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ABSTRACT Stereo matching is one of the most important and challenging subjects in the field of stereo
vision. The disparity obtained in stereo matching can represent depth information in 3-D world to a great
extent and shows great importance in stereo field. In general, stereo-matching methods primarily emphasize
static image. However, the information provided by dynamic scene can be used fully and effectively to
improve the results of stereo matching for dynamic scene, such as video sequences. In this paper, we propose
a dynamic scene-based local stereo-matching algorithm which integrates a cost filter with motion flow of
dynamic video sequences. In contrast to the existing local approaches, our algorithm puts forward a new
computing model which fully considers motion information in dynamic video sequences and adds motion
flow to calculate suitable support weight for accurately estimating disparity. Our algorithm can perform as an
edge-preserving smoothing operator and shows improved behavior near the moving edges. The experimental
results show that the proposed method achieves a better depth map and outperforms other local stereo-
matching methods in disparity evaluation.

INDEX TERMS Stereo matching, disparity, support weight, motion flow, dynamic scene.

I. INTRODUCTION
The chief objective of computer vision is to endow computers
with human-like depth vision capabilities, therefore stereo
matching is one of the most active research topics in this field.
In fact, numerous stereo-matching algorithms for estimating
disparity can be classified into two general methods: global
and local [1]. The global methods compute all disparities
of an image simultaneously by optimizing a global-energy
function [2]–[4], which produce accurate disparity maps.
But global methods are usually computationally expensive
and sometimes require many parameters that are difficult
to determine. Unlike most global stereo matching methods,
local methods utilize the color or intensity values within a
finite support window to determine the disparity for each
pixel. Therefore, local methods compute disparities within an
image with a simple structure and are generally efficient and
easy to implement.

How to select an appropriate matching window for each
pixel has thus been a main goal of local methods. To reduce

image ambiguity and improve accuracy, local methods com-
monly aggregate support from neighboring pixels in a given
size-constrained window. This is the implied assumption that
all pixels in the window are from the same depth, i.e., they
have the same disparity. Several adaptive-window algorithms
have been proposed to solve the problem of optimizing the
size and shape of the window, and some results have been
achieved [5]–[8].

However, finding the optimal support window with an
arbitrary shape and size is extremely difficult and generally
known as an ‘‘NP-hard problem’’. The smoothness assump-
tion that pixels in the window have the same disparity is
broken at depth discontinuities in which the window con-
tains pixels of both background and foreground disparities.
This leads to the well-known foreground fattening effect.
Thus, one of the most successful local solutions based on
weight using a fixed-size square window has been proposed,
which defines each pixel in the window with different sup-
port weights. Yoon and Kweon proposed an adaptive support
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weight (ASW) approach [9] that adjusts the support weights
of the window pixels by using the photometric and geo-
metric distance with respect to the center pixel. Following
this pioneering work, numerous improvements have been
made in subsequent algorithms regarding the basics of ASW.
Geodesic support [10] defines the weights within onewindow
by computing the geodesic distance to the center pixel. Seg-
ment support [11] improves the reliability of adaptive support
aggregation by adding additional segmentation processes.
Cost filter [12] obtains consistent edge-preserving results by
using a guided filter. There are also a number of other local
methods that have been proposed [13]–[16].

A cost filter is a quality edge-preserving method which has
been recognized as one of the best local methods for the Mid-
dlebury dataset [17]. However, it still contains errors regard-
ing disparity estimation in textureless (flat) areas, which have
different characteristics compared to edges. Sometimes it
is difficult to obtain extremely precise disparity maps only
considering the limited information from a given image pair.
However, when working with video, it is limited to apply
the existing image-based methods to obtain disparity directly.
In contrast to image-based methods, we must utilize addi-
tional information from video frames to improve the disparity
map.

Actually, stereo video disparity estimation is at an early
developmental stage, whereas stereo image disparity estima-
tion is at a mature one. Few approaches that adopt flow vec-
tors or spatial-temporal characteristics have been proposed
[18]–[21]. There is still enormous room for development in
the area of video-based stereo matching.

