that of background traffic. Finally,
the structure of 64B trace is different from that of 1B and
background ones. This is expected as this test provides the
highest load on the shared cache interface.

The visual analysis shows no indications of non-
stationarity as the data look homogeneous with some deter-
ministic behavior attributed to the background load. Thus, the
data appear as a sum of two stochastic processes allowing to
formulate the hypothesis consisting in that the background
load is independent of the load of interest at the shared cache
interface,

Z (t) = X (t)+ Y (t)+W (t), t = 0, 1, . . . , (2)

where X (t), Y (t), W (t) are the load of interest, background
load and load generated by the PCM tool, respectively.
We can directly observe both Z (t) and Y (n)+W (t), although
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FIGURE 2. Times series of measurements. (a) 1B test. (b) 64B test. (c) Skype. (d) Background.

FIGURE 3. Ergodicity: comparison of histograms and NACFs of two traces. (a) 1B test. (b) 64B test. (c) Skype. (d) Background. (e) 1B test.
(f) 64B test. (g) Skype. (h) Background.

not simultaneously. It is natural to expect that the contribution
of W (t) is low at the timescale of 0.2s.
Based on (2), we cannot construct the time-series of the

process of interest, X (t). However, if the involved processes
are covariance stationary and ergodic we can directlymeasure
Z (t) and Y (t)+W (t) and decide upon statistical characteris-
tics of X (t) indirectly.

C. ERGODICITY AND STATIONARITY
There are two major ways to study a stochastic process. One
could infer statistical characteristics of a process using sec-
tions or realizations (sample paths). The latter is convenient
but is only feasible when a process is ergodic. Ergodicity is
an advantageous property of stochastic processes allowing
to use only one sample path to decide upon all statistical
characteristics of the process.

We have tested ergodicity of Z (t) and Y (t) + W (t) by
comparing the histograms and normalized autocorrelation
functions (NACF) of samples obtained in two different runs
as shown in Fig. 3. As onemay observe, the histogramsmatch
each other very well for all tests. The χ2 test for homogeneity
of samples conducted with the level of significance α = 0.05
allows to accept the hypothesis that two samples were drawn
from the same distribution. The closeness of NACFs for two

runs indicates that the memory structure does not change
from run to run. The special behavior of NACF functions is
explained by the deterministic structure of synthetic tests and
background load. For Skype test the structure inherent for a
positively correlated stochastic process is observed.

Consider now stationarity of Z (t) and Y (t)+W (t). Recall
that a process is called covariance stationary if its mean is
constant over time and NACF depends on the time shift
only. Fig. 4 shows statistical characteristics of considered
processes including histograms and NACFs. For histograms
we again applied the χ2 homogeneity test with the level of
significance α = 0.05 and obtained the values less that the
critical ones confirming that two samples are drawn from the
same distribution. Thus, not only the mean but other moments
are stable in time. The behavior of NACFs is more interesting.
Although they depend on the time shift only implying that the
considered processes are covariance stationary, the detailed
behavior is different for different tests.

TheNACFs of background traffic show very special behav-
ior with peaks occurring at deterministic times separated by
around 1s. They correspond to a certain process running in
the background and requesting processing resources at these
times. The same applies to two small peaks occurring in
between two large ones. If an interval of 10 lags between
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FIGURE 4. Stationarity: comparison of histograms and NACFs of two parts of the same trace. (a) 1B test. (b) 64B test. (c) Skype. (d) Background.
(e) 1B test. (f) 64B test. (g) Skype. (h) Background.

TABLE 3. Statistical characteristics of ’’pure’’ traffic.

any two large peaks is observed one can identify 4 jumps
upwards and 5 jumps downwards. These changes correspond
to the execution of PCM tool itself as it logs data every 0.2s.
In general, we see that the background traffic is a determin-
istic process that is observed together with the process of
interest.

ObservingNACFs of other traces we see the effect of deter-
ministic background traffic translates to NACFs of compound
processes. For 1B and 64B tests NACF functions repeat those
of background traffic. This should not come as a surprise
as 1B and 64B tests also generate almost deterministic load.
For Skype we could also identify the same ‘‘peak’’ structure.
However, in this case the nature of the application heavily
contributes to the structure of NACF.

D. ’’PURE’’ TRAFFIC STATISTICS
The covariance stationarity and ergodicity of both Y (t) +
W (t) and Z (t) implies that the process X (t) is stationary
and ergodic too. Furthermore, these properties indirectly
confirm that the working hypothesis (2) is true as well.
Thus, we can now determine statistical characteristics of
X (t) based on those of Z (t) and Y (t) + W (t). Table 3
shows interval estimates of the mean Ê[X ], point estimates
of standard deviation σ̂ [X ] and squared coefficient of vari-

ation, ĉ2 = σ̂ [X ]/(Ê[X ])2, for all the types of applications
considered.

