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ABSTRACT In wireless communication schemes, turbo codes facilitate near-capacity transmission
throughputs by achieving reliable forward error correction. However, owing to the serial data dependencies
imposed by the underlying logarithmic Bahl–Cocke-Jelinek–Raviv (Log-BCJR) algorithm, the limited
processing throughputs of conventional turbo decoder implementations impose a severe bottleneck upon the
overall throughputs of real-time wireless communication schemes. Motivated by this, we recently proposed
a fully parallel turbo decoder (FPTD) algorithm, which eliminates these serial data dependencies, allowing
parallel processing and hence offering a significantly higher processing throughput. In this paper, we propose
a novel resource-efficient version of the FPTD algorithm, which reduces its computational resource require-
ment by 50%, which enhancing its suitability for field-programmable gate array (FPGA) implementations.
We propose a model FPGA implementation. When using a Stratix IV FPGA, the proposed FPTD FPGA
implementation achieves an average throughput of 1.53 Gb/s and an average latency of 0.56 µs, when
decoding frames comprising N = 720 b. These are, respectively, 13.2 times and 11.1 times superior to those
of the state-of-the-art FPGA implementation of the Log-BCJR long-term evolution (LTE) turbo decoder,
when decoding frames of the same frame length at the same error correction capability. Furthermore, our
proposed FPTD FPGA implementation achieves a normalized resource usage of 0.42 (kALUTs/Mb/s),
which is 5.2 times superior to that of the benchmarker decoder. Furthermore, when decoding the shortest
N = 40-b LTE frames, the proposed FPTD FPGA implementation achieves an average throughput
of 442 Mb/s and an average latency of 0.18 µs, which are, respectively, 21.1 times and 10.6 times superior
to those of the benchmarker decoder. In this case, the normalized resource usage of 0.08 (kALUTs/Mb/s) is
146.4 times superior to that of the benchmarker decoder.

INDEX TERMS Fully-parallel turbo decoder, FPGA, LTE, turbo decoding.

NOMENCLATURE
BER Bit Error Rate
AWGN Additive White Gaussian Noise
BCJR Bahl-Cocke-Jelinek-Raviv
Log-BCJR Logarithmic Bahl-Cocke-Jelinek-Raviv
LTE Long-Term Evolution
LTE-A Long-Term Evolution Advanced
WiMAX Worldwide Interoperability for

Microwave Access

LLR Log-Likelihood Ratio
UMTS Universal Mobile Telecommunications

System
3GPP 3rd Generation Partnership Project
FPGA Field-Programmable Gate Array
VLSI Very-Large-Scale Integration
ASIC Application-Specific Integrated Circuit
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LDPC Low-Density Parity-Check
DVB-SH Digital Video Broadcasting - Satellite

services to Handhelds
WiFi Wireless Fidelity
MCMTC Mission-Critical Machine-Type

Communication
ARA-LDPC Accumulate-Repeat-Accumulate

Low-Density Parity-Check
PEG-LDPC Progressive-Edge-Growth Low-Density

Parity-Check
CCMC Continuous-Input Continuous-Output

Memoryless Channel
ALUT Adaptive Look-Up Table

I. INTRODUCTION
Channel coding plays an important role in the physical layer
of wireless communications systems, facilitating the cor-
rection of transmission errors imposed by hostile channels.
In particular, state-of-the-art iterative channel codes such as
Low-Density Parity-Check (LDPC) and turbo codes [1]–[5]
are capable of facilitating reliable communication at near-
capacity transmission throughputs, leading to widespread
employment by state-of-the-art mobile telephony standards,
such as WiMAX [6] and LTE [7]. However, the processing
throughputs of the iterative channel decoder often imposes a
bottleneck upon the overall throughput of real-time wireless
communication schemes. Likewise, the processing latency
of the iterative channel decoder typically dominates the
overall physical layer latency. This is of particular concern
in the emerging Mission-Critical Machine-Type Communi-
cation (MCMTC) applications of next generation wireless
systems [8], [9]. More specifically, these applications will
require the reliable transmission of relatively short emergency
and control message frames comprising as few as dozens or
hundreds of bits with a Gbit/s throughput and an ultra-low
latency, which is on the order of microseconds [9]. These
short message frames motivate the use of turbo codes in
Mission-Critical Machine-Type Communication (MCMTC)
applications, since they offer superior error correction capa-
bility for short frames than LDPC codes, while additionally
performing also well for long frames [10]–[12].

As one may expect, initial systems designed for these
emerging MCMTC applications are likely to be employed
in relatively small numbers of machines or vehicles, where
the cost is of greater concern than size, weight and power,
motivating the employment of (Field-Programmable Gate
Arrays) FPGAs, rather than (Application-Specific Integrated
Circuits) ASICs for the implementation of turbo decod-
ing. However, the throughput and latency requirements of
MCMTC applications are particularly challenging to fulfill
in FPGA implementations of turbo decoders. More specifi-
cally, while Figure 1 shows that the FPGA implementation of
LDPC decoders has received a significant amount of attention
over the past two decades [13], only [14]–[16] have proposed
FPGA implementations of turbo decoders. Owing to their

FIGURE 1. Selected ASIC and FPGA implementations of Log-BCJR turbo
decoders (shown in red) and LDPC decoders (shown in black) for
different communication standards.

natural suitability to parallel processing, Figure 1 shows that
LDPC decoders have previously offered significantly higher
processing throughputs than turbo decoders, as well as signif-
icantly lower processing latencies. Indeed, the state-of-the-art
FPGA-based LTE turbo decoder achieves a peak process-
ing throughput of 524 Mbit/s, when processing the longest
6144-bit message frames. However, this drops to 62 Mbit/s
when processing 512-bit frames [14], which are more typi-
cal of MCMTC applications. This may be attributed to the
state-of-the-art turbo decoder implementations reliance on
the iterative operation of two Logarithmic Bahl-Cock-
Jelinek-Raviv (Log-BCJR) decoders [17], [18]. More specif-
ically, the strict data dependencies of the classic Log-BCJR
algorithm require highly serial processing, typically necessi-
tating 64 to 192 clock cycles per iteration [19] and five to
eight iterations per message frame.

Motivated by achieving Gbit/s turbo decoding processing
throughputs and ultra-low processing latencies, we previ-
ously proposed a novel floating-point Fully-Parallel Turbo
Decoder (FPTD) algorithm [38]. Unlike turbo decoders based
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FIGURE 2. The novel contributions of this work, compared with our previous work of [37].

on the Log-BCJR algorithm, our FPTD algorithm does not
have data dependencies within each half of each turbo decod-
ing iteration [38]. This facilitates fully-parallel processing,
allowing each half-iteration to use only a single clock cycle,
although this is achieved at the cost of the FPTD typically
requiring seven times as many iterations for achieving the
same error correction capability as the state-of-the-art turbo
decoding algorithm. Despite this, our previous contribution
of [37] shows that a fixed-point ASIC implementation of
this FPTD algorithm is capable of achieving a processing
throughput as high as 21.9 Gbit/s, which is 17.1 times supe-
rior to the state-of-the-art Log-BCJR based turbo decoder
of [19], when implemented using the same TSMC 65 nm
technology and decoding the longest N = 6144-bit LTE
frames.

Against this background, this paper proposes a novel fixed-
point FPTD architecture, which implements the fixed-point
FPTD algorithm using 50% less hardware resources per mes-
sage bit compared to our previous fixed-point FPTD archi-
tecture [37], as shown in Figure 2. We also propose a novel
FPGA implementation for the proposed FPTD architecture,
which is suitable for MCMTC applications. The main exper-
imental results of this work are listed as follows.
• The proposed Stratix IV FPGA implementation of
the proposed FPTD architecture achieves an aver-
age throughput of 1.5 Gbit/s and an average latency
of 0.56 µs, when decoding frames comprising
N = 720 bits, as may be found in MCMTC applica-
tions [8], [9]. These are respectively 13.2 times and
11.1 times superior to those of the state-of-the-art FPGA
implementation of the LTE turbo decoder [14] based on
Log-BCJR algorithm, when decoding the same frame
length of N = 720.

• The proposed FPGA implementation of the 720-bit
FPTD has a normalized resource usage of 0.42 kALUTs

Mbit/s ,
where the Adaptive Look-Up Tables (ALUTs) are the
fundamental programmable hardware resources adopted
by the FPGA. This is 5.2 times superior to the 22 kALUTs

Mbit/s
that is obtained for the benchmarker decoder of [14].
Likewise, it is 1.3 times superior to the 0.55 kALUTs

Mbit/s
recorded for a specific version of the benchmarker

optimized for frame lengths N in the range spanning
from 512 to 1024 bits.

• When decoding the shortest N = 40-bit LTE frame,
the proposed FPTD achieves an average throughput of
442 Mbit/s and an average latency of 0.18 µs, which are
respectively 21.1 times and 10.6 times superior to the
benchmarker decoder of [14]. In this case, the normal-
ized resource usage is 146.4 times lower and 19 times
lower than that of the benchmarker decoder of [14] and
a specific version optimized for frame lengths N in the
range of 40 to 512 bits, respectively.

FIGURE 3. The paper structure.