In this study, we propose a video-based local stereo-
matching algorithm that integrates a cost filter with motion
flow of video sequences. In video processing, motion is a
critical feature, and moving objects in general have a high
degree of saliency and can be clearly distinguished from
the background. However, most disparity methods have dif-
ficulty in dealing with fast-moving edges in video scenes.
To solve this problem, we integrate motion flow into a local
stereo matching algorithm to calculate the appropriate sup-
port weight. This method can reduce errors in depth dis-
continuities and object edge areas. The experimental results
demonstrate that the proposed method achieves better depth
maps and outperforms other local stereo matching methods
with respect to video disparity evaluation.

The remainder of this study is organized as follows.
Section 2 presents a related cost filter local stereo matching
method. Improvements to the cost filter method for videos
are described in Section 3. We show experimental results and
provide analysis in Section 4. Section 5 concludes the study.

II. RELATED WORK
As mentioned previously, a cost filter is recognized as one
of the best local methods and obtains better results espe-
cially on edge-preserving compared to other methods. This
is mainly due to the fact that a cost filter can distinguish the
same-side edge part effectively by means of the algorithm,

and can calculate the appropriate weights for pixels in the
support window. Cost filters use the weights of the guided
filter [22], which we briefly review now [12]. To illustrate,
we just take a grayscale guidance image I as example, i and j
are pixel indexes. The weight Wi,j is defined as:

Wi,j =
1
|ω|2

∑
k:(i,j)∈ωk

(1+
(Ii − µk )(Ij − µk )

σ 2
k + ε

) (1)

where ε is a smoothness parameter, and µk and σk are
the mean and the variance of I in a squared window ωk
with dimensions (2r + 1) × (2r + 1) , centered at pixel k .
We denote the number of pixels in this window with |ω| .
Next, we will explain why the filter weights can preserve

edges of I . The numerator (Ii − µk )(Ij − µk ) will be greater
than zero and have a positive effect if Ij is located on the
same side of the edge as Ii , but will be less than zero and
have a negative effect in the opposite case. Thus the term

1 + (Ii−µk )(Ij−µk )
σ 2k +ε

is large for pixel pairs on the same side of

the edge, and small otherwise. Hence, pixels are not averaged
if they are separated by an image edge.

The strength of the averaging is controlled by the parameter
ε in eq.(1). If σ 2

k � ε (then µk is similar to Ii and Ij), the
numerator is much smaller than the denominator in eq.(1).
Hence, the kernel converges to an (unweighed) low-pass
filter: Wi,j =

1
|ω|2

∑
k:(i,j)∈ωk 1.

The filter weights are similarly defined for color images:

Wi,j=
1
|ω|2

∑
k:(i,j)∈ωk

(1+(Ii − µk )T (6k + εU )−1(Ij − µk ))

(2)

where Ii, Ij andµk are 3×1 (color) vectors, and the covariance
matrix6k and identity matrixU are of size 3×3. The weights
are high in regions that are self-similar to the central pixel,
and low otherwise.

Overall, the effectiveness of the cost filter is outstand-
ing. However, there still exist problems when we observe
the results carefully. The algorithm provides weights for the
pixels on the different sides of the edge, but the values of
these weights should be small and nearly to zero. This is
shown and compared to the proposed method in Section 4.
The numerator (Ii − µk )(Ij − µk ) will be greater than zero
when the pixel on the other side of the edge has similar color
distribution to that of the central pixel. In this situation, the
pixel can easily be considered to be on the same side and
given the wrong weights. Despite the few errors in weight,
they may still influence the process of stereo matching, which
will eventually lead to failure in disparity estimation.