IV. SIMULATIONS: DETAILED TRAFFIC STRUCTURE
The reported measurements provide information about the
average traffic load at intra-CPU interfaces and general
behavior of traffic patterns over long durations of time.
However, the minimum time-scale of interest is too large
to provide detailed understanding of traffic dynamics at
the transactions level. In this section we complement our
measurements campaign with cycle-accurate CPU simula-
tions using Gem5, obtain traffic statistics at the transac-
tions timescale and analyze them identifying critical traffic
properties.

TABLE 4. Parameters of the simulated x86 system.

A. Gem5 MODEL AND MEASUREMENTS
The parameters of the simulated system are shown in Table 4.
We considered a typical Intel x86 architecture including all
the features and components implemented in Gem5. The
chosen cache size and latencies are typical for modern CPUs.
The cache subsystemwas assumed to be inclusive. Themodel
explicitly takes into account delays associated with informa-
tion retrieval and emulates the pipelining capability. Systems
with 1, 2, 4, 8 and 16 cores have beenmodeled.We emphasize
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FIGURE 5. Traffic patterns at the shared cache interface. (a) Read test. (b) Write test. (c) Evklid test. (d) Factorial test.

that the clock frequency provides quantitative effect only
and the obtained results can be scaled to any operational
frequency.

TABLE 5. Brief description of testing programs.

The selection of tests for simulation campaign is not a
trivial task. First, full-cycle simulations are executed rather
slowly preventing from emulating typical computer applica-
tions. Another reason restricting comprehensive tests is that
the trace file generated by a simulator is extremely large
even when a limited set of parameters is logged. Finally,
a particular sequence of instructions executed by software is
not known complicating interpretation of the results. Thus,
to emulate a typical load at intra-CPU interfaces we have
selected several representative tests covering various aspects
of program code including simple reading, writing and
sorting routines, more comprehensive recursive factorial esti-
mation and Euclid’s greatest common divisor algorithm
involving divisions and multiplications, and most complex
tests including AES encryption/decryption and compression
using zlib. All the tests are listed in Table 5. Each test has been
simulated for all considered number of cores. The number of
simultaneously run tests were set to the number of operational
cores. In overall, 70 tests have been performed.

For simulations we have used 64-bit Intel Core i7 equipped
with 16GB of RAM running LinuxMint 17. The output of the
simulation is stored in well-knownASCII value change dump
(vcd) format. To visualize the data we have used GTKWave
tool. To obtain time-series data the selected objects have been
saved in ‘‘timing analyzer’’ (tim) format and then parsed.

B. STATISTICAL TRAFFIC ANALYSIS
The aggregated traffic pattern at the shared cache interface
is demonstrated in Fig. 5. Visually observing the presented
data we could state the following three hypotheses regarding
the traffic nature. First, as one may observe, the traffic pat-
tern changes when we increase the number of active cores.
Secondly, the ‘‘stochasticity’’ of the traffic increases with the
number of cores. We have specifically chosen tests having
small and medium complexity to highlight that even those
result in stochastic traffic pattern. Finally, the traffic has a
clearly observable batch structure, where long transmission
periods are interchanged with long pauses. We call them
batch and inter-batch intervals, respectively.

To characterize the principal structure of the traffic pat-
tern consider the test execution time illustrated in Fig. 6(a).
As onemay observe, enablingmore cores results inmore time
required for execution of an individual test. This is explained
by the effect of the cache coherence protocols and the com-
mon bus architecture of shared cache interface. Indeed, there
should be additional time to arbitrate caching requests when
the number of simultaneously operating cores increases. The
increase is especially noticeable for low complex tests such as
read andwrite as they require a plethora of shared cache trans-
actions. The metric closely related to the execution time is the
fraction of time the interface is busy, shown in Fig. 6(b). It can
also be interpreted as the generated relative traffic volume and
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FIGURE 6. The effect of multiple cores: execution time and traffic volume. (a) Execution time. (b) Traffic volume.

FIGURE 7. The patterns of batch and inter-batch intervals. (a) AES test, batches. (b) AES test, inter-batch intervals. (c) Write test, batches. (d) Write
test, inter-batch intervals.

can be converted to absolute numbers using the rate of the
interface. There is a trade-off behind this metric. Particularly,
the higher number of active cores leads to longer execution
time, thus, reducing the fraction of time the interface is busy.
On the other hand, the amount of traffic increases as a result
of more tests executed in parallel.