The rest of the paper of Figure 3 is organized as follows.
In Section II, we discuss the motivation for using turbo
codes in MCMTC applications. In Section III, we offer back-
ground discussions on our previously proposed fixed-point
FPTD algorithm [37], which was designed for VLSI applica-
tions. In Section IV, we propose a novel fixed-point FPTD
architecture which benefits from a 50% lower hardware
resource requirement than our previous architecture [37].
In Section V, we detail the FPGA implementation of our
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novel resource-efficient FPTD architecture, including its
top-level schematic as well as its input/output memory and
Cyclic Redundancy Check (CRC) circuit. In Section VI,
we characterize the proposed FPGA implementation of our
resource-efficient fixed-point FPTD, in terms of its process-
ing throughput, processing latency, hardware resource usage
and energy consumption, where the first three items are com-
pared to those of the state-of-the-art Log-BCJR turbo decoder
FPGA implementations. Finally, we offer our conclusions
in Section VII.

FIGURE 4. The Eb/N0 values where the R = 1/3 LTE turbo code achieves
a target FER of 10−3 as a function of the message frame length N ,
compared with the channel capacities, several bounds and the
LDPC codes of [12] and [39], for the case of BPSK transmission over
an AWGN channel.

II. TURBO CODES FOR MCMTC APPLICATIONS
As described in Section I, turbo codes are attractive in
applications such as MCMTC, since they offer a strong error
correction capability even for short message frames. More
specifically, Figure 4 shows the Eb/N0 values, where a Frame
Error Ratio (FER) of 10−3 is achieved by the LTE turbo
code for different message frame lengths N in the range of
40 to 6144 bits supported by LTE. Note that these results
correspond to the case of using an LTE turbo coding rate of
R = 1/3 combined with Binary Phase Shift Keying (BPSK)
modulation for transmission over an AWGN channel, and
using a sufficiently high number of turbo decoding iterations
for achieving iterative decoding convergence. For compar-
ison with the LTE turbo code, Figure 4 also shows the
Eb/N0 values, where an FER of 10−3 is achieved by an
R = 1/3-rate Accumulate-Repeat-Accumulate (ARA)-
LDPC and anR = 1/2-rate Progressive-Edge-Growth (PEG)-
LDPC, as considered using similar analysis in [12] and [39],
respectively. It may be seen that the LTE turbo code outper-
forms the ARA-LDPC and PEG-LDPC codes for all frame
lengths, where the maximum gap of approximately 1 dB is
achieved, when the frame length is N = 40 bits. Note that
according to [12], the performance of the LDPC code used in
WiMAX is very similar to that of the PEG-LDPC code shown

in Figure 4, but the frame lengthsN supported by theWiMAX
LDPC are constrained to the range of 288 to 1152 bits for the
code rate of R = 1/2 [40].

Additionally, Figure 4 shows a selection of capacity
bounds, which provide a wider context for the performance
achieved by the turbo and LDPC codes considered. More
specifically, the Continuous-Input Continuous-Output Mem-
oryless Channel (CCMC) Shannon capacity [41] and the
modulation-specific Discrete-input Continuous-outputMem-
oryless Channel (DCMC) capacity bound [42] for the com-
bination of R = 1/3 channel coding, BPSK modulation and
AWGN channel are represented by the pair of horizontal lines
at Eb/N0 = −0.55 dB and Eb/N0 = −0.49 dB, respectively.
However, the Shannon capacity and DCMC capacity provide
bounds that only apply for infinitely long frame lengths,
which therefore do not offer an accurate prediction of the
achievable error correction capability for practical channel
codes, having short message frame lengths of the order of
dozens or hundreds of bits. Motivated by this, the converse
bound [43] of Figure 4 represents a lower bound on the
achievable error correction capability of practical channel
codes as a function of the message frame length N , offering
a better estimation for short message frames than the DCMC
and Shannon capacity bounds. Furthermore, the Kappa-beta
and Gallager bounds [43]–[45] of Figure 4 offer further
refinements of the estimated error correction capability that
is achievable by practical channel codes. Compared to these
refined bounds, the LTE turbo code can be seen in Figure 4 to
offer near-optimal error correction capability for both short
message frames and long message frames, which motivates
the employment of turbo codes in MCMTC applications.

III. FIXED-POINT FULLY-PARALLEL TURBO DECODER
The floating-point FPTD algorithm was originally proposed
in [38]. Following this, in [37] we proposed a fixed-point
version of the FPTD algorithm, which was optimized for
the LTE turbo code and was implemented as an ASIC.
In this section, we briefly summarize our previously
proposed fixed-point LTE FPTD algorithm as follows.
In Section III-A, we discuss the top-level operation of the
FPTD algorithm, using the schematics of Figures 5 and 6.
In Sections III-B and III-C respectively, we summarize the
fixed-point algorithmic blocks of Figure 8 and the termination
unit of Figure 11, which may be employed for implementing
the FPTD algorithm of Figure 5.

A. SCHEMATIC
Figure 5 shows the schematic of the FPTD algorithm pro-
posed in [38]. When decoding N -bit message frames, the
FPTD algorithm comprises two rows of N identical algorith-
mic blocks, where the blocks of the upper and lower rows are
labeled as {u1, u2 . . . , uN } and {l1, l2 . . . , lN }, respectively.
The upper row is analogous to the upper decoder of the
conventional Log-BCJR turbo decoder, while the lower row
corresponds to the lower decoder, which are connected by
an LTE interleaver. A termination unit comprising unshaded
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FIGURE 5. Schematic of the FPTD algorithm of [38].

algorithmic blocks is appended to the tail of each row, in order
to comply with the LTE termination mechanism [7]. As in the
Log-BCJR algorithm, the FPTD algorithm operates on the
basis of Logarithmic Likelihood Ratios (LLRs) [46], where
each LLR of

b̄ = ln
Pr(b = 1)
Pr(b = 0)

(1)

conveys soft information pertaining to the corresponding bit b
within the turbo encoder. Note that in the rest of this paper,
the superscripts ‘u’ and ‘l’ seen in the notation of Figure 5
are used only when necessary for explicitly distinguishing
the upper and lower components of the turbo code, but they
are omitted in discussions that apply equally to both. When
decoding message frames comprising N bits, the upper and
lower decoders each accept a set of (N + 3) a priori par-
ity LLRs [b̄a2,k ]

N+3
k=1 , a set of N a priori systematic LLRs

[b̄a3,k ]
N
k=1 and a set of three a priori termination message

LLRs [b̄a1,k ]
N+3
k=N+1, where N may adopt one of 188 values

in the range of [40, 6144] in the LTE turbo code. These
a priori LLRs are provided by the demodulator and are stored
in the corresponding registers of Figure 5 throughout the
decoding processing of the corresponding frame. Note that
the set of lower systematic LLRs [b̄a,l3,k ]

N
k=1 is obtained by

rearranging the order of LLRs in the upper systematic set
[b̄a,u3,k ]

N
k=1 using the interleaver π , where b̄a,l3,k = b̄a,u3,π (k).

Therefore, the FPTD requires only five sets of LLRs from

the demodulator, namely [b̄a,u2,k ]
N+3
k=1 , [b̄

a,u
3,k ]

N
k=1, [b̄

a,u
1,k ]

N+3
k=N+1,

[b̄a,l2,k ]
N+3
k=1 and [b̄a,l1,k ]

N+3
k=N+1, comprising a total of (3N + 12)

LLRs, in accordance with the LTE standard and as in the
conventional Log-BCJR turbo decoder.

Like the conventional Log-BCJR turbo decoder, the
FPTD algorithm relies on iterative operation. However,
rather than requiring 64 to 192 clock cycles per iteration,

each iteration of the FPTD algorithm comprises only two
clock cycles, which are referred to as half-iterations. More
specifically, Figure 6(a) shows that the first half-iteration
of the FPTD algorithm corresponds to the simultaneous
operation of the lightly-shaded algorithmic blocks shown
in Figure 5 within a single clock cycle. These lightly-shaded
blocks comprise the algorithmic blocks in the upper row hav-
ing odd indices {u1, u3, u5, . . . } and the even-indexed algo-
rithmic blocks in the lower row {l2, l4, l6, . . . }. By contrast,
Figure 6(b) shows that the second half-iteration corresponds
to the simultaneous operation of the remaining algorithmic
blocks within a single clock cycle, which are darkly-shaded
in Figure 5. During the t th clock cycles of the decoding
process, the k th ∈ [1,N ] algorithmic block processes the a
priori LLRs b̄a,t−11,k , b̄a2,k and b̄

a
3,k . Here, b̄

a,t−1
1,k was generated

in the (t − 1)st clock cycle by interleaving the appropriate
extrinsic message LLR provided by an algorithmic block
in the other row, where b̄a,l,t−11,k = b̄e,u,t−11,π (k) and b̄a,u,t−11,π (k) =

b̄e,l,t−11,k . In addition to the a priori LLRs b̄a,t−11,k , b̄a2,k and b̄
a
3,k ,

the algorithmic block also consumes a set of M forward-
oriented statemetrics ᾱt−1k−1 = [ᾱt−1k−1(Sk−1)]

M−1
Sk−1=0

and a set of

M backward-oriented state metrics β̄
t−1
k = [β̄ t−1k (Sk )]

M−1
Sk=0

,
where the LTE turbo code employs M = 8 states. For
algorithmic blocks having an index of k ∈ [2,N ], ᾱt−1k−1 is
generated in the previous (t−1)st clock cycle by the preceding
(k − 1)st algorithmic block in the same row. Likewise, for
algorithmic blocks having an index of k ∈ [1,N −1], β̄ t−1k is
generated in the previous (t − 1)st clock cycle by the follow-
ing (k + 1)st algorithmic block in the same row. As shown
in Figure 5, registers are required for storing [b̄a,t−11,k ]Nk=1,

[ᾱt−1k−1]
N
k=2 and [β̄

t−1
k ]N−1k=1 between the consecutive clock

cycles, since they are generated by connected algorithmic
blocks in the clock cycle before they are used.
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FIGURE 6. Schematics of the FPTD algorithm, in which the lightly-shaded algorithmic blocks shown in (a) and the
darkly-shaded algorithmic blocks shown in (b) are operated alternately.