To solve this problem and improve the algorithm to be
suitable for stereo matching in videos, we intend to use the
motion information from the video. In videos, motion is a
critical feature, which covers spatial and temporal character-
istics simultaneously and is also the biggest difference with
the static image. Therefore, motion has a better chance to
effectively remove error weights and eventually obtain an
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accurate stereo-matching result of video sequences.When the
object moves, it will progress to different positions in the
video sequences, and the edge of foreground and background
objects can be distinguished according to the change of posi-
tions. We then combine the edge with the cost filter to remove
errors of weight on the different side. Accordingly, we can
provide appropriate weights for every pixel and obtain an
accurate stereo-matching result.

III. STEREO MATCHING BASED ON VIDEOS
In this section, we will introduce our improved algorithm
based on a cost filter for video stereo matching.

A. COST COMPUTATION
For each pixel i in the left image Ileft and each allowed dis-
parity d , the cost volume represents the dissimilarity between
pixel i and the pixel at coordinates i − d in the right image
Iright . In particular, we use a truncated absolute difference
between the color and gradient (TAD C+G) at the matching
points. This model has been proven to be robust to illumina-
tion changes.

The color difference M (i, d) for the matching pixel i at
disparity d is defined as

M (i, d) = ||Ileft (i)− Iright (i− d)|| (3)

where I (i) denotes the value of the color distribution in RGB
space at pixel i.
The absolute difference G(i, d) of the gradients is defined

as

G(i, d) = ||∇x(Ileft (i))−∇x(Iright (i− d))|| (4)

where ∇x(I (i)) denotes the gradient in the x direction com-
puted at pixel i .

The final cost function C(i, d) is defined as

C(i, d) = α · min(Tc,M (i, d))+ (1− α) · min(Tg,G(i, d))

(5)

where α balances the color and gradient terms, and Tc and Tg
are truncation values that contribute to reduce the influence
of occluded pixels on the matching result.

B. COST AGGREGATION AND DISPARITY
SELECTION STRATEGY
Aggregated cost volume represents the matching cost
between pixel i and the pixel at coordinates i− d of the right
image. The aggregated cost volume is a weighted average of
all pixels in the same window, which is defined as

C ′i,d =
∑
j

Wi,j (I )C(j, d) (6)

where C ′i,d is the aggregated cost volume, and i and j are
pixels in the support window. The weight Wi,j represents the
influence of pixel in the support window.

Once the aggregated cost volume of pixels is determined,
the final disparity is obtained by adopting an accepted rule

of winner-take-all (WTA). In other words, we regard the
disparity di that corresponds to the minimum value of the
aggregated cost volume as the final disparity of pixel i. This
can be expressed mathematically as

di = argmin
d
C ′i,d (7)

C. PROPOSED VIDEO-BASED WEIGHT
In order to solve the problem of weight calculation in a
cost filter as mentioned in Section 2, additional measures are
required, such as using motion flow in the video to improve
the weights.

Motion has been used rarely for support weight calculation
within a localized window, although it is a crucial factor
in video processing. In the ASW method, proximity and
similarity are treated as measures of independent standards.
We thus model motion flow in the same manner. In addition,
the local methods require pixel-based computation, hence
we use the classic optical flow method with the weighted
non-local term [23], which is a state-of-the-art optical-flow
method.

Once the method has been determined, we must consider
how the motion flow affects the result. A larger moving speed
will produce a larger motion flow, and the edge of foreground
and background of objects can be distinguished easily, which
will contribute to provide amore appropriate weights for each
pixel and finally produce a more accurate stereo-matching
result. On the contrary, when the moving speed is relatively
small, the effect of motion flow will be small, which will
result in less accurate stereo-matching results. In fact, the
motion difference between the two pixels is calculated by
measuring optical flow. There exist two methods to calculate
motion difference: absolute flow endpoint difference (ED)
and angular difference (AD) [24]. In our model, ED is
employed because AD in the region that has large motion is
down-weighted and more likely to produce an error. As such,
ED becomes the preferred measure of flow accuracy [24].
We regard fi = (ui, vi) and fj = (uj, vj) as the flow vectors
of pixel i and j, respectively. The truncated motion difference
is defined as