The abovementioned observations imply that in order to
model the traffic at the shared cache interface we have to use
batch traffic models. Let us now study the stochastic prop-
erties of batch sizes and inter-batch intervals. Fig. 7 shows
time series of batch sizes and inter-batch intervals for simple
write and complex AES tests. As one may observe, the load
at the interface is close to deterministic but is still of batch
nature for a single active core with most batch and inter-batch
sizes having values of 80 and 108 time intervals, respectively.
When the number of active cores increases to 4 and then to
6 we see much more variability in the batch and inter-batch
observations. Also, notice that simple deterministic write test

still produces mostly deterministic load even for 4 active
cores while for the same number of cores the pattern appears
stochastic for AES test.

Consider now the effect of the number of active cores
on the point estimates of the moments of batch and inter-
batch interval processes, shown in Fig. 8. As we expected,
the mean duration of the batch and inter-batch intervals
decreases as we enable more cores. The reason is that the
load of the shared cache interface increases and transmission
requests from/to L3 multiplexes on a common bus. Of special
interest is the standard deviation characterizing variability of
these intervals. As one may observe analyzing Fig. 8(c) and
Fig. 8(d), the variability of the batch size first increases
and then decreases for all considered tests. The increase is
explained by the fact that tests are not well aligned in time
while the decreases are due to multiplexing at the interface.
One could also project this illustration to more cores expect-
ing to have further reduction in variability as more cores are
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FIGURE 8. The moments of batch sizes and inter-batch intervals. (a) Mean batch size. (b) Mean inter-batch interval. (c) St. dev. of batch size.
(d) St. dev. of inter-batch interval.

FIGURE 9. The histograms of batch sizes and inter-batch intervals and their approximations. (a) AES, 8 cores, batches. (b) AES, 8 cores,
inter-batches. (c) AES, 16 cores, batches. (d) AES, 16 cores, inter-batches. (e) Write, 8 cores, batches. (f) Write, 8 cores, inter-batches.
(g) Write, 16 cores, batches. (h) Write, 16 cores, inter-batches.

added to the system. The behavior of inter-batch intervals
is even more interesting. For low complex applications such
as write and read the variability remains at the same level
except for the the small peak at 4 cores having the same
nature as that of the batch size. However, for more complex
applications requiring more processing resources, such as
AES and Zlib the variability is extremely high for a single
active core. The reason is that these tests are significantly
more computationally intensive than simple read and write
ones. Increasing the number of nodes to 8 and then to 16
greatly reduces variability and it becomes comparable to that
of read and write tests.

To properly dimension the shared cache interface one
needs to use a traffic model that explicitly captures the batch
structure of the traffic. Let us now investigate the distributions
of the batch and inter-batch intervals whose histograms of
relative frequencies for AES and write tests are illustrated in
Fig. 9. As one may observe, for 8 and 16 cores the histograms
have clearly observable geometrically decaying behavior.
The corresponding approximations highlight that geometric
distribution may provide accurate first-order approximation
for both batch sizes and inter-batch intervals. Note that the

deviations are mostly attributed to low-weight probabilities.
All these approximations passes χ2 test with level of sig-
nificance set of α = 0.1, however, most of them do not
pass with with α = 0.05. As a result, one could study
the performance of the shared cache interface in prospective
GP-NoCs using the well-known polling queuing systems
framework with deterministic service times and GeoGeo

arrival process (geometrically distributed inter-batch times
batch sizes). The results for this system are immediately
available, see, e.g., [22]. When the number of cores is small,
e.g., 4 or less, the geometric distribution provides worse
approximation.

V. CONCLUSIONS
Inspired by the recent interest in GP-NoC designs and
the lack of traffic models for hierarchal cache coherence
subsystems we analyzed the structure of the traffic at
the shared cache interface. Using direct measurements we
proved that the traffic generated by a wide range of appli-
cations is stochastic in nature, covariance stationary and
ergodic. We also derived ‘‘pure’’ traffic statistics gener-
ated by individual applications. We also reported relevant
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statistics including one-dimensional distributions and
moments.

Using cycle-accurate CPU simulations performed in Gem5
we further showed that the shared interface traffic prop-
erties depend on the number of active cores. We revealed
that the traffic structure has a clearly distinguishable batch
structure. For systems featuring more than 4 cores the batch
and inter-batch intervals can be accurately approximated by
the geometric distribution. These conclusions hold even for
the simplest tests such as successive reading or writing of
data.

The detailed analysis of a traffic pattern at the shared
cache interface allows to specify a representative yet simple
traffic model as a function of the number of operational cores
and the applications of interest. This enables the research
community to start developing protocols for new efficient
communications technologies and protocols in hierarchical
cache based GP-NoC architectures. Particularly, the revealed
traffic characteristics allow to represent the service process
at the shared cache interface using a polling queuing system
with GeoGeo arrival process and deterministic service times.
This model has been deeply studied in literature.
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