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ABSTRACT Node compromise attacks pose a serious threat to wireless sensor networks (WSNs). To launch
an attack, an adversary physically captures a node and access data or software stored on the node. Evenworse,
the adversary may redeploy the captured node back into the network and use it to launch further attacks.
To reduce the impact of a node compromise attack on network operations, the network should detect a node
compromise as early as possible, ideally soon after a node is being captured, and then isolate the node from
future network communications. Solutions for early node compromise detection are based on distributed
monitoring of neighboring nodes’ aliveness. Nodes regularly send notification (Heartbeat) messages to their
one-hop neighbors to indicate their aliveness. If no message is received from a node (i.e., if a node is not
heard) for a certain period of time, then the unheard node is said to have been compromised. This approach
may have a large number of false positive errors when the message loss ratio in the network is high, as
missing messages could be caused by message loss during transmission, in addition to node compromises.
This paper proposes a novel scheme, called an adaptive early node compromise detection scheme, to facilitate
node compromise attack detection in a cluster-based WSN. The scheme is designed to achieve a low false
positive ratio in the presence of various levels of message loss ratios. To achieve this feature, two ideas are
used in the design. The first is to use cluster-based collective decision making to detect node compromises.
The second is to dynamically adjust the rate of notification message transmissions in response to the message
loss ratio in the sender’s neighborhood. The performance of the scheme, in terms of false positive ratio, false
negative ratio, and transmission overheads, is evaluated using simulation. The results are compared against
those from the most relevant scheme in the literature. The comparison results show that our scheme can
detect all the node compromises in the network more effectively and efficiently, regardless of the message
loss ratio in the underlying environment.

INDEX TERMS Node compromise attack, adaptive, detection, wireless sensor networks.

I. INTRODUCTION
Due to the unattended nature of WSNs, sensor nodes
(hereafter referred to as nodes) are prone to physical node
compromise attacks [1]. To launch an attack, an adversary
first locates a node, and then, physically captures it. The
adversary may access the data stored on the node, and/or
modify its software before redeploying it back into the net-
work. After the redeployment, the adversary may use the
node to launch further attacks. To reduce the impact of such
attacks or to prevent further attacks on the network from being
launched via this node, the network should detect a node
compromise as early as possible, ideally soon after a node is
being captured, and then isolate the node from future network
communications.

Solutions for early node compromise detection are based
on distributed monitoring of neighbouring nodes’ aliveness.

In these solutions, nodes regularly send notification messages
(usually called Heartbeat [2], Beacon [3], or Hello [4], [5]
messages) to their one-hop neighbors to prove that they are
alive (not being captured). If no message is received from a
node (i.e., if a node is not heard) for a certain period of time,
then the unheard node is said to have been compromised. This
approach leverages the intuition that a compromised node
would not be able to take part in network communications
for a certain period of time (a threshold time). This threshold
time represents the minimum length of time required by an
adversary to compromise a node before its redeployment.
However, this approach may result in detection errors when
the message loss ratio (lost messages / transmitted messages)
in the network is high, as missing messages could be caused
by message loss during transmission (due to transmission
errors or collisions in the wireless channel), in addition to
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node compromises. The message loss during transmission
is related to the issue of message delivery reliability. There
are a number of factors that may affect message delivery
reliability in a wireless network, even in a single-hop com-
munication scenario [6], [7]. These factors can be classified
into two groups, channel-based and traffic-based. Examples
of channel-based factors include radio wave propagation
effects (large-scale shadowing and/or small-scale fading),
interference (caused by concurrent transmissions and/or by
electronic devices) and radio transceivers internal noise that
may affect the strengths of sent and received signals. Exam-
ples of traffic-based factors include message drops by the
receiver typically caused by buffer overflows and message
collisions caused by simultaneous transmissions. If a notifi-
cation message is lost due to any of the channel-based and/or
traffic-based factors and if this loss triggers a decision being
made that the sender (node) has been compromised, then this
decision is false, which means that a detection error (a false
positive error) has occurred. The higher the message loss
ratio in the network, the more the false positive errors will
be generated.

To reduce the number of false positive errors, the authors
in [3] and [4] have proposed to increase the rate at which
notification messages are transmitted by the nodes such
that a monitoring node only declares that a monitored node
is compromised if it has missed out a specified number
(a threshold) of notification messages from the monitored
node. In these proposed solutions, the rate at which notifi-
cation messages are transmitted (i.e., notification message
transmission rate) is fixed during the entire lifetime of a node
involved in the network operations and also fixed for all the
nodes in the network. However, using a fixed notification
message transmission rate at all times and by all the nodes
in the network may not be appropriate for WSNs. This is
because a WSN may be deployed in an indoor, an outdoor
or a mixture of these environments. Each such environment
may have its own characteristics, which may lead to dif-
ferent message loss ratios. Indeed, it has been shown that
radio link quality often fluctuates over space and time [7].
In such an environment, if we use a fixed notificationmessage
transmission rate over space and time, then there is an issue
as to at what value this rate should be set. If we set the
notification message transmission rate to a higher value, then,
in an environment with a lower message loss ratio, nodes will
transmit more messages than necessary, which will not only
lead to a higher level of network traffic, increasing the chance
ofmessage collisions, but also cause the nodes to deplete their
energy more quickly, reducing the network lifetime. On the
other hand, if we set the notification message transmission
rate to a lower value and if the environment has a higher
message loss ratio, then therewill bemore compromised node
detection errors (i.e., a higher false positive ratio). In other
words, there is a trade-off between costs (communication and
energy costs) and the detection errors in node compromise
detection. Therefore, we hypothesise that, by setting the noti-
fication message transmission rate dynamically in response

to the message loss ratio in the underlying environment, we
may be able to balance this trade-off, i.e., to achieve a low
false positive ratio in node compromise detection with as few
notification messages as possible. To verify this hypothesis,
this paper presents a novel scheme, called an Adaptive Early
Node Compromise Detection (AdaptENCD) scheme, that
dynamically adjusts the notification message transmission
rate in adaptation to the message loss ratio in the underly-
ing communication environment. The AdaptENCD scheme
is evaluated through simulation studies, and the evaluation
results are compared against the results from the most related
solution in literature.

The rest of the paper is structured as follows: related work
is discussed in Section II; Section III discusses the properties
of AdaptENCD; Section IV presents design preliminaries; the
AdaptENCD scheme is described in Section V; Section VI
analyses and evaluates the scheme; Section VII suggests
measures to further reduce transmission overheads; finally,
Section VIII concludes the paper.