1fi,j = min(||fi − fj||,Tτ ) (8)

where Tτ is a truncation value. In this manner, the influence
of abnormal optical flow similar to Tc and Tg can be reduced.
At the beginning of our method, we integrate the motion

difference simply by referring to the formula used in the
ASWmethod. However, the effect is unsatisfactory and many
errors occur on the edge part of the object. We then focus
on the essential fact that the optical flow is an estimated
value and cannot be exactly correct. Thus, we should consider
additional factors to reduce the estimated errors and obtain the
appropriate formula of weight rather than just add motion dif-
ference to the formula. After extensive exploration, a model
that integrates motion with color similarity is put forward,
which is denoted as

W ′i,j = Wi,j · exp(−1fi,j ·1ci,j/γ ) (9)
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where Wi,j is the weight defined in cost filter, 1ci,j is the
color dissimilarity, and γ is an empirical parameter. 1ci,j is
defined as

1ci,j = min(||Ii − Ij||,Tη) (10)

where Ii and Ij are pixel distribution in RGB color space, and
Tη is a truncation value.

The proposed formula is based on the understanding that
there exists a correlation between color similarity andmotion.
In addition, the two pixels that have the same color distribu-
tion as in the flat areas of an object surface seem to have a
similar motion trend. Moreover, because color is an observed
quantity, the exact color value can be obtained directly. The
addition of color can optimize the model that only considers
an estimated motion. Finally, the proposed model improves
performance at the edges compared to the cost filter. In gen-
eral, we define a new weight calculation model that considers
the correlated relation between similarity and motion.

D. OCCLUSION FILLING AND POST-PROCESSING
After the disparity map is acquired, a problem with occlusion
occurs in which the disparity is discontinuous in some parts
of the image. To solve this problem, a left-right consistency
check is performed to detect unreliable pixels. Unreliable
pixels are those that have different disparities on the left
and right images. To obtain a dense disparity map, we adopt
a post-processing strategy of [25]. The occluded pixels are
assigned the lowest disparity value of the spatially closest
non-occluded pixels that lie on the same scanline (pixel row).
This strategy generates streak-like artifacts in the disparity
map, and we post-process the filled-in pixels. We perform
edge-preserving smoothing on the filled-in regions by using
a weighted bilateral median filter.

IV. EXPERIMENTAL RESULTS AND DISCUSSION
To evaluate the proposed method, we use stereo videos for
processing and acquire a disparity image. The experimental
parameters of our proposed method are set to constant values,
and empirically defined as:

{r, ε, α, Tc,Tg,Tτ ,Tη, γ }

= {9, 0.012, 0.1, 0.028, 0.008, 0.8, 0.03, 0.2}

A. SUPPORT WEIGHT IMPROVEMENT COMPARED
WITH COST FILTER
For the purpose of comparing the weight calculated by cost
filter [12] and our proposed method objectively, we employ
one video in [28] that contains the same frame as the one in
the cost filter to do experiment. For comparison, we just use
the frame in the study of cost filter and the same five points
to show the weights. The image and corresponding optical
flow image are shown in Fig. 1. The weights of points are
shown in Fig. 2. As Fig. 2(a1)-(e1) reveal (see highlighted
regions marked with red ellipses), several pixels on the dif-
ferent sides of the center pixel are assigned wrong weights
as calculated by the cost filter. Although the overall effect is

FIGURE 1. (a) original image. (b) corresponding optical flow image.

FIGURE 2. The weights calculated at different positions. (a1)-(e1) use
cost filter, (a2)-(e2) add motion and color based on cost filter. Note that
cost filter have more errors (see highlighted regions) but our method
performs well.

not unsatisfactory, acquiring more accurate results is possi-
ble. By contrast, our proposed method can remove the error
weights effectively, as Fig. 2(a2)-(e2) show, which ensure
that subsequent processing is accurate. It is thanks to the
motion flow that can distinguish the object and background.
This shows the potential of motion flow in improving the
performance of stereo matching for dynamic scene. What’s
more, the estimated optical flow is slightly inaccurate, which
causes weight problems. To solve this problem, we make
use of the observed color variable to optimize the model.
In particular case that no motion occurs in the video, the
optical flow difference of all pixels is zero, and our method is
the same as that of the cost filter. Accordingly, our proposed
model integrating the cost filter with motion and color is
suitable for weight calculation.