Since the a priori message LLRs [b̄a,t−11,k ]Nk=1 are unavail-
able in the initial first half-iteration, they are initialized
as b̄a,t−11,k = 0, for algorithmic blocks having indices of
k ∈ [1,N ]. Similarly, the forward and backward state metrics
gleaned from the neighboring algorithmic blocks are unavail-
able in the initial first half-iteration, hence these are also ini-
tialized as ᾱt−1k−1 = [0, 0, 0, . . . , 0] for the algorithmic blocks

having indices of k ∈ [2,N ] and as β̄
t−1
k = [0, 0, 0, . . . , 0]

for the algorithmic blocks of indices k ∈ [1,N − 1].

However, for the k = 1st algorithmic block, we employ
the forward state metrics ᾱ0 = [0,−∞,−∞, ...,−∞] in
all decoding iterations, since the LTE trellis is guaranteed
to start from an initial state of S0 = 0. Note that −∞
can be replaced by a negative constant having a suitably
high magnitude, when a fixed-point number representation is
employed. For the k = N th algorithmic block, constant values
are also used throughout all decoding iterations for the back-
ward state metrics β̄N , but these values are obtained using
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FIGURE 7. State transition diagram of the LTE turbo code.

a termination unit, which is detailed in Section III-C.
Following the completion of each half-iteration during the
t th clock cycle, a set of N a posteriori LLRs [b̄p,t1,k ]

N
k=1 can

be obtained as b̄p,t1,k = b̄e,u,t1,k + b̄a,u,t−11,k + b̄a,u3,k for the algo-
rithmic blocks having odd indices k and as b̄p,t1,k = b̄e,u,t−11,k +

b̄a,u,t1,k +b̄
a,u
3,k for the blocks having even indices k . Likewise, the

hard decision value for each bit may be obtained according to
the binary test b̄p,t1,k > 0.

B. ALGORITHMIC BLOCK
Within each of the clock cycles during which the k th

algorithmic block in either row of Figure 5 is activated,
it accepts inputs and generates outputs according to (2),
(3), (4) and (5), as shown at the bottom of this page.
Here, (2) is used to obtain a metric γ̄ tk (Sk−1, Sk ) for
each possible transition between a pair of states Sk−1
and Sk , as shown in the LTE state transition diagram
of Figure 7. Note that each transition implies a particular
binary value for the corresponding message bit b1(Sk−1, Sk ),
parity bit b2(Sk−1, Sk ) and systematic bit b3(Sk−1, Sk ), where
the systematic bits are defined as having values that are identi-
cal to the corresponding message bits, giving b3(Sk−1, Sk ) ≡
b1(Sk−1, Sk ). Following this, (3) and (4) is employed to

obtain the vectors of state metrics ᾱtk and β̄
t
k−1, respectively.

Here, c(Sk−1, Sk ) adopts a binary value of 1, if a transi-
tion is possible between the states Sk−1 and Sk in the state
transition diagram of Figure 7. Furthermore, the Jacobian
logarithm [18], [47] is defined as

max∗(δ̄1, δ̄2) = max(δ̄1, δ̄2)+ ln(1+ e−|δ̄1−δ̄2|). (6)

However, its approximated version of

max∗(δ̄1, δ̄2) ≈ max(δ̄1, δ̄2) (7)

may be employed, for reducing the computational complexity
of the FPTD algorithm, in analogy with the Max-Log BCJR
algorithm [18], [47]. Finally, (5) is employed for obtaining
the extrinsic LLR b̄e,t1,k , where the associative property of the
max* operator may be involved for extending (6) and (7) to
more than two operands.

The processing element of Figure 8 is designed for per-
forming all operations of an algorithm block, within a single
clock cycle, as required by the FPTD algorithm. During this
single clock cycle, the signals propagate through six datap-
ath stages, which impose similar propagation delays. More
explicitly, these datapath stages perform addition, subtrac-
tion and maximum calculations, which can all be efficiently
implemented at similar complexities using two’s complement
arithmetic. In particular, the variables of (2) to (5) are repre-
sented using two’s complement fixed point numbers, having
the bit-widths of (w1,w2), where the bit-widths of (w1,w2) =
(4, 6) offer an attractive trade off between strong BER per-
formance and low computational complexity, as shown in
Figure 9. More specifically, the bit-width of w1 = 4 is
employed for the a priori parity LLR b̄a2,k and systematic
LLR b̄a3,k , as recommended in [37]. As shown at the top of
Figure 8, the a priori parity LLR b̄a2,k and the systematic LLR
b̄a3,k are provided by the demodulator, where it is assumed that
a quantizer is employed for converting the real-valued LLRs
to fixed-point LLRs. In order to prevent a significant BER
performance degradation owing to quantization distortion,
it is assumed that the demodulator applies noise-dependent
scaling [48] to both the a priori LLRs b̄a2,k and b̄a3,k . More
specifically, the linear scaling factor of f1 = v · (x ·Eb/N0+y)
is employed for communication over an AWGN channel,
where the Eb/N0 is expressed in dB, v = 2w1−1 is
the range corresponding to the resolution of the quantizer,

γ̄ tk (Sk−1, Sk ) = b1(Sk−1, Sk ) · b̄
a,t−1
1,k + b2(Sk−1, Sk ) · b̄

a
2,k + b3(Sk−1, Sk ) · b̄

a
3,k (2)

ᾱtk (Sk ) = max*
{Sk−1|c(Sk−1,Sk )=1}

[
γ̄ tk (Sk−1, Sk )+ ᾱ

t−1
k−1(Sk−1)

]
(3)

β̄ tk−1(Sk−1) = max*
{Sk |c(Sk−1,Sk )=1}

[
γ̄ tk (Sk−1, Sk )+ β̄

t−1
k (Sk )

]
(4)

b̄e,t1,k =
[

max*
{(Sk−1,Sk )|b1(Sk−1,Sk )=1}

[
b2(Sk−1, Sk ) · b̄a2,k + ᾱ

t−1
k−1(Sk−1)+ β̄

t−1
k (Sk )

]]
−

[
max*

{(Sk−1,Sk )|b1(Sk−1,Sk )=0}

[
b2(Sk−1, Sk ) · b̄a2,k + ᾱ

t−1
k−1(Sk−1)+ β̄

t−1
k (Sk )

]]
(5)
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FIGURE 8. The datapath for the kth processing element of the fixed-point
FPTD algorithm for the case of the LTE turbo code. The six datapath stages
are distinguished by the dark/light shading and are indexed as shown in
the curly brackets.

while x and y are coefficients. For the quantizer having bit-
widths of w1 = {3, 4, 5, 6} bits, the optimal values of these
coefficients are x = {0.0375, 0.0275, 0.0275, 0.0275} and

FIGURE 9. BER performance of the fixed-point FPTD using the
approximate max* operation of (7), message LLR scaling (f2 = 0.75),
state-zero state metric normalization and various bit-widths (w1,w2).
The BER performance is compared to that of the floating-point FPTD
using the approximate max* operation of (7), both with and without
message LLR scaling (f2 = 0.7). The BER was simulated for the case of
transmitting N = 6144-bit frames over an AWGN channel, when
performing I = 39 decoding iterations.

y = {0.39, 0.3, 0.27, 0.25}, as discussed in [48]. In contrast
to the channel LLRs, the bit-width of w2 = w1 + 2 = 6 is
employed for the a priori and extrinsic message LLRs b̄a,t−11,k
and b̄e,t1,k , as well as for the a priori and extrinsic state metrics

ᾱt−1k−1, ᾱ
t
k , β̄

t−1
k and β̄

t
k−1. A higher bit-width of w2 > w1

is required, because the magnitudes of b̄a,t−11,k , b̄e,t1,k , ᾱ
t−1
k−1, ᾱ

t
k ,

β̄
t−1
k and β̄

t
k−1 tend to grow in successive decoding iterations,

while the values of b̄a2,k and b̄a3,k do not change during the
iterative decoding process. Furthermore, in order to avoid
overflow, up to w2 + 2 = 8 bits are used for the intermediate
variables within the processing element of Figure 8. However,
the output variables b̄e,t1,k , ᾱtk and β̄

t
k−1 are clipped

to bit-widths of w2 before they are output, as shown
in Figure 8.

In addition to the noise-dependent scaling applied to b̄a2,k
and b̄a3,k by the demodulator, the BER performance of the
FPTD algorithm can be improved by scaling the a priori
message LLR b̄a,t−11,k , in order to counteract the degradation
imposed by the approximate max* operation of (7) [37].
While a scaling factor of f2 = 0.7 is beneficial for the
floating-point FPTD, our results of Figure 9 show that the
fixed-point FPTD benefits from applying a scaling factor
of f2 = 0.75, which also facilitates a low-complexity
hardware implementation. More specifically, by exploiting
the two’s complement multiplication arithmetic illustrated
in Figure 10, the message LLR scaling factor of 0.75 may
be applied to the a priori LLR b̄a,t−11,k using two steps.
In the first step, a 2-bit sign-extended version of b̄a,t−11,k is
added to a replica of itself that has been shifted to the left
by one bit position, according to b̄a,t−11,k + (b̄a,t−11,k � 1).
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FIGURE 10. An example of two’s complement multiplication, where the
multiplicand is an integer and the multiplier is 0.75. The floor truncation
is applied to the product after the decimal point (4).

Then in a second step, a floor truncation [49] is applied to
the two least significant bits of the result, which maintains
the same bit-width of w1 as that employed before the mes-
sage LLR scaling. Here, the sign extension, bit shifting and
floor operations can be carried out by hard-wiring, since the
scaling factor of f2 = 0.75 is fixed throughout the iterative
decoding process. Therefore, the only hardware required for
message LLR scaling is an adder, which occupies only the
first datapath stage of Figure 8.

As the iterative decoding process proceeds, the values of
the extrinsic state metrics ᾱtk and β̄

t
k−1 can grow without

upper bound [50]. In order to prevent any potential BER
error floors that may be caused by saturation or overflow,
state metric normalization may be employed for reducing
the magnitudes of ᾱtk and β̄

t
k−1, in order to ensure that they

remain within the range that is supported by their bit-width
of w2. As shown in Figure 8, state-zero normalization [37] is
performed in the sixth datapath stage within each processing
element. This is achieved by subtracting ᾱtk (0) and β̄

t
k−1(0)

from all extrinsic forward state metrics [ᾱtk (Sk )]
M−1
Sk=0

and all

extrinsic backward state metrics [β̄ tk−1(Sk−1)]
M−1
Sk−1=0

, respec-
tively [50], [51]. Note that this subtraction does not change
the information conveyed by the extrinsic state metrics, since
this is carried by their differences, rather than by their abso-
lute values. After state-zero normalization, zero-values are
guaranteed for the first extrinsic state metrics ᾱtk (0) = 0
and β̄ tk−1(0) = 0. In our fixed-point FPTD algorithm, this
allows the registers and additions involving ᾱt−1k−1(0) and
β̄ t−1k (0) to be simply removed, saving two w2-bit registers
and seven additions per processing element, as shown by the
dotted lines in Figure 8. Furthermore, this approach guaran-
tees a constant value of zero for one of the operands input
to three of the max* operations, simplifying them to using
the sign bit of the other non-zero operand for selecting which
specific operand is output.

C. TERMINATION UNIT
Each row of algorithmic blocks shown in Figure 5 is
appended with a termination unit, comprising three termina-
tion blocks having indices of (N + 1), (N + 2) and (N + 3).
These termination blocks employ only (2) without the term of
b3(Sk−1, Sk ) · b̄a3,k and (4), operating in a backward-oriented
recursion fashion for successively calculating β̄N+2, β̄N+1

and β̄N . Here, we employ β̄N+3 = [0,−∞,−∞, . . . ,−∞],
since the LTE termination technique guarantees SN+3 = 0.
As described in Section III-A, here−∞ is replaced by a neg-
ative constant having a suitably high magnitude in the fixed-
point FPTD algorithm. Note that the termination units can
be operated before and independently of the iterative decod-
ing process, since the required a priori LLRs [b̄a1,k ]

N+3
k=N+1

and [b̄a2,k ]
N+3
k=N+1 are provided only by the demodulator, with

no data dependencies on the other N algorithmic blocks
in the row. Owing to this, the resultant β̄N value can be
used throughout the iterative decoding process, with no
need to operate the termination unit again, as described
in Section III-A.

FIGURE 11. The datapath for the termination unit of the proposed
fixed-point FPTD for the case of the LTE turbo code. The eight datapath
stages are distinguished by the dark/light shading and are indexed as
shown in the curly brackets.

In contrast to the processing element of Figure 8,
the termination unit of Figure 11 requires eight datapath
stages for implementing the three consecutive algorithmic
blocks, in order to convert the termination LLRs b̄a1,N+1,
b̄a1,N+2, b̄

a
1,N+3, b̄

a
2,N+1, b̄

a
2,N+2 and b̄

a
2,N+3 into the extrinsic

backward-oriented state metrics β̄N . As shown in Figure 11,
the first datapath stage is used for calculating (2) for all three
termination blocks. Then the following six datapath stages
are used for calculating (4) for the three termination blocks
in a backward recursive manner, where calculating (4) for
each termination block requires two datapath stages. The final
datapath stage is occupied by the above-mentioned state-zero
normalization. Note that although the termination delay of the
unit’s eight datapath stages is longer than that of the six stages
used by the processing element of Figure 8, the termination
unit does not dictate the critical path length of the fixed-point
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FIGURE 12. Schematic of the proposed resource-efficient FPTD architecture.

FPTD algorithm, which remains six datapath stages. This is
because the termination units only have to be operated once
before the iterative decoding process commences. Intuitively,
this would imply that the termination units would impose
a delay of two clock cycles before the iterative decoding
process would be begun. However, in the fixed-point FPTD
algorithm, we prefer to start the operation of the termination
units at the same time as the iterative decoding process. In this
way, the termination units do not impose a delay of two clock
cycles before the iterative decoding process can begin, but
the correct backward state metrics β̄N cannot be guaranteed
during the first decoding iteration, which is performed during
the first two clock cycles. However, our experimental results
demonstrate that this does not impose any BER degradation.

IV. RESOURCE-EFFICIENT FPTD ARCHITECTURE
In this section, we propose a novel resource-efficient archi-
tecture for implementing the fixed-point FPTD algorithm of
Section III. In contrast to the FPTD architecture of [37],
the proposed design requires only N processing elements
instead of 2N for decoding N -bit frames, therefore achieving
50% reduction in hardware resource usage. This is achieved
by exploiting the odd-even operation of the FPTD algo-
rithm, which results in only half of the algorithmic blocks
being operated simultaneously, as described in Section III.
The proposed area-efficient FPTD architecture employs the
schematic of Figure 12, which uses the same N processing
elements for alternately operating the algorithmic blocks of
the first half-iteration of Figure 6(a) and those of the second
half-iteration of Figure 6(b), in each pair of consecutive clock
cycles. More specifically, each processing element having an
odd index k performs the operation of the k th algorithmic
block from the upper row of Figure 5 in odd clock cycles and
the k th algorithmic block from the lower row in even clock
cycles. By contrast, each processing element having an even
index k performs the operation of the k th algorithmic block
from the lower row of Figure 5 in odd clock cycles and the
k th algorithmic block from the upper row in even clock cycles.

As shown in Figure 12, multiplexers are employed for
each processing element in order to alternately select the
corresponding upper a priori LLRs b̄a,u1,k , b̄

a,u
2,k and b̄

a,u
3,k or the

corresponding lower a priori LLRs b̄a,l1,k , b̄
a,l
2,k and b̄a,l3,k , in

accordance with the odd and even clock cycles. Note that the
vectors of upper systematic a priori LLRs b̄

a,u
3 , upper parity a

prioriLLRs b̄
a,u
2 and lower parity a prioriLLRs b̄

a,l
2 are stored

in an input memory, while the lower systematic a priori LLRs
b̄
a,l
3 are obtained by interleaving the upper systematic a priori
LLRs b̄

a,u
3 , as shown in Figure 5. Similarly, a multiplexer

is required for the N th processing element for alternately
selecting the corresponding sets of upper backward-oriented
state metrics β̄

u
N and lower backward-oriented state metrics

β̄
l
N , where β̄

u
N and β̄

l
N are generated using two termina-

tion units, as shown in Figure 5. Apart from this however,
multiplexers are not required for the forward-oriented state
metrics ᾱk and the backward-oriented state metrics β̄k , since
the state metrics generated by a particular processing element
in a particular clock cycle will be directly processed by the
neighboring processing elements in the next clock cycle, as a
natural consequence of the odd-even operation of the FPTD
algorithm. Furthermore, each processing element is associ-
ated with two separate routings through the interleaver. More
specifically, the interleaver connects the k th processing ele-
ment with both the π (k)th and π−1(k)th processing elements,
as required when interleaving LLRs from the upper row to
the lower row, as well as when deinterleaving from the lower
row to the upper row, respectively. Note that the extrinsic
message LLR b̄e1,k is routed through both the interleaving and
the deinterleaving paths in every clock cycle, which implies
that each processing element receives two a priori message
LLRs b̄a1,k at a time. However, only the desired one is selected
by the corresponding multiplexer, in accordance with the odd
and even clock cycle scheduling. At the end of each clock
cycle, the unshaded registers shown in Figure 5 are employed
to cache b̄a,u1,k , ᾱk and β̄k , ready for use in the next clock
cycle. Note that the interleaver may be implemented using
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hard wires, implying that only a single fixed frame length
N is supported at run time, although this particular frame
length may be selected during synthesis. Our future work will
consider the replacement at the hard-wired interleaver with
a Beneš network, which will enable the run-time support of
different frame lengths, having different interleaver designs.

In addition to the unshaded registers shown in Figure 12,
each processing element employs a pair of registers for stor-
ing the extrinsic message LLR b̄e,u1,k and the a priori mes-
sage LLR b̄a,u1,k , as indicated using light and dark shading
in Figure 5, respectively. Here, the lightly-shaded registers
are updated in odd clock cycles, while the darkly-shaded
registers are updated in even clock cycles. More specifically,
in each odd clock cycle, each processing element having an

odd index k generates the upper extrinsic message LLR b̄e,u1,k ,
which is cached in the lightly-shaded register of that pro-
cessing element. Meanwhile, each processing element having
an even index k generates the lower extrinsic message LLR
b̄e,l1,k during each odd clock cycle. This is deinterleaved in
order to obtain the upper a priori message LLR b̄a,u

1,π−1(k)
,

where π−1(k) is guaranteed to be even owing to the odd-
even nature of the LTE interleaver. Following this, b̄a,u

1,π−1(k)
is cached in the lightly-shaded register of the processing
element having the even index π−1(k). By contrast, in each
even clock cycle, each processing element having an even
index k generates the upper extrinsic message LLR b̄e,u1,k ,
which is cached in the darkly-shaded register of that pro-
cessing element. Meanwhile, each processing element hav-
ing an odd index k generates the lower extrinsic message
LLR b̄e,l1,k during each even clock cycle. This is deinterleaved
in order to obtain the upper a priori message LLR b̄a,u

1,π−1(k)
,

where π−1(k) is guaranteed to be odd owing to the odd-even
interleaver design. Following this, b̄a,u

1,π−1(k)
is cached in the

darkly-shaded register of the processing element having the
odd index π−1(k). During each clock cycle, the a posteriori
LLRs [b̄p1,k ]

N
k=1 can be updated by adding the contents of the

lightly-shaded and darkly-shaded registers, together with the
a priori systematic LLRs [b̄a,u3,k ]

N
k−1. The iterative decoding

process continues until a fixed clock cycle limit is reached
or until the a posteriori LLRs satisfy a CRC check, which is
computed within a single clock cycle, as it will be described
in Section V.

V. FPGA IMPLEMENTATION
In this section, we propose an FPGA implementation which
integrates the FPTD architecture of Section IV with the I/O
mechanisms and a fully-parallel CRC, which can operate in a
single clock cycle. More specifically, Figure 13 provides the
top-level schematic of the proposed FPGA implementation
of the resource-efficient fixed-point FPTD architecture. This
schematic comprises several functional components, includ-
ing the FPTD core of Section IV, the input/output memory,
CRC circuit, Phase-Locked Loops (PLLs) [52] and clock
cycle counter. Note that two PLLs are employed, since the
input and output RAMs are operated using a different higher

FIGURE 13. Top-level schematic of the proposed FPGA implementation of
the fixed-point FPTD architecture, where datapaths, input controls, output
controls and clocks are cataloged and shown by black lines, red lines,
blue lines and green lines, respectively.

frequency clock than the FPTD core and CRC circuit. Each
of the interconnections among these functional components
are classified as one of the input control signals, output
control signals, clocks and datapaths, according to the color-
coding shown in Figure 13. Furthermore, the input pins and
output pins are shown on the left-hand side and the right-
hand side of Figure 13, respectively. The input/output mem-
ory, CRC circuit and the control mechanism are detailed
in Sections V-A, V-B and V-C, respectively.

A. I/O MEMORY
As discussed in Section III-A, the input to the FPTD core
comprises (3N + 12) a priori channel LLRs, namely N
upper systematic LLRs [b̄a,u3,k ]

N
k=1, N upper parity LLRs

[b̄a,u2,k ]
N
k=1, N lower parity LLRs [b̄a,l2,k ]

N
k=1, three upper mes-

sage termination LLRs [b̄a,u1,k ]
N+3
k=N+1, three lower message ter-

mination LLRs [b̄a,l1,k ]
N+3
k=N+1, three upper parity termination

LLRs [b̄a,u1,k ]
N+3
k=N+1 and three lower parity termination LLRs

[b̄a,u1,k ]
N+3
k=N+1. A bit-width of w1 = 4 is employed for each of

these a priori LLRs, corresponding to a total of 12N+48 bits.
However, it is not possible to feed the FPTD core using a one-
to-one mapping of the FPGA’s general I/O pins, owing to the
limited number of pins, especially when the frame lengthN is
large. Owing to this, the input memory shown in Figure 13 is
employed to provide a serial-to-parallel conversion and the
storage of these bits. More specifically, the input memory
comprises a number of the FPGA’s M9K Static Random
Access Memory (SRAM) blocks, which are all configured
in the simple dual-port mode [53]. In this mode, one port is
configured as an input port with a fixed bit-width of 2, while
the other port is configured as an output port with a fixed
bit-width of 32. Note that 32 bits is the maximum bit-width
that an M9K block can support, in addition to its four parity
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FIGURE 14. The mapping between M9K memory blocks and the processing elements, where (a) shows that three 2:32 memory blocks
may be used to feed eight consecutive processing elements having indices of k ≤ N , (b) shows that two 2:24 memory blocks may be used
to feed the upper and the lower termination units, (c) shows that a 32:4 memory block may be used to output the hard-decision bits from
32 consecutive processing elements.

bits. This implementation requires a total of d 12N+4832 e M9K
memory blocks for the input memory, but only necessitates
2 × d 12N+4832 e =

3N
4 + 4 input pins, as shown in Figure 13.

Accordingly, the inputmemory requires 16 consecutivemem-
ory clock cycles to load the a priori LLRs, but necessitates
only a single clock cycle to feed them to the FPTD core. This
serial-to-parallel conversion ratio of 1:16 is motivated by the
trade-off between the I/O pin usage and the number of clock
cycles required to load a frame, since a larger ratio requires
fewer clock cycles to transfer the data, but occupies more
I/O pins. More specifically, our experimental results show
that the largest FPTD that can be accommodated on our
testbench EP4SE820F43C3 FPGA has a frame length of
N = 720 bits, which is limited by the computational
resource capacity. In this case, the input memory occupies
3N
4 + 4 = 544 of this FPGA’s 1104 general I/O pins [54].
Furthermore, each M9K memory block has a capacity of

8192 bits besides the parity bits, which is sufficient to store
upto 256 frames, since each frame occupies only 32 bits per
M9K memory block. However, we employ only 64 bits per
M9K memory block in this work for the sake of simplicity,
which allows two frames to be stored at the same time.

As shown in Figure 13, the input memory accordingly accepts
a 5-bit address addr_wr_1 for the 2-bit wide write port and
a 1-bit address addr_rd_1 for the 32-bit wide read port, in
order to allow switching between the two independent frames.
This allows the iterative decoding of one frame to be pipelined
with the loading of the next frame, as it will be described
in Section V-C. Note that the channel LLRs provided by the
input memory read port are fed directly to the FPTD core,
without registers in between as a cache.

The mapping between the M9K memory blocks and the
processing elements is illustrated in Figure 14. As shown
in Figure 14(a), each memory block is used for providing
channel LLRs from one of the sets of [b̄a,u2,k ]

N
k=1, [b̄

a,l
2,k ]

N
k=1

and [b̄a,u3,k ]
N
k=1 for eight neighboring processing elements, in

the case where each a priori channel LLR uses w1 = 4 bits.
Therefore, three memory blocks are required for each
set of eight processing elements, necessitating a total of
3N/8 memory blocks for the input memory, when excluding
the LLRs pertaining to the termination bits. These termination
LLRs correspond to a total of 48 bits, which can be provided
using the first 24 bits from each of the two above-mentioned
1:16 M9K memory blocks, as shown in Figure 14(b).
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In addition to the input memory, an output memory is
employed for storing and outputting the N hard-decision bits
obtained by the FPTD core of Section IV, when the iterative
decoding process is completed. Similarly to the input mem-
ory, the output memory is also implemented using dedicated
M9K SRAM blocks, configured in simple two-port mode.
However, the output memory is used for supporting a parallel-
to-serial conversion, in contrast to the serial-to-parallel con-
version required for the input memory. More specifically, the
input port and the output port are configured to have a 32-bit
and 4-bit width, respectively, giving a parallel-to-serial ratio
of 8:1. In analogy to the implementation of the input memory,
dN/32e M9K memory blocks are required for the output
memory, allowing the N hard decision bits [bp1,k ]

N
k=1 to be

cached into the output memory in a single clock cycle, which
are then output using N/8 output pins during eight consecu-
tive clock cycles. For the sake of simplicity, we employ only
32 of the 8192 bits that can be stored in each M9K memory
block, allowing the storage of a single decoded frame at a
time. As shown in Figure 13, the output memory accordingly
accepts only a 3-bit address addr_rd_2 for its read port,
whereas the address for the 32-bit wide write port can be fixed
to zero internally. Note that outputting these hard decision bits
can also be pipelined with the iterative decoding and loading
of the next frames, as it will be detailed in Section V-C.

B. CRC
As described in Section IV, the FPTD core performs iterative
decoding in accordance with the FPTD algorithm of Figure 5,
obtaining N hard-decision bits [bp1,k ]

N
k=1 in every clock cycle

while it is active. In each clock cycle, these hard-decision bits
are provided to an LTE CRC circuit, which detects if and
when the FPTD core successfully decodes a frame before
a predetermined clock cycle limit has been reached, hence
enabling early stopping. However, this requires completing
the computation of the CRC in a single clock cycle, which is
not feasible, when adopting the conventional LFSR approach
to implement the CRC [55]. Motivated by this, our FPGA
implementation employs a fully-parallel CRC circuit, which
is capable of computing the CRC in a single clock cycle
and without an excessive critical path length, according to
the design guideline of [56]. More specifically, the LTE
turbo code employs a 24-bit CRC, having the generator
polynomial of g(D) = [D24

+ D23
+ D6

+ D5
+ D + 1].

In our fully-parallel CRC circuit of Figure 15, the 24 CRC
bits are computed simultaneously using separate predefined
XOR trees within a single clock cycle. Each XOR tree is
constructed by unfolding the corresponding LFSR operations
of a conventional CRC circuit, accepting a particular selection
of N hard-decision bits [bp1,k ]

N
k=1 as its input. Note that many

of the XOR operations can be shared between XOR trees that
consider overlapping sets of bits. Each of the XOR trees takes
no more than N bits as input, therefore requiring no more
than (N − 1) 2-input XOR gates, which may be structured
as a tree comprising no more than dlog2(N )e layers. Hence,
dlog2(N )e represents an upper bound on the number of gates

FIGURE 15. Schematic of the single clock cycle LTE CRC.

in the critical path length of the parallel CRC. Following the
XOR trees, the CRC result is obtained by performing the OR
logic combination of all 24 CRC bits, using a tree comprising
23 2-input OR gates, arranged in dlog2(24)e = 5 layers.
As shown in Figure 13, the resultant checksum is output by
the FPGA to indicate the correctness of the decoded results,
where a zero value indicates successful decoding. Note that
in the proposed FPGA implementation of Figure 13, the CRC
is operated simultaneously with the FPTD core, but operates
on the hard-decision bits that is provided in the previous
clock cycle. Therefore, the CRC circuit does not affect the
6-stage critical path length of the FPTD core, as discussed
in Section III-B.

C. OPERATION AND CONTROL
As shown in Figure 13, the input and output memory is
clocked by an external clock clk_mem having a clock fre-
quency fmem = 333 MHz, while the FPTD core and CRC
circuit are clocked by another external clock clk_core having
a different clock frequency fcore, which depends on the frame
length N . Both clocks are compensated using different ones
of the FPGA’s dedicated PLL circuits. Figure 16 illustrates
a time diagram for an example operation of the proposed
FPTD, including all three loading, processing and output
stages. The loading stage comprises the operation of the input
memory, which requires 16 memory clock cycles, as dis-
cussed in Section V-A. This loading process is controlled by
the control signal llrs_load, as shown in Figure 16. Following
these 16 memory clock cycles, there is a delay of approxi-
mately twomemory clock cycles before the iterative decoding
process begins. This delay is required by thememory read and
for overcoming the phase difference between the FPTD core
clock clk_core and the memory clock clk_mem. Here, the
memory read is triggered at the rising edge of the start signal,
which therefore feeds the FPTD corewith the a priori channel
LLRs, in accordance with the selected memory read address
adr_rd_1. Considering these 18 memory clock cycles, the
overall time used for loading is 18/fmem = 54.1 ns.

The pulse of the start control signal is also used for reset-
ting the FPTD core synchronously with clk_core, as well
as to activate its iterative decoding process. The in_process
output signal of Figure 13 is asserted throughout this iterative
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FIGURE 16. An example time diagram of the proposed FPTD operation.

decoding processing, which continues until the checksum
becomes zero or until a maximum number Imax of decod-
ing iterations has been reached. As shown in Figure 13,
the in_process signal is implemented using a single AND
gate, accepting the inputs of checksum from the CRC of
Section V-B and the condition check of Icounter < Imax. Here,
Icounter may be accumulated using a generic ripple counter,
which is reset to zero when the start control signal is pulsed.
The average duration of the iterative decoding process is
given by τ1 =

2·Iav+OCyc
fcore

, where Iav is the average number of
iterations performed, OCyc is the clock cycle overhead and
fcore is the clock frequency for the FPTD core. The worst-

case duration τmax
1 =

2·Imax+OCyc
fcore

is incurred for frames,
where the iterative decoding process is terminated, when the
counter Icounter reaches the maximum iteration limit Imax.
In the proposed FPTD implementation, the overhead is
OCyc = 2 clock cycles, which comprises one clock cycle
for resetting the FPTD core at the beginning of the iterative
decoding process and one clock cycle delay for the CRC
calculation of Figure 15 at the end.

As shown in Figure 16, the write operation for the output
memory is triggered by a failing edge of the in_process
signal. This causes theN hard decision bits [bp1,k ]

N
k=1 obtained

for the present frame to be stored in the output memory within
a single memory clock cycle. Following this, the control sig-
nal result_output is asserted for eight memory clock cycles,
in order to signal that the hard-decision bits are being output,
as discussed in Section V-A. In addition to this, there is an
output delay of approximately three memory clock cycles.
Considering all of these 12 memory clock cycles, the time
required for outputting the results is 12/fmem = 36 ns.

As illustrated in Figure 17, the loading, processing and
outputting operations may be pipelined, in order to maximize
the processing throughput when decoding several successive
frames. More specifically, the proposed FPTD decoder is
implemented for such that as soon as the processing operation
for the present frame is started, the loading of the next frame

FIGURE 17. Timeline for pipelining the turbo decoding of three
consecutive frames, where τ2 is the time required for completely
decoding a frame, in which the iterative turbo decoding process
occupies τ1 time. In addition, τ3 is the time delay which may be incurred
between completing the loading of a frame and beginning its iterative
decoding.

can begin. This allows the FPTD core to start the iterative
decoding processing of the next frame immediately after
completing the decoding process for the present frame. In
this way, the average decoding throughput can be improved

from N
τ2

to N
τ1
, where τ1 =

2·Iav+OCyc
fcore

is the average delay

incurred by the FPTD core, while τ2 = τ1 + 30/fmem is
the overall delay for completely decoding a frame, including
loading, processing and outputting. Note that this throughput
improvement can only be achieved for the specific case,
where the next frame becomes available before the iterative
decoding process of the current frame has been completed.
Furthermore, this pipelining technique does not improve the
latency of the proposed FPTD implementation, which has the
value τ2 = τ1 + 30/fmem on average and τmax

2 = τmax
1 +

30/fmem in the worst case. Note that Figure 17 illustrates a
time delay τ3, which may be incurred between completing
the loading of a frame and beginning its iterative decoding.
However, our characterization of the proposed FPTD imple-
mentation’s latency does not include τ3, since it may vary
from frame to frame and since its value depends on the timing
of the delivery of frames by the demodulator, which is outside
the scope of this work.
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VI. RESULTS
In this section, we characterize the proposed FPGA imple-
mentation of our fixed-point LTE FPTD, using the Altera
FPGA EP4SE820F43C3, which comprises 813k Logic Ele-
ments (LEs), 650k registers, 1.6k M9K memory blocks and
12 PLLs. These results are compared to the state-of-the-art
FPGA implementation of the LTE turbo decoder of [14],
which applies the conventional Log-BCJR algorithm to
the same FPGA. More specifically, we compare our pro-
posed FPGA implementation to the benchmarker of [14] in
terms of its BER, throughput, latency and resource usage,
in Sections VI-A, VI-B, VI-C and VI-D, respectively. Fol-
lowing this, we characterize the energy consumption of our
proposed FPGA implementation in Section VI-E, although
we are unable to compare this to that of the benchmarker.
This is because the energy consumption of the benchmarker
implementation is not discussed in [14] nor is it discussed
for other existing FPGA implementations of the Log-BCJR
based LTE turbo decoder. Finally, we perform an overall
comparison between the proposed LTE FPTD FPGA imple-
mentation and other state-of-the-art FPGA implementations
of the Log-BCJR turbo decoder and various LDPC decoders
in Section VI-F.

FIGURE 18. BER comparison between the proposed fixed-point FPTD and
the benchmarker of [14]. The FPTD employs the approximate max*
operation of (7) and performs I ≤ 28 iterations for frame lengths of
N ∈ {256,512,1024}. The benchmarker decoder of [14] employs the exact
max* operation of (6) and performs I = 5 iterations for frame lengths of
N ∈ {256,512,1024}.

A. BER
The BER performance of the proposed FPGA implementa-
tion of the FPTD is compared to that of the benchmarker
FPGA implementation of the Log-BCJR turbo decoder
of [14] in Figure 18. Here, the benchmarker employs the exact
max* operation of (6), while performing I = 5 iterations, for
the case where N = {512, 1024}. By contrast, the same BER
performance can be achieved for our proposed fixed-point
FPTD, when employing the approximate max* operation of
(7) and performing I ≤ 28 iterations. More specifically, the

FIGURE 19. BER performance of the proposed FPTD algorithm,
performing I ≤ 28 iterations for different frame N ∈ {40,64,128,
256,512,720}, where Iav is the average number of iterations used to
achieve the target BER of 10−5.

FIGURE 20. Critical path delay and maximum clock frequency for
different frame lengths N ∈ {40,64,128,256,512,720}.

iterative decoding is curtailed, once a sufficient number of
iterations have been performed to achieve successful decod-
ing or when a limit of Imaxt = 28 iterations is reached.
Furthermore, Figure 19 characterizes the BER performance
of the proposed fixed-point FPTD performing I ≤ 28
iterations for decoding frames having different lengths of
N ∈ {40, 64, 128, 256, 512, 720}, which can all be accom-
modated within the hardware of the target FPGA. Note that
the BER performance is not provided in [14] for the frame
lengths ofN ∈ {40, 64, 128, 720} for the benchmarker, hence
we are unable to compare it to our proposed FPTD. Note that
Figure 19 shows the average number Iav of iterations used
by the proposed implementation for each frame length at the
specific Eb/N0 value, where a BER of 10−5 is reached.

B. THROUGHPUT
Figure 20 characterizes the critical path delay of
the proposed FPTD core for the frame lengths of
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FIGURE 21. Comparison of throughput for the proposed fixed-point FPTD
FPGA implementation and for the benchmarker FPGA decoder of [14],
where I ≤ 28 iterations are compared for the proposed FPTD, while the
benchmarker decode employs I = 5 iterations.

N ∈ {40, 64, 128, 256, 512, 720}, as well as their resultant
maximum clock frequency, as reported by the Quartus design
tool. Here, the critical path delay comprises two parts, namely
the cell delay and interconnect delay. The cell delay is the sum
of the time occupied by all the combinational components
residing on the critical path. By contrast, the interconnect
delay is the sum of the time occupied the interconnec-
tions between those combinational components. As shown
in Figure 20, when implementing the FPTD for the shortest
LTE frame length of N = 40 bits, the critical path delay is
10.6 ns, in which the cell delay and the interconnect delay are
evenly distributed, achieving a maximum clock frequency of
fcore = 93 MHz. Note that this maximum clock frequency
depends also on the delay associated with the clock tree,
although this is negligible compared to the cell delay and
interconnect delay shown in Figure 20. When the frame
length N is increased from N = 40 bits to N = 720 bits,
the critical path delay increases gradually to 15.3 ns and
the maximum clock frequency of fcore decreases accordingly
to fcore = 65 MHz. As shown in Figure 20, this increased
critical path delay versus N is increased and it is mainly
imposed by the interconnects, while the cell delay is reduced
slightly. This may be because a greater fraction of the FPGA’s
logic elements are employed for implementing the FPTD,
when the frame length N is increased, which increases the
difficulty of optimizing the placing and routing. In particular,
the interleaver may be required to route information between
processing elements that are implemented near the opposite
corners of the FPGA. By contrast, the reduced cell delay
may be attributed to the deeper optimization performed
by the Quartus design tool, when the resources become
limited.

As described in Section V-C, the average throughput of

the proposed FPTD is given by N
τ1
, where τ1 =

2·Iav+OCyc
fcore

.

FIGURE 22. Comparison of average and maximum latency for the
proposed fixed-point FPTD FPGA implementation and for the
benchmarker FPGA decoder of [14], where I ≤ 28 iterations are compared
for the proposed FPTD, while the benchmarker decode employs I = 5
iterations.

Note that the throughput is a function of the frame length
N , as well as the clock frequency fcore and the average num-
ber of iterations performed Iav, which also both depend on
N , as characterized in Figures 19 and 20. Owing to this,
Figure 21 compares the throughput of the proposed FPTD
with that of the benchmarker FPGA implementation of [14],
as a function of N . More specifically, the resultant through-
put of the proposed FPTD ranges from 442 Mbit/s for
N = 40 to 1.53 Gbit/s for N = 720. By contrast, the through-
put of the benchmarker of [14] is given by fclk·N

2·I ·(NP+OCyc)+
N
P
,

where the clock frequency is fclk = 102 MHz, the num-
ber of iterations performed is I = 5 and the overhead is
OCyc = 14 clock cycles per half-iteration. Furthermore,
the benchmarker decoder of [14] comprises 64 sub-decoders,
each of which processes one or zero partitions of the frame,
depending on the frame length N . More specifically, a
frame having the length N is decomposed into P partitions,
where

P =


8, if 40 ≤ N ≤ 512
16, if 528 ≤ N ≤ 1024
32, if 1056 ≤ N ≤ 2016
64, if 2048 ≤ N ≤ 6144.

Considering these configurations, the resultant throughput
of the benchmarker FPGA decoder of [14] is in the range
from 21 Mbit/s for N = 40 to 524 Mbit/s for N = 6144,
as shown in Figure 21. Note that these throughputs are
21 and 13.2 times lower than those of the proposed FPTD
decoder for the cases of N = 40 and N = 720, respectively.
Furthermore, the maximum throughput gain is achieved by
the proposed FPTD decoder for N = 512, where it has a
throughput of 1.4 Gbit/s, which is 22.6 times higher than
the 62 Mbit/s achieved by the benchmarker decoder of [14].
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TABLE 1. Resource usage comparison between the proposed FPTD FPGA implementation and the benchmarker FPGA implementation of [14].
The percentages shown in brackets indicate the corresponding fraction of the capacity of the EP4SE820F43C3 FPGA.

C. LATENCY
As described in Section V, the average latency imposed
by loading, processing and outputting a frame is given by
2·Iav+OCyc

fcore
+

30
fmem

, while the worst-case latency is given by
2·Imax+OCyc

fcore
+

30
fmem

, which is incurred when decoding is unsuc-
cessful. By contrast, the latency of the benchmarker decoder
is not quantified in [14] but may be optimistically estimated
as latency = N/throughput, which ignores the latency for
loading and outputting the data. As shown in Figure 22, the
latency of the benchmarker decoder ranges between 1.9 µs
when N = 40 and 6.2 µs when N = 720. By contrast,
our proposed FPTD FPGA implementation achieves a worst-
case latency of 0.72 µs when N = 40 and 0.98 µs when
N = 720, which are 2.6 times and 6.3 times less than those
of the benchmarker decoder. Meanwhile the average latency
of our proposed FPTD FPGA implementation reduces to
0.18 µs when N = 40 and 0.56 µs when N = 720, which
are 10.6 times and 11.1 times less than those of the bench-
marker decoder. Here, the maximum latency improvement is
obtained when N = 512, where the latency of 0.46 µs for the
proposed FPTD is 18 times less than the 8.3 µs, obtained by
the benchmarker of [14].

D. RESOURCE USAGE
The resource usage of the proposed N = 720 FPTD FPGA
implementation is compared in Table 1, in terms of com-
binational Adaptive Look-Up-Tables (ALUTs), as well as
memory ALUTs, dedicated logic registers and total block
memory bits. Note that the EP4SE820F43C3 FPGA has a
capacity of 650,440 ALUTs, half of which can be config-
ured to implement combinational logic, while the other half
can be configured as either combinational logic or as mem-
ory. Here, we compare three versions for the benchmarker
decoder of [14], namely P = 8, P = 16 and P = 64
versions. The P = 64 version is the original implementation
presented in [14], which comprises 64 sub-decoders and is
capable of supporting all LTE frame lengths at run time.
However, our proposed FPTD implementation supports only
a single frame length of up to N = 720 bits at run time.
In order to facilitate fairer resource usage comparisons with
our FPTD, theP = 8 andP = 16 versions of the benchmarker
decoder comprise only 8 and 16 sub-decoders, respectively.

As described in Section VI-B, this is motivated, since the
benchmarker of [14] only uses P = 8 and P = 16 sub-
decoders for frame lengths N in the ranges 40 to 512 and
528 to 1024, respectively. Owing to this, the P = 8 and
P = 16 versions offer the same throughputs as the P = 64
version of the benchmarker for frame lengths in the ranges
40 to 512 and 528 to 1024 respectively, but at the cost of lower
hardware usage. Note that the resource usage of theP = 8 and
P = 16 versions reported in Table 1 was estimated by linearly
scaling those of the P = 64 version. As shown in Table 1,
the N = 720 FPTD occupies 99% of the EP4SE820F43C3
FPGA’s ALUTs as combinational logic, while it uses 11% of
the FPGA’s dedicated registers and 0.04% of its memory bits.
Furthermore, the N = 720 FPTD employs 650 general I/O
pins, in accordance with Figure 13. By contrast, the P = 16
version of the benchmarker decoder occupies 8.8% of the
ALUTs as combinational logic and 1% of the ALUTs as
memory, while it uses 8% of the dedicated registers and 0.2%
of the total memory bits.

FIGURE 23. Normalized resource usage comparison between the
proposed FPTD FPGA implementation and the benchmarker of [14] with
P = 8, P = 16 and P = 64 sub-decoders.

The resource usage may be normalized as ALUTs
throughput ,

since both the proposed FPTD implementation and the
benchmarker are limited by ALUT resources, rather than
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by memory. Figure 23 depicts the normalized resource usage
of the proposed FPTD FPGA implementation as a function
of the frame length N , compared with those of the P = 8,
P = 16 and P = 64 versions of the benchmarker decoder.
Note that for frmae lengths N above 512 and 1024 bits
respectively, the throughputs of the P = 8 and P = 16
versions of the benchmarker are estimated by linearly scal-
ing those of the P = 64 version, as shown in Figure 21.
As shown in Figure 23, the normalized resource usage of
the proposed FPTD FPGA implementation is 0.08 kALUTs

Mbit/s
for the case, where N = 40 and 0.42 kALUTs

Mbit/s for the
case where N = 720. These are 19 times lower than the
1.52 kALUTs

Mbit/s and 1.3 times lower than the 0.55 kALUTs
Mbit/s , which

are achieved by the P = 8 and P = 16 versions of the bench-
marker FPGA implementation for N = 40 and N = 720,
respectively.

E. ENERGY
The power consumption of the proposed FPTD FPGA
implementation was estimated using the power analysis
tool in the design tool kit of Qaurtus II [57], based on
the Value Change Dump (VCD) results obtained from a
post-fit dynamic simulation of 100 frames. These frames
were recorded during transmission over an AWGN chan-
nel using BPSK at the specific Eb/N0 values, where
the BER reaches 10−5. More specifically, Eb/N0 ∈

{4.41, 3.64, 2.83, 2.18, 1.76, 1.61} dB are respectively used
for the frame lengths N ∈ {40, 64, 128, 256, 512, 720},
according to Figure 19.

FIGURE 24. Power consumption and Energy consumption per bit of the
proposed FPTD FPGA implementation with different frame length
N ∈ {40,64,128,256,512,720}.

Figure 24 depicts the estimated power consumption of
the proposed FPTD FPGA implementation. Here, the power
consumption is classified into three components, namely I/O,
core static and core dynamic, where the FPGA core includes
all functional components shown in Figure 13. The core
dynamic power consumption is dominated by the switching
activity of all in-use hardware resources, which increases
gradually with the frame length N , in correspondence

with the associated increase of hardware resource usage.
By contrast, the core static power consumption is relatively
consistent for all frame lengths, since this depends more upon
the FPGA’s technology and size, rather than its application.
Furthermore, when implementing the N = 40-bit FPTD, the
static power consumption comprises approximately 50% the
total consumption. By contrast, the static power consumption
represents only 8.4% of the total power consumption, when
implementing the N = 720-bit FPTD, which occupies all
of the FPGA’s computational resources. Compared to the
core dynamic and core static power consumption, the power
consumption of the I/O pins is negligible, as shown at the
bottom of each bar in Figure 24.

The average energy consumption per bit may be obtained
as τ2·Power

N , where τ2 =
2·Iav+OCyc

fcore
+

30
fmem

is the average

latency for decoding a frame, as described in Section VI-C.
As shown in Figure 24, the average energy consumption per
bit ranges from 9.9 nJ to 14.1 nJ, when the frame length is
increased from N = 40 to N = 720. This increased energy
consumption per bit is dominated by the increased energy
consumption associated with routing, which is incurred by
the more complex interconnections and clock trees that are
associated with longer frames. Note that the energy con-
sumption is not characterized for the benchmarker decoder
in [14], or for any other state-of-the-art FPGA implemen-
tations of the Log-BCJR turbo decoder, hence preventing
a comparison with our proposed FPTD implementation of
the FPTD.

F. OVERALL COMPARISON
Table 2 compares the overall characteristics of the proposed
LTE FPTD FPGA implementation with several state-of-the-
art LTE turbo decoder FPGA implementations based on the
Log-BCJR algorithm. In order to facilitate fair comparisons
with the other implementations, their characteristics have
been scaled to become equivalent to using a 40 nm FPGA
technology and using I = 5 decoding iterations, as shown in
the brackets of Table 2. Note that [27] and [35] characterizes
the throughput and resource usage for only a single MAP
decoder, without considering the overhead of implementing
the interleaver and CRC circuit. Note also that the FPGAs
from different vendors have widely differing architectures,
which prevents a precise comparison in terms of resource
usage. Nonetheless, we adopt the concept of Equivalent Logic
Blocks (ELBs) defined in [13] to offer a fair comparison
between the resource usage of implementations using FPGA
manufactured by different vendors. More specifically, an
ELB corresponds to a pair of 4-input Look-Up Tables (LUTs)
and a register, where an ALUT in Altera FPGAs is equivalent
to a single ELB, while a 6-input LUT in Xilinx FPGAs is
approximately equivalent to two ELBs. As shown in Table 2,
the proposed LTE FPTD FPGA implementation achieves the
highest peak processing throughput, compared to all other
implementations considered. Note that the peak throughput
of the proposed FPTD is achieved for a frame length of
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TABLE 2. Comparison between the proposed LTE FPTD FPGA implementation and different FPGA implementations of the conventional Log-BCJR turbo
decoder.

N = 720 bits, while the peak throughput of the other LTE
turbo decoder implementations is achieved for the case of
N = 6144-bit frames. Similarly, the normalized resource
usage of the proposed LTE FPTD FPGA implementation
is better than those of the other implementations, as shown
in Table 2.

Furthermore, Figure 25 compares the turbo decoder imple-
mentations of Table 2 with many FPGA implementations
of LDPC decoders which were characterized in [13]. Here,
the comparison considers processing throughput, hardware
resource usage, BER performance and flexibility to sup-
port different frame lengths and coding rates at run-time.
More specifically, Figure 25 plots the resource usage and
the throughput of the various FPGA implementations on its
x-axis and y-axis, respectively. Here, the resource usage is
quantified using the above-mentioned ELB metric, which
facilitates a fairer comparison between implementations that
employ different FPGAs. Furthermore, in order to be con-
sistent with the comparisons of [13], the throughputs pre-
sented in Figure 25 are the unscaled ones of Table 2. In
addition to throughput and resource usage, the flexibility of
each implementation is identified by the shape of the data
points, while the BER performance is indicated by their

color. Here, the BER performance is characterized by the
minimal Eb/N0 value where a BER of 10−4 is achieved,
which is related to the code design, coding rate, number
of iterations and frame length. As shown in Figure 25, the
flexible turbo decoders offer similar normalized resource
usage ( kELBsMbit/s ) to the flexible LDPC decoders, despite the
LDPC decoders typically having lower computational com-
plexity. This may be attributed to the significantly further
interconnection complexity of LDPC decoders, as well as
to the significant challenges associated with implementing
high-throughput flexible LDPC decoders. More specifically,
all turbo decoder algorithmic blocks are identical and of them
is only connected to its neighbors and a single algorithmic
block through the interleaver. By contrast, the variable and
check nodes of an LDPC decoder have various degrees,
often much greater than one, which quantifies the number
of connected nodes through the interleaver. Owing to these
complications, the flexible WiFi LDPC decoders support
only 12 combinations of frame length and coding rate, while
the LTE turbo decoders support 643 million combinations.
Furthermore, the flexible turbo decoders of Figure 25 can
be seen to offer superior BER performance to the flexible
LDPC decoders.
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FIGURE 25. A comparison between the FPGA implementations for turbo codes and LDPC codes, in terms of processing throughput,
hardware resource usage, flexibility and BER performance.

VII. CONCLUSIONS
In this paper, we have proposed a novel area-efficient fixed-
point LTE FPTD, which achieves 50% hardware resource
reduction compared with the FPTD architecture of [37].
We have also proposed a holistic FPGA implementation of
this resource-efficient FPTD, which includes schemes for
loading each frame, processing it and outputting the results.
The proposed FPGA implementation offers a processing
throughput gain up to 22.6 times and a processing latency
gain of up to 18 times, compared to those of the state-
of-the-art FPGA implementation based on the conventional
Log-BCJR LTE turbo decoder. The peak processing through-
put of 1.53 Gbit/s and the worst case latency of 0.98 µs
for the proposed FPTD implementation meet the through-
put and latency requirements for state-of-the-art telephony
communication standards, such as LTE cat.12 [64]. In par-
ticular, its processing latency represents only an insignificant
fraction of the 1 ms end-to-end transmission latency budget
for MCMTC applications [9]. Furthermore, the normalized
resource usage of the proposed FPTD FPGA implementation
is up to 19 times better than that of the P = 8 version
of the benchmarker. Our future work will be motivated by
the improvements desired for 5G communications, such as
increased flexibility to a wider range of frame lengths, as
well as improved hardware efficiency and energy efficiency.
More specifically, we will consider techniques that can fur-
ther reduce the resource usage and facilitate support for all
LTE turbo code frame lengths, as well as any that are defined
for 5G. We will also consider the employment of a Beneš
network [65] in order to implement the LTE interleaver and
to support different frame lengths at run time.
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