II. RELATED WORK
This section gives an overview of the related work and a
detailed description of a design published in literature, which
is most relevant to our work and will be used to compare our
design against.

A. OVERVIEW
A node compromise attack is carried out in three stages [8]:
(Stage_1) physically capturing a node, (Stage_2) redeploying
the captured node back to the WSN, and (Stage_3) trying to
let the node re-join the network to launch further attacks. The
attack had been deemed as easy to perform but difficult to
detect [9]. However, Bacher et al. [2] have experimentally
discovered that node compromise attacks are not as easy
to perform as reported previously, provided that some basic
precautions are taken, such as disabling interfaces that may be
exploited by an adversary to gain access to the node’s micro-
controller. The effort required by an adversary to success-
fully launch a node compromise attack may vary from some
mechanical work such as (de-)soldering to more advanced
invasive attacks on the electronic components of a node using
costly equipment. These attacks require the removal of the
compromised node from the network for a substantial amount
of time.

There have been many solutions proposed in the literature
to detect node compromise attacks [3]–[5], [8], [10]–[30].
Depending on the stage of the attack at which node compro-
mise detection is implemented, the solutions can be classified
into three groups: (Group_1) node compromise detection is
implemented at Stage_1, (Group_2) node compromise detec-
tion is implemented at Stage_2, and (Group_3) node compro-
mise detection is implemented at Stage_3.

Earlier solutions have beenmostly of Group_2 or Group_3.
The Group_2 solutions are based on verifying the physical
location of each node. They assume that, if a node has been
compromised, it would be hard for an adversary to redeploy
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the compromised node back to its exact previous physical
location. In other words, if a node’s physical location is
changed, then the node has probably been compromised.
For example, in the solution proposed by Song et al. [8],
a compromised node is detected by verifying if a node’s
physical location has been changed.

The Group_3 solutions use either software attes-
tation methods [10]–[16] or misbehaviour detection
methods [17]–[30]. Software attestation methods are based
on the observation that an adversary, once successfully com-
promised and redeployed a node back into the network,
will launch further attacks via this node. For doing so, the
adversary needs to modify the software on the node. So these
methods verify the integrity of the software installed on the
node. The misbehaviour detection methods assume that if a
node has been compromised, then it may behave maliciously.
Therefore, by monitoring the behaviour of the nodes at
runtime, malicious nodes could be detected.

Recently, some Group_1 solutions have been proposed.
These solutions detect compromised nodes based on the
assumption that, if a node is compromised, then it would
not be heard by other nodes in the neighbourhood for a
period of time. Though there are different variants of these
solutions, they largely rely on the use of notificationmessages
as discussed in Section I.

Lin [3] proposed the first such scheme that uses notifica-
tion (Beacon) messages. The scheme is called Couple-based
Node Compromise detection (CAT). CAT allows any two
nodes to form a couple in an ad hoc manner and the nodes
of the same couple monitor each other to detect any node
compromise. CAT also assumes that each node can self-detect
if it is connected to a programming board. If a node has
detected that it is connected to a programming board, then the
node announces itself as compromised and sends a message
to its partner to inform it about the attack. To address Beacon
message loss, each monitoring node allows three Beacon
messages to be missed before declaring that the monitored
node is compromised. Although this method reduces false
positive errors, if both nodes in a couple are compromised
at the same time, then no detection can be achieved.

Ding et al. [4] proposed two schemes, First Stage Detec-
tion (FSD) and Sink Enhanced FSD (SEFSD). Both schemes
rely on the use ofHello and probe messages. Each node sends
Hellomessages periodically to its neighbours to indicate that
it is alive. If a (monitoring) node does not receive three
consecutive Hello messages from a neighbour (monitored
node), the monitoring node sends two probe messages suc-
cessively. If no reply to the probe messages is received, then
the monitoring node concludes that the neighbour is compro-
mised. The two schemes differ in how they respond once a
compromised node has been detected. In FSD, themonitoring
node broadcasts a message to the entire network to notify
the ID of the compromised node. In SEFSD, the message is
only sent to the base station (BS). In this latter scheme, upon
the receipt of multiple notifications about the compromise
from multiple monitoring nodes, the BS notifies all the nodes

in the network. It does so periodically using an integrated
message that contains a list of reported compromised node
IDs. SEFSD is more efficient than FSD as the former uses a
centralised and resource-rich BS to facilitate the revocation
of a detected compromised node from the network.

Megahed et al. [5] proposed an efficient Group_1 scheme
to detect node compromises in cluster-based WSNs. In this
scheme, a WSN is divided into a set of interconnected clus-
ters. The clusters form a chain of interconnected rings, and
each ring is a cluster. Each node in a ring sends one Hello
message to its two neighbours in the ring and receives one
Hello message from each of the neighbours at every thresh-
old period. If a node in the ring is compromised (i.e., if it
has not sent a Hello message within the threshold period),
the chain breaks and other interconnected rings will discover
the compromise. Although this scheme is more efficient than
the schemes discussed earlier, it does not address issues
caused by message loss during transmission. The scheme
may suffer a large number of false positive errors in an
environment with a high message loss ratio.

To summarise, among the solutions discussed above, only
CAT, FSD and SEFSD are designed to detect node compro-
mises in Stage_1 of the attack and in an environment with
message loss. As SEFSD is more effective than CAT and
more efficient than FSD, here we choose SEFSD as the refer-
ence solution to evaluate our solution (AdaptENCD). In other
words, we will compare the performance of AdaptENCD
against that of SEFSD to demonstrate the effectiveness of
AdaptENCD. In the next section, we describe SEFSD inmore
detail.

B. SINK ENHANCED FIRST STAGE DETECTION (SESFD)
The SESFD scheme assumes that each node in a network has
a unique ID and that all nodes are static and are preloaded
with a common key list that is known to, and shared by,
all nodes. SEFSD has two functions: (1) to detect node
compromises and (2) to revoke the detected compromised
node from the network. The detection function is carried out
in Stage_1 of the attack and is carried out in a distributed
manner by using Hello and probe messages. The revocation
function is carried out centrally with the involvement of the
BS, i.e., the BS manages the revocation of any compromised
nodes from the network. These functions are implemented by
using eight types of messages (Hello, Setup,MyPath, Are you
there? AYT, I am fine IMF, Captured, I am captured IMC and
AlertUpdate). The operations of SEFSD are in two phases,
aNetwork Setup phase and anOperational phase as described
below.