B. DISPARITY ESTIMATION RESULTS ON STEREO VIDEOS
It is shown in [22] that ASW and the cost filter are the
best among the stereo matching methods based on adaptive
weight, because ASW performs better on the average rank,
while the cost filter produces a lower average error. There-
fore, we compare our proposed method with ASW and the
cost filter.

In this section, we first provide the disparity image results
before occlusion filling and post-processing. We mainly
focus on moving parts, because our method is the same as
the cost filter in static parts when no motion occurs. Fig. 3
demonstrates the original image of a moving hand and the
corresponding optical flow image. Fig. 4 illustrates the left
and right disparitymaps. Asmentioned previously, the optical
flow is an estimated value and visible errors occur, as shown
in Fig. 3(e)-(h). Therefore, calculating weights fully with
optical flow is inappropriate. Integrating the optical flow
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FIGURE 3. (a)-(b) original left and right image of ‘‘finger’’. (c)-(d) original
left and right image of ‘‘fist’’. (e)-(h) corresponding optical flow image
with upper original image.

FIGURE 4. Left and right disparity map for ‘‘finger’’ and ‘‘fist’’.
(a1)-(d1) acquired by ASW. (a2)-(d2) acquired by cost-filter.
(a3)-(d3) acquired by our proposed method.

and color similarity into the weight represents an improved
strategy.

Next, we analyze the results of Fig. 4. In the wrong dis-
parity parts marked with yellow diamonds, ASW produces
multiple wrong disparity parts in the finger and fist images,
whereas the cost filter and our proposed method show no
problems in the finger image and fewer parts of wrong dis-
parity in the fist image. In the occlusion parts marked with
red ellipses, ASW and the cost filter produce rough edges in
the finger image, whereas our proposed method produces a
smooth and clear boundary that is consistent with the original
image. The three methods perform similarly with respect
to the fist image. In non-occlusion parts marked with blue
rectangles in the finger image, the cost filter produces a rough
edge and flat corner between the palm and arm that should be
nearly at a right angle, whereas this problem does not occur
whenASWand ourmethod are employed. Regarding the blue
rectangles in the fist image, ASW produces a projecting part
with obvious wrong disparity, and the cost filter produces a
bulge sandwiched between the hand and arm. By contrast, our
proposed has no problem in these parts.

Overall, our proposed method represents a major improve-
ment over the other two methods. This is primarily due to
the improvement of our weight model, and also illustrates
the feasibility of our model. In fact, distinguishing objects at
different depths and acquiring accurate disparity with single

image pair, especially on the edges, is difficult. Therefore,
errors occur easily during weight calculation. However, our
method make full use of optical flow according to the motion
information given by the object in the video to solve this
problem. Our method can distinguish edges of an object and
allocate appropriate weight to pixels on both sides of object’s
edge, removing the negative influence of errors in which
pixels near edge have undeserved weights. Therefore, our
method can achieve better results than the other methods,
and eventually can obtain a more accurate disparity image
after following the same occlusion filling and post-processing
procedures.

FIGURE 5. Final disparity maps for ‘‘finger’’ and ‘‘fist’’ images.
(a) and (b) original ‘‘finger’’ and ‘‘fist’’ image. (c) and (d) acquired
by ASW. (e) and (f) acquired by cost filter. (g) and (h) acquired by
our proposed method.

In order to fully understand the validity and integrality of
our method, we show the disparity image after all processing
has completed. Based on the left and right disparity images
acquired in the previous process, occlusion parts are filled and
non-occlusion parts are processed. The final disparity maps
are shown in Fig. 5. To compare the results more analytically,
we draw the outline of a moving hand and mark the wrong
disparity parts with yellow ellipses on disparity maps. ASW
show several errors in the background and a deviation relative
to the outline in Fig. 5(c). In addition, it produces many
obvious errors that cannot distinguish depth at the edge of
the hand in Fig. 5(d). Cost filter errors appear in the cor-
ner between the palm and arm, and cost filter shows some
differences with the outline observed in Fig. 5(e) and (f).
By contrast, our proposed method performs expertly, espe-
cially with respect to the parts of the hand and background.
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FIGURE 6. The performance comparison for ‘‘finger’’ and ‘‘fist’’ disparity
maps.

Besides, our method produces a more explicit boundary
between the moving hand and background (consistent with
the outline) in Fig. 5(g) and (h). For more intuitive compar-
ison, we show a histogram of rough percent of bad pixels in
Fig. 6. Our proposed method has minimal error percent in
images, and outperforms ASW and the cost filter methods,
which show the effectiveness of our approach.

C. QUANTITATIVE EVALUATION
The quantitative evaluation of disparity maps from stereo
videos is hindered by the general lack of ground truth dispar-
ity maps. In order to ensure objective quantitative evaluation,
we adopt a synthetic dataset including five stereo sequences
with known ground truth disparity maps, provided by [29]
(see in Fig. 7).

FIGURE 7. Selected frames and disparity maps from synthetic stereo
video sequences.

To understand why our method performs better than cost
filter, we exhibit the improvement of adding motion informa-
tion relative to the cost filter in Fig. 8. We select frames at
a fixed interval to show the results and offer overall results
in the ensuing paragraphs. Note that the book sequence has
almost only half of the frames of the other four sequences,
thus the interval of book is smaller. Our method has a
large improvement in book and temple sequences, because
these two sequences have clear and distinguishable move-
ment that lead to more accurate weight. The improvement in
tanks and tunnel sequences are relatively small, because the
frames have overall movement that lead to small difference in
motion and some troubles in distinguishing objects, but our
method still achieve better results. We believe that the poor
performance compared with cost filter on street sequences is

FIGURE 8. Bad pixels comparison of selected frames.

the result of the existence of a lot of texture, inconspicuous
edge information and tiny range of depth differences in the
scene. These factors lead to unstable and obscure optical
flow, and finally a bad performance of disparity estimation
is obtained. We will adopt a more ideal method to overcome
this problem in the future.

To ensure the integrity of experiment, we add the video
based method denoted as ‘‘DCB grid’’ and ‘‘temporal DCB
grid’’ in [29] for better comparison. The performance of all
methods are shown in Table 1. We process all sequences
and use the mean error (percentage of bad pixels, threshold
of 1) as a standard to evaluate the performance. Our approach
generates results that are visually comparable or better than
the compared methods.

TABLE 1. Quantitative evaluation of performance.

The best results are produced by our method which out-
performs the other techniques on all datasets and gets higher
quality (except street relative to cost filter). Because the stereo
sequences have relatively clear and discernible motion and
edge information, the obtained optical flow in our method has
a good effect and improves performance compared with cost
filter, the DCB grid and temporal DCB grid methods.

Due to 3D contents can bring users stereo perception and
immersive viewing experiences, 3D video has become a pop-
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ular research field in recent years. Video transmission has
been recently deployed in Vehicular networks [30]–[32], in
the future work, we will also focus on the study of real-time
stereo video transmission system in Vehicular networks.

V. CONCLUSION
In this study, we present a video-based stereo-matching
method that integrates motion flow and color similarity
with an image-based cost-filter local method. Our proposed
method is proven to be more suitable for video disparity
estimation than other methods. In local stereo matching, sup-
port weight is a crucial factor that influences the accuracy
of a disparity map. To obtain a more precise support weight,
a correlated support model is introduced. We consider that
object motion flow takes advantage of the benefits of motion
and thus combine color similarity to refine the model for
video disparity estimation. The experimental results show
that our proposed method achieves an improved depth map,
especially at the edge of moving objects, and outperforms
the other local stereo-matching methods in terms of video
disparity evaluation.
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