1) NETWORK SETUP PHASE
In this phase, each node discovers its respective neighbours
and establishes a path to the BS. For doing so, each node
maintains a Neighbour Table recording the IDs of its one-hop
neighbours. To discover neighbours, each node broadcasts
Hello messages periodically. Each Hello message contains
the ID of its sender. Upon the receipt of a Hello message,
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the receiver extracts the ID of the sender and stores it in its
Neighbour Table. Once the neighbours are discovered, each
node establishes a path to the BS. This path discovery process
is initiated by the BS by broadcasting a Setup message to
the entire network. Each node, upon the receipt of the Setup
message, adds its own ID into the received message and then
rebroadcasts it to its downstream neighbours. During this
process, each node may receive multiple copies of the Setup
message, and the different copies may contain different sets
of node IDs, as they may traverse different paths. Based on
the path information contained in the copies of the Setup
message, each node selects the shortest path to the BS and
sends aMyPathmessage to its selected parent on the shortest
path. The parent node then forwards the message on to its
parent until the message reaches the BS. By the end of the
Network Setup phase, each node should have learnt its parent
and children.

2) OPERATIONAL PHASE
In this phase, each node performs the two functions, the
detection of node compromises and revocation of the detected
compromised nodes. The two functions are described below
in detail.

With the detection function, each node in the network
detects if any node in its neighbourhood (one-hop neigh-
bours) or itself has been compromised. To achieve this,
each node periodically sends Hello messages to its one-hop
neighbours to indicate that it is alive (i.e., has not been
compromised). The Hello messages sent by all the nodes
in the network during a specific time period are encrypted
using the same key drawn from the common key list stored
on each node. To reduce false positive errors that may be
caused by message loss, the scheme requires that a monitor-
ing node should miss out three consecutive Hello messages
from a monitored node before taking any further action on
the monitored node. That is, if a monitoring node misses out
three consecutive Hello messages from a monitored node,
the monitoring node should send two successive AYT probe
messages to the monitored node. Any node, upon the receipt
of an AYT message, should reply with an IMF message.
If the monitoring node does not receive any reply after send-
ing two consecutive AYT probe messages, it will conclude
that the monitored node is compromised and send a Captured
unicast message (containing the ID of the compromised node)
to the BS using the path established in the Network Setup
phase. SESFD also allows a node to detect if the node itself
has been compromised, i.e., self-detection. For example, if it
detects any tampering with its hardware, then it should send
an IMC message to report the compromise to its neighbours.
A neighbour receiving the IMC message should report the
compromise to the BS using a Captured message.
For the revocation function, the compromised nodes noti-

fied in the Captured messages sent by the monitoring nodes
are revoked with the assistance of the BS. This is accom-
plished by the following operations. Firstly, upon the receipt
of Captured messages, the BS periodically (every T period)

floods the network with an AlertUpdate message. The
AlertUpdatemessage contains the IDs of all the compromised
nodes indicated in the Captured messages received in the
last T period. Secondly, in each period, the BS should also
send an updated key list to all the nodes in the network. This
is to thwart further possible attacks by making use of any
exposed cryptographic materials from a compromised node.
Upon the receipt of an AlertUpdate message and the updated
key list, each node adds the IDs of the compromised nodes
into aCaptured Node Listmaintained by the node and updates
its key list. From this point on, each node should discard any
messages sent from a compromised nodewith an IDmatching
with any listed in the Captured Node List.

SEFSD is constrained in terms of the timing of the detec-
tion and revocation of any compromised nodes. To describe
the timing constraint, we here define a detection and revo-
cation time duration (tddr ) which is the duration from when
the first of the three consecutive Hello messages is sent
to when an AlertUpdate message is received. This duration
covers the total time taken for detecting a compromised node
(sending three Hello and two AYT messages), for reporting
the compromised node (sending a Captured message) to the
BS and for revoking the compromised node (sending an
AlertUpdate broadcast by the BS). For SEFSD to effectively
detect and revoke a compromised node, the value of tddr
should not be greater than the minimum time required by an
adversary to compromise a node. Otherwise, it is possible that
a compromised node is redeployed back into the network and
used as a springboard for further attacks.

Although SEFSD provides a solution to address the false
positive issue caused by message loss commonly seen in a
WSN environment, it suffers from a number of limitations.
Firstly, it is not suitable for environments characterised by
a high message loss ratio as it is likely that the nodes will
miss theHello and probemessages resulting in false positives.
Secondly, the scheme is not scalable as the larger the network,
the longer the tddr value, and if a network is sufficiently
large, the tddr value may exceed the time required to compro-
mise a node. Thirdly, the scheme requires updating the key
list installed on each node upon the detection of each node
compromise. This is a costly process if it has to be updated
through the BS.

III. AdaptENCD PROPERTIES
AdaptENCD is designed to address the shortcomings of the
SEFSD scheme described in Section II-B. It leverages a
cluster-based hierarchical topology and provides distributed
early node compromise detection and revocation functions.
These functions allow member nodes in each cluster to mon-
itor each other to detect node compromises and to revoke
compromised nodes from the cluster immediately after detec-
tion. The compromised nodes will later be revoked from the
entire network in a centralised manner with the involvement
of the BS. Similar to other early node compromised detection
schemes, AdaptENCD uses periodic notification (Heartbeat,
or in short, HB) messages.
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The fundamental difference between AdaptENCD and
SEFSD is that AdaptENCD allows the use of different HB
message transmission rates for different clusters. A local
message loss ratio (MLR) value is estimated based on the
channel conditions in each cluster and this MLR value is
used to adjust the HB message transmission rate used by the
members of the cluster. So if a cluster has a weaker channel
condition, the members in the cluster should use a higher
HB message transmission rate. Similarly, if a cluster has a
stronger channel condition, the members in the cluster should
use a lower HB message transmission rate. In this way, we
can reduce false positive detection errors, while, at the same
time, keep communication overheads caused by HBmessage
transmissions as low as possible. In detail, AdaptENCD has
the following features:

1) A reliable and efficient node compromise decision pro-
cess. AdaptENCD uses a cluster-based collective deci-
sion making approach to node compromise detection.
Unlike SEFSD in which a monitoring node makes a
node compromise decision based on a single piece
of evidence, i.e., Hello and probe messages received
from the monitored node, the decision in AdaptENCD
is made based on a collection of evidence received
from all in-cluster neighbours of the monitored node.
Message (or transmission) redundancy can help reduce
false positive errors, and the use of clusters allows
harvesting redundant messages without requiring the
monitored node to repeat HB message transmissions.
This can make the decision process more reliable and
efficient.

2) An adaptive approach to HB message transmission
rate selection. This allows different clusters to use
different HB message transmission rates, determined
based on the underlying channel conditions in their
respective clusters. In this way, the trade-off between
false positive errors and transmission overheads intro-
duced in detecting node compromises can be balanced.
The underlying channel conditions in each cluster is
measured in terms of MLRs. A computationally effi-
cient method has been devised to estimate an MLR
value in a cluster; each cluster head (CH) uses message
counter values carried in each transmitted message to
estimate an MLR value.

3) To effectively revoke compromised nodes, we separate
duties in AdaptENCD’s key establishment structure,
such that different types of communications (unicast,
broadcast, intra-cluster, and inter-cluster) are secured
using different keys. AdaptENCD takes advantage of
this key structure to revoke compromised nodes locally
from the cluster first, and then from the entire network.

4) A built-inmethod to rank clustermembers (CMs) based
on the Received Signal Strength Indicator (RSSI). The
top-ranked CM will serve as the deputy CH (DCH) for
the cluster. A DCH can detect the compromise of the
CH in a cluster, and in an event when the CH is detected
as compromised, the DCH will assume the role of

the CH. This allows the revocation of any detected com-
promised node in a cluster, including the CH, without
affecting the cluster’s operations.

In the rest of the paper, we give detailed descriptions of the
design, implementation and evaluation of the AdaptENCD
scheme.

IV. DESIGN PRELIMINARIES
This section provides definitions, system and threat
models, assumptions and requirement specifications used in
the design of AdaptENCD.

A. DEFINITIONS AND NOTATIONS
The design of AdaptENCD uses the following detection,
efficiency and time parameters.
• Detection parameters:

– False positive: A non-compromised node identified
as compromised.

– False negative: A compromised node that is unde-
tected.

– False positive ratio (FPR): Proportion of nodes
identified as compromised while they are not, i.e.,
FPR = number of false positives / (total number of
nodes - number of compromised nodes)

– False negative ratio (FNR): Proportion of compro-
mised nodes that are undetected, i.e.,
FNR= number of false negatives / number of com-
promised nodes.

• Efficiency parameters:
– Monitoring overheads (MO): The total number of

messages generated in the WSN for monitoring
node compromises during a specific period of time.

– Compromise reporting and revocation overheads
(CRRO): The total number of messages generated
in the WSN for reporting and revocation of com-
promised nodes during a specific period of time.

• Time parameters:
– Node compromise minimum duration tdmin: This is

the minimum time duration required by an adver-
sary to compromise a node. This duration also rep-
resents the length of time the node is not present in
the network, from when the node is captured by the
adversary to when the node is redeployed after the
compromise.

– Node compromise detection duration tddet : This is
the time duration within which a cluster should
detect the compromise of a CM. This duration rep-
resents the length of time from when the node is
captured to when it is declared as compromised.
tddet is set as half tdmin, i.e., tddet = tdmin/2.

– Compromised node local revocation duration tdloc:
This is the maximum time duration within which
a cluster should locally revoke a CM after being
captured. This duration represents the length of time
from when the CM is captured to when it is locally
revoked from the cluster.
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– Compromised node global revocation duration
tdglo: This is the maximum time duration within
which the entire network should revoke a node after
being captured. This duration represents the length
of time from when the node is captured to when it
is globally revoked from the entire network.

– Clustering interval: This interval starts from the end
of a clustering process to the beginning of the next
clustering process. A clustering process involves
forming clusters and electing a CH for each cluster.

– Clustering duration (tdclu): This is the time duration
of a clustering interval.

– Heartbeat duration (tdHB): This is the time duration
of a HB round. In a HB round, every CM in a
cluster broadcasts a HB message to other in-cluster
neighbours.

The notations used in this paper are summarised in Table 1.

B. SYSTEM MODEL
The WSN, under our investigation, consists of a large num-
ber (around 500) of static resource-constrained nodes and
a resource-rich BS. The nodes are organised into a hier-
archical clustered topology in which the nodes are parti-
tioned into clusters and each cluster has an elected CH
and a set of CMs. CMs in a cluster are only allowed to
communicate with their respective CH and other CMs in
the same cluster. Communication outside a cluster is done
through the CHs of the communicating nodes. CHs should
be able to reach the BS through established routes involving
other CHs that are located closer to the BS. Once cluster-
ing is established, no further cluster joining requests are
processed.

To allow for immediate local revocation of a detected
compromised node and to strengthen security, each node i has
five cryptographic keys, detailed as follows:
• A Network Key (kN ): This is the network-wide
key shared between the BS and all nodes in the
network. It is used to secure messages broadcast by
the BS.

• An Individual Key (kBi) shared with the BS: This key
is used to secure pairwise unicasts between node i and
the BS.

• A Broadcast Key (k∗i ) shared with each of its one-hop
neighbours: This key is used to secure local broad-
casts by node i to its neighbours, particularly during
clustering/re-clustering.

• A Pairwise Key (kij) shared with each of its one-hop
neighbours, j: This key is used by node i to secure
unicast messages to node j.

• A Cluster Broadcast Key (k�i ) shared with all the CMs
in the same cluster: This key is used to secure local
broadcasts to in-cluster neighbours in intra-cluster com-
munications.

kN and kBi are preloaded into each node’s memory before
deployment whereas kij and k∗i are established using a secure
key establishment method such as the one used in the

TABLE 1. Notations.

Energy-efficient Distributed Deterministic Key management
scheme (EDDK) [31]. k�i is established during a cluster setup
process (see Section V-A3).
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As kN and k∗i may be exposed to adversaries in a
node compromise attack, they have to be updated regularly.
To update kN , the BS generates a new key and unicasts it
to every CH located one-hop away from the BS. Upon the
receipt of the BS unicast, each CH should (1) broadcast the
key to the CMs in the cluster and (2) unicast the key to
other CHs downstream. This process continues until all nodes
receive the updated key. k∗i can be updated using EDDK
methods [31]. The update is performed as follows. Node i
generates a new k∗i and sends it to each non-compromised
neighbour via a unicast message. The message is secured
using the pairwise key that node i shares with the respective
neighbour.

C. THREAT MODEL
The adversary is assumed to be an active adversary with the
aim of capturing nodes to uncover private data stored by the
captured nodes. The adversary may also modify the software
of the nodes and/or redeploy the nodes back to the network
to launch further attacks such as routing attacks (e.g., black
hole, gray hole, sybil, wormhole and Hello flood [32]), false
data injection, identity replication and passive data gathering.
The adversary may also compromise more than one node to
launch collusion attacks to breach the security and/or privacy
of the network. Therefore, by detecting node compromises at
an early stage, such attacks may be impeded. Similar to the
assumption used in other early node compromise detection
schemes [3], [4], we assume that the adversary is capa-
ble of compromising a fraction of the nodes in the WSN.
In particular, we assume that the adversary can compromise a
maximum of 25% of the nodes in the network.We impose this
25% upper bound on the ground that usually losing a larger
proportion of nodes can trigger more serious actions by the
underlying intrusion detection system. This is because, when
a network loses many nodes, it will become more fragmented
and less effective in transmitting data to the BS, which can be
easily noted by the support team.

D. ASSUMPTIONS
The following assumptions have been used in the design of
AdaptENCD:

(A1) The BS is trustworthy, well protected against phys-
ical attacks and always available.

(A2) A node compromise attack is always characterised
by a physical node capture and removal from the
network for a minimum time duration of tdmin.

(A3) The network initial operation of node discovery,
Pairwise and Broadcast Key establishment and ini-
tial clustering processes can be accomplished in a
time duration tdinit that is shorter than the duration
required by an adversary to compromise a node
(i.e., tdinit < tdmin). Further re-clustering processes
can also be accomplished in a time duration that is
much shorter than tdmin.

(A4) The BS and all nodes in the WSN are loosely time
synchronized. By loosely we mean that there exists

an upper bound on a synchronisation error that can
be tolerated and this bound is known to the BS and
every node in the network. For a survey of time
synchronization mechanisms, refer to [33].

(A5) Each transmitted unicast or broadcast message con-
tains a unique counter value (i.e., sequence number)
that is assigned by the sending node.

(A6) There exists a clusteringmechanismwhereby nodes
are partitioned into clusters and each cluster has an
elected CH. It is also assumed that CHs can estab-
lish or update routes to the BS whenever required.

(A7) Each node i maintains a Neighbour Table Ti. Ti
stores the attribute values associated with each of
the node’s neighbours as shown in Table 2.

TABLE 2. Neighbour table, Ti , maintained by node i .

(A8) Each node imaintains aMonitoring Data Vector Vi.
Vi is used to store and update the monitoring data
collected from other CMs. The monitoring data is
used in compromise detection decision making. Vi
is described in detail in Section V-A1.

(A9) Each node imaintains aCompromised Node List Li.
Li stores the IDs of compromised nodes. The BS
maintains a similar list. The list is initially empty.

E. DESIGN REQUIREMENT SPECIFICATIONS
The design requirements for AdaptENCD can be divided into
functional, security, node compromise detection performance
and efficiency requirements as follows.
• Functional:

– FUN01: It should take no more than tdmin to locally
revoke a detected compromised node from its clus-
ter (i.e., tdloc ≤ tdmin).

– FUN02: It should take no more than tdclu, to glob-
ally revoke a detected compromised node from the
entire network (i.e., tdglo ≤ tdclu ).

• Security:
– SEC01: A compromised node should be unable

to re-join the network and participate in further
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communications once it has been revoked from the
network.

• Node compromise detection performance:
– NCD01: False positive ratio (FPR) should be as low

as possible.
– NCD02: False negative ratio (FNR) should be as

low as possible.
• Efficiency :

– EFF01: Monitoring overheads (MO) should be as
low as possible.

– EFF02: Compromise reporting and revocation over-
heads (CRRO) should be as low as possible.

– EFF03: Memory requirements should be as low as
possible.

V. THE AdaptENCD SCHEME
This section describes the detailed design of AdaptENCD,
including the methods, algorithms and protocols it uses and
its operations. The operations of the scheme are in three
phases: (1) the Node Initialization phase which is a pre-
deployment phase, (2) the Network Setup phase in which
nodes perform neighbour discovery, Pairwise and Broadcast
Key establishment and initial clustering processes after their
deployment and, (3) the Operational phase in which nodes
carry out compromise detection and revocation. Section V-A
describes the methods, algorithms and protocols, Section V-B
describes AdaptENCD operations and Section V-C describes
AdaptENCD timing structure.

A. METHODS, ALGORITHMS AND PROTOCOLS
1) HB MESSAGE TRANSMISSION
The HB message transmission process used in AdaptENCD
is adapted from [34], which is proposed for detecting node
failure in cluster-based WSNs.

This process is performed by all CMs periodically every
HB round. The duration of a HB round is tdHB. In each HB
round, every CM in the cluster, including the CH, broad-
casts its HB message to other CMs in the cluster. A HB
message, which is sent by a CM in the current HB round,
includes the ID of the source CM and the monitoring data
the CM gathers in the previous HB round. The monitoring
data includes a series of bits that identify the aliveness status
of the CMs in the previous HB round. One bit for one CM
and the value of each bit indicates the aliveness status of the
corresponding CM (i.e., 1 indicates that the monitoring CM
has received aHBmessage from the correspondingmonitored
CM and 0 otherwise). The bits are ordered according to a
CH-rank which is assigned to each CM to serve as backup
CH. In each clustering process, the elected CH is assigned
a CH-rank, CHR

= 1 and the CM with the highest RSSI is
assigned CHR

= 2 and called a deputy CH (DCH). The rest
of the CMs are ranked based on their RSSI values where the
CM with the highest RSSI is ranked CHR

= 3 and so on
(the CH ranking process is detailed in Section V-A.3). So,
the first bit in the monitoring data represents the status of the

current CH, the second bit represents the status of the DCH,
the third bit represents the status of the CM with CHR

= 3,
and so on. Monitoring data records are stored in a Monitor-
ing Data Vector, Vi, that each node maintains (Fig. 1). The
HB message transmission process is performed by using the
HB protocol (see Algorithm 1).

FIGURE 1. Monitoring Data Vector Vi maintained by node i .

Algorithm 1 HB Protocol Algorithm
1: procedure HB.send(IDi)
F Executed by the sender CM i every HB round.

2: D← readmonitoring data record related to previous
HB round from Vi

3: Payload i→∗← Enc(k�i ,Ci→� ‖ D)
4: send mi→∗ : IDi ‖ Payload i→∗ F mi→∗ is a local

broadcast message
5: end procedure

6: procedure HB.receive(mi→∗)
F Executed by the receiver CM j.

7: Ci→� ‖ D← Dec(k�i ,Payload i→∗)
8: update Tj set Ci→� = received Ci→�
9: update Tj set σ�i = σ

�

i + 1
10: update Tj set RSSIi = (RSSIreceived−message +

RSSIi)/2
11: update Vj set bi = 1 in monitoring data record

related to current HB round
12: for each bn ∈ D do
13: if bn = 1 then
14: update Vj set bn = 1 in monitoring data

record related to previous HB round
15: end if
16: end for
17: end procedure

The HB protocol has two procedures, HB.send() to
broadcast a HB message to the in-cluster neighbours and
HB.receive() to receive a HB message sent by an in-cluster
neighbour. In HB.send(), each CM i, reads Vi and extracts the
monitoring data record collected in the previous HB round.
It then composes a HB message that contains a message
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counter value and the extractedmonitoring data. Themessage
is encrypted using the Cluster Broadcast Key, k�i . Next,
CM i broadcasts the HBmessage to its in-cluster neighbours.

When an in-cluster neighbour, j, receives the HB message
sent by CM i, CM j performs HB.receive() procedure. In this
procedure, CM j decrypts the received message using the
shared key k�i to obtain the message counter value and the
monitoring data. Then, CM j updates its Neighbour Table Tj
by setting the inbound broadcast counter value of CM i to
be equal to the received counter value and the RSSIi value to
be the average of the RSSI value measured by CM j’s radio
and the value maintained in the table. CM j also updates its
Monitoring Data Vector Vj by:

• Updating the monitoring data record of the current HB
round: setting the respective position bit related to CM i
i.e., bi = 1.

• Updating the monitoring data record of the previous HB
round: setting the respective position bit= 1 for any CM
that the received monitoring data confirms that it was
alive in the previous HB round.

If no HBmessage is received from an in-cluster neighbour
during the current HB round, the respective bit of the neigh-
bour is set to 0. Note that a CM can only hear from other
CMs that are located within its transmission range. So the bits
related to the CMs that are located outside its transmission
range are always set to 0.

2) HB MESSAGE TRANSMISSION RATE ESTIMATION
A major benefit of using a cluster-based topology in WSNs
is that each cluster may define its own rules locally with-
out affecting the operation of the entire network. Based on
this observation, node compromise detection rules can be
defined locally within each cluster. In AdaptENCD, each
cluster measures its own average message loss ratio, MLR,
which reflects the channel conditions in the environment in
which each cluster is deployed. Based on the MLR value, the
cluster defines the HB message transmission rate that is used
by all the CMs in the cluster. We use this cluster-dependent
approach to determining the HB message transmission rate
with the intention of reducing false positives in detecting node
compromises.

Let us consider a single cluster that consists of n nodes
where node i is the CH (Fig. 2). Suppose that the cluster is
deployed in an environment where the average MLR = ML .

A CH decides if a CM in the cluster has been compromised
if the following conditions are met:

Condition_1: The CH has not heard the CM in the past x
HB rounds.

Condition_2: The HBmessages received by the CH in the
past (x−1) HB rounds confirm that the CM has not
been heard by its in-cluster neighbours.

Given ML , our aim is to determine the number of HB
rounds, x, such that the total duration x × tdHB is not greater
than the node compromise detection duration, tddet , and the
CM is not identified as a false positive. Based on this setting,

FIGURE 2. Illustration of a cluster with node i is a CH.

the probability of a CM being a false positive, PFP, is given
by (1).

PFP = PC1 × PC2 (1)

PC1 is the probability of fulfilling Condition_1, which can
be computed as PC1 = (ML)x , and PC2 is the probability of
fulfilling Condition_2, computed as PC2 = (ML∗)x−1, where
ML∗ is the probability of missing the monitoring data sent
by all the neighbours in a single HB round and it can be
computed as:

ML∗ =

n−2∑
k=0

((
n− 2
k

)
×
(
1−

AI
AC

)(n−2)−k
×
( AI
AC

)k
×

k∑
j=0

(
k
j

)
×(1−ML)j×(ML)k−j×(ML)j

)
(2)

where AC is the area of the transmission range of the CH, AI
is the area of intersection of the transmission ranges of the CH

and another CM (Fig. 2),
n−2∑
k=0

(n−2
k

)
×
(
1− AI

AC

)(n−2)−k
×
( AI
AC

)k
evaluates the probability of having k single-hop neighbours
assuming that the nodes are randomly distributed within the

cluster, k ≤ n − 2, and
k∑
j=0

(k
j

)
× (1 − ML)j × (ML)k−j ×

(ML)j evaluates the probability of missing the HB messages
containing the monitoring data sent by the k neighbours.
From (1), PFP can be computed as

PFP = (ML)x × (ML∗)x−1 (3)

solving for x in (3) yields:

x =
ln
(
PFP

)
+ ln

(
ML∗

)
ln
(
ML

)
+ ln

(
ML∗

) (4)

In the worst case scenario, CM j is at the circumference
of the transmission range of the CH as shown in Fig 3.
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FIGURE 3. The worst-case scenario where CM j is at the circumference of
the transmission range of the CH.

In this case, based on geometry, we have:

AI
AC
=

2× R2 ×
(
π
3 −

√
3
4

)
π × R2

= 0.391 (5)

where R is the radius of the transmission range. Therefore,

ML∗ =

n−2∑
k=0

((
n− 2
k

)
×
(
0.609

)(n−2)−k
×
(
0.391

)k
×

k∑
j=0

×

(
k
j

)
×(1−ML)j×(ML)k−j×(ML)j

)
(6)

From this probabilistic analysis, we see that if a CH can
measureML , in the underlying environment, it will be able to
estimate x given a certain level of PFP.
ML can be measured using message counters that are

carried in transmitted messages. This is done as follows.
During the neighbour discovery process, nodes send discov-
ery messages at a certain rate for a specific discovery period.
Suppose that node i has b neighbours. Upon receipt of the
first discovery message from one of the b neighbours, say j,
node i adds a new record in its Neighbour Table, Ti, and sets
the inbound broadcast counter value Cj→∗ to be equal to the
received counter value carried in the discovery message sent
by node j, the number of received broadcasts from node j, σ ∗j ,
to be equal to 1 and RSSIj to be equal to the RSSI measured
by node i’s radio. Upon the receipt of subsequent messages
from node j, node i updates node j’s record in Ti by updating
Cj→∗, incrementing σ ∗j and averaging the RSSI value of the
received message with the value stored in Ti. In a similar
way, node i should also update the attributes: inbound unicast
counter value Cj→i, the number of received unicasts σUj and
RSSIj upon receipt of a unicast from node j, and the attributes:
inbound cluster broadcast counter value Cj→�, the number
of received cluster broadcasts σ�j and RSSIj upon receipt
of a cluster broadcast from node j (i.e., during intra-cluster
communication).

At the end of the neighbour discovery and key establish-
ment processes, each node should know its neighbours and
have populated its Neighbour Table. To measure ML , each
CH elected during the initial clustering process computesML

Algorithm 2 HB-Rate Algorithm
1: procedure HB-Rate(PFP)
F Executed by the elected CH.

2: read
{
σUi ,Ci→j, σ

∗
i ,Ci→∗, σ

�

i ,Ci→�
}
i∈N

from Tj

3: compute ML =
1

3×b ×

( b∑
i=1

Ci→∗−σ
∗
i

Ci→∗
+

b∑
i=1

Ci→j−σ
U
i

Ci→j
+

b∑
i=1

Ci→�−σ
�

i
Ci→�

)
, where σ∗i , σ

U
i and σ�i > 0

4: compute ML∗ =
n−2∑
k=0

((n−2
k
)
×
(
0.609

)(n−2)−k
×
(
0.391

)k
×

k∑
j=0

(k
j
)
× (1−ML )j × (ML )k−j × (ML )j

)

5: compute x =
ln
(
PFP

)
+ln

(
ML∗

)
ln
(
ML

)
+ln

(
ML∗

)
6: return x
7: end procedure

using (7) which makes use of the counter values maintained
in the Neighbour Table and the number of broadcasts and uni-
casts successfully received. Then, the CH uses the computed
ML to computeML∗ and x using (6) and (4), respectively. The
pseudocode of the HB message transmission rate estimation
method is detailed in the HB-Rate algorithm (Algorithm 2).

ML =
1

3× b
×

( b∑
i=1

Ci→∗ − σ ∗i
Ci→∗

+

b∑
i=1

Ci→j − σ
U
i

Ci→j

+

b∑
i=1

Ci→� − σ
�

i

Ci→�

)
(7)

where σ ∗i , σ
U
i and σ�i > 0.

Each node in a cluster is required to update its Neighbour
Table (updating the counter, number of received messages
and RSSI attributes) for each unicast or broadcast the node
receives from its in-cluster neighbours. If any node becomes
a CH during the next clustering process, it uses the collected
data to compute x for the new cluster using the HB-Rate
algorithm.

3) CLUSTER SETUP AND CH RANKING
Upon forming a cluster and electing a CH, the elected CH
together with other CMs execute the cluster setup (CSU)
protocol (see Algorithm 4) to (1) establish Cluster Broadcast
Keys, (2) estimate a HB message transmission rate for the
cluster, and (3) rank the CMs to serve as backup CHs. There
are two procedures in the CSU protocol, CSU.ch() which is
performed by the CH, and CSU.cm() which is performed by
other CMs in the cluster. Let us consider a cluster where the
elected CH is node i. In CSU.ch(), the CH generates a new
Cluster Broadcast Key, k�i , for itself using a pseudorandom
generator function. Then, it uses the generated key to compute
a new Cluster Broadcast Key, k�j for every CM in the cluster,
where k�j = k�i ⊕ k∗j . The CH stores the new keys in its
Neighbour Table, Ti. Next, the CH estimates the HBmessage
transmission rate, x, using the HB-Rate algorithm. After that,
the CH ranks the CMs for backup CH selection purpose,
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FIGURE 4. An example of a CH ranking process.

i.e., the next CH will be selected from the top ranked CM in
this list.

Algorithm 3 CH-Rank Algorithm
1: procedure CH-Rank( )
F Executed by the CH.

2: read
{
RSSIi

}
i∈Cc

from Tj
3: if CM i is a current CH then
4: CHR

i ← 1
5: end if
6: rank ← 2
7: for remaining unranked CMs do
8: if RSSIi is maximum then
9: CHR

i ← rank
10: end if
11: rank ← rank + 1
12: end for
13: return

{
CHR

i

}
i∈Cc

14: end procedure

The CH ranking is performed using the CH-Rank algo-
rithm (Algorithm 3), where the ranking is based on the RSSI
attribute stored in the CH’s Neighbour Table. RSSI is chosen
as the basis for the ranking method in order to reduce the
energy consumption. The higher the RSSI value, the closer
the node may be located to the current CH. Closer nodes are
preferred to serve as backup CHs because they could connect
to the rest of the CMs in the cluster using as low transmis-
sion power as possible. The ranking process is performed as
follows. The CH assigns itself a CHR of 1. Other CMs are
ranked as follows. A CM which has the highest RSSI value
is ranked as number 2 followed by the CM that has the next
highest value and so on. An example of the ranking process
is illustrated in Fig. 4.

After completing the CH ranking process, the CH sends
a unicast message to each CM. The message contains k�i , x
and CHR of all CMs and the message is encrypted using the
Pairwise Key (e.g., kij when the CM is j).

When CM j receives the unicast message from the CH,
it performs CSU.cm() in which CM j firstly decrypts the

Algorithm 4 CSU Protocol Algorithm
1: procedure CSU.ch( )
F Executed by CH i to setup the cluster.

2: generate new k�i
3: for each j ∈ Cc do
4: update Ti set k�j = k�i ⊕ k

∗
j

5: end for
6: x ← HB-Rate(PFP)
7:

{
CHR

i

}
i∈Cc
← CH-Rank( )

8: for each j ∈ Cc do
9: Payloadi→j ← Enc

(
kij,Ci→j ‖ k�i ‖ x ‖{

CHR
i

}
i∈Cc

)
10: send mi→j : IDi ‖ Payload i→j
11: end for
12: end procedure

13: procedure CSU.cm(mi→j)
F Executed by CM j upon receipt of a cluster setup
unicast from the CH.

14: Ci→j ‖ k�i ‖ x ‖

{
CHR

i

}
i∈Cc

←

Dec(kij,Payload i→j)
15: set k�j = k�i ⊕ k

∗
j

16: set CHR
j = {CH

R
j }received

17: for each u ∈ Cc do

18: update Tj set k�u =

{
k�i if u = i
k�i ⊕ k

∗
u if u 6= i

19: update Tj set CHR
u = {CH

R
u }received

20: end for
21: end procedure

received message to obtain k�i , x and CH
R of all CMs. Then,

CM j updates its Neighbour Table Tj by setting theCHR value
of each member based on the received CHR. Using k�i , CM j
computes its Cluster Broadcast Key k�j = k�i ⊕ k∗j . It also
computes k�u for all other CMs using k�u = k�i ⊕ k∗u and
stores the computed keys in its Neighbour Table, Tj. Once
the CSU protocol is completed, the cluster is ready for the
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Operational phase which involves detection and revocation
of compromised nodes. It is also worth noting that during
the Operational phase, the clusters are closed and should not
accept any join request. This is necessary to prevent com-
promised nodes from participating in the network operations
after redeployment.

4) NODE COMPROMISE DETECTION
Node compromise detection is performed within each cluster
with the involvement of every CM in the cluster at the end
of each HB round. The detection is done using the NCD
algorithm (Algorithm 5) which has three cases depending on
the role of the node in the cluster. These cases are detailed
below:

NCD-Case_1: The CH detects the compromise of other
CMs. The CH declares that a CM is compromised
if and only if the following two conditions are met:
1) The CH has not heard the CM during the past

x HB rounds.
2) The HB messages received by the CH in

the past (x − 1) HB rounds confirm that
the CM has not been heard by its in-cluster
neighbours.

To verify these conditions, the CH applies a bitwise
OR operation on all monitoring data records in its
Monitoring Data Vector. If any of the bits in the
result is 0, then the CH concludes that the CM
associated with that bit is compromised.

NCD-Case_2: The DCH detects the compromise of the
CH and other CMs. The DCH declares that the CH
and other CMs are compromised if and only if the
following two conditions are met:
1) The DCH has not heard the CH and other CMs

during the past x HB rounds.
2) The HBmessages received by the DCH in the

past (x − 1) HB rounds confirm that the CH
and other CMs have not been heard by their
in-cluster neighbours.

To verify these conditions, the DCH applies a bit-
wise OR operation on all monitoring data records
in its Monitoring Data Vector. If the first bit of the
result is 0 and any other bit is 0, then the DCH
concludes that the CH and the CMs associated with
the 0 bits are compromised. Note that the DCH
concludes that a CM is compromised if and only
if the CH is compromised. This is because the CH
is responsible for reporting the compromises of the
CMs if the CH itself is alive (i.e., not being com-
promised itself).

NCD-Case_3:A lower CH-rank CM detects simultaneous
compromises of the current CH, DCH and other
higher CH-rank CMs. A CM declares that simulta-
neous node compromises have occurred if and only
if the following two conditions are met:
1) The CH has not heard any of the sus-

pected nodes (i.e., CH, DCH and other

Algorithm 5 NCD Algorithm
1: procedure NCD( )
F Executed by CM i at the end of each HB round.

2: result ← 0
3: IDdet ← φ F IDdet is the list of detected

compromised node IDs.
4: if CM i is a CH then
5: for each record R in Vi do
6: result ← result ∧ R F ∧ is a bitwise OR

operator.
7: end for
8: for each bit bj in result do
9: if bj = 0 then
10: add IDj to IDdet
11: end if
12: end for
13: else if CM i is a DCH then
14: for each record R in Vi do
15: result ← result ∧ R
16: end for
17: if b1 = 0 then F b1 is the bit associated with the

CH in result .
18: add IDCH to IDdet
19: for each other bit bj in result do
20: if bj = 0 then
21: add IDj to IDdet
22: end if
23: end for
24: end if
25: else F CM i is lower CH-rank CM.
26: for each record R in Vi do
27: S ← subset of R that includes bits associated

with CMs that have CHR < CHR
i

28: result ← result ∧ S
29: end for
30: if result = 0 then
31: for each bit bj in result do
32: add IDj to IDdet
33: end for
34: end if
35: end if
36: if IDdet is not empty then
37: LCNR.report(IDdet )
38: GCNR.report(IDdet )
39: end if
40: delete oldest record in Vi
41: newRecord ← 0
42: add newRecord to Vi
43: end procedure

higher CH-rank CMs) during the past x HB
rounds.

2) The HB messages received by the CM in the
past (x − 1) HB rounds confirm that none
of the suspected nodes (i.e., CH, DCH and
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other higher CH-rank CMs) have been heard
by their in-cluster neighbours.

To verify these conditions, the CM selects a sub-
set of the bits from each of the monitoring data
records in its Monitoring Data Vector (i.e., the bits
associated with the CH, DCH and other higher
CH-rank CMs). Then, the CM applies a bitwise
OR operation on these subsets. If the result is all
zeros, then the CM concludes that the CH, DCH and
other higher CH-rank CMs are all compromised.
However, if there is at least a single bit in the result
with a value of 1, then there are no simultaneous
compromises.

At the end of the execution of the NCD algorithm, each
node i deletes the oldest monitoring data record from Vi and
inserts a new record that is initialised with zeros to prepare
for the next HB round. So the size of Vi is always kept at x to
save memory.

If one or more node compromises are detected, then the
monitoring node performs a compromised node revocation.
The revocation is carried out in two steps. The first is
to revoke the compromised nodes locally (i.e., within the
cluster) by executing the local compromised node revoca-
tion (LCNR) protocol. The second step is to revoke the
compromised nodes globally (i.e., from the entire network)
by executing the global compromised node revoca-
tion (GCNR) protocol. LCNR and GCNR are explained
in Sections V-A.5 and V-A.6, respectively.

5) LOCAL COMPROMISED NODE REVOCATION (LCNR)
The local compromised node revocation is achieved using
the LCNR protocol (Algorithm 6) which has two procedures:
LCNR.report() to report a CM compromise locally within
the cluster and LCNR.revoke() to revoke the compromised
CM from the cluster. In LCNR.report(), the node that has
detected the compromise, say i, deletes the records related
to the compromised nodes from Ti and adds the IDs of
the compromised nodes to its Compromised Node List, Li.
The rest of the procedure varies depending on the role of the
reporting node. There are two cases as follows:

LCNR-Case_1: If the reporting node is the CH, it per-
forms the following steps:
1) Broadcasts a message to the cluster notifying

the CMs that one or more CM compromises
have been detected. The message contains the
ID(s) of the compromised CM(s) encrypted
using k�i .

2) Performs a cluster setup using the CSU
protocol.

LCNR-Case_2: If the reporting node is the DCH or any
other CM, it performs the following steps:
1) Adjusts its transmission power to connect to

all remaining CMs.
2) Broadcasts a message to the cluster to declare

that it becomes the current CH and reports the

Algorithm 6 LCNR Protocol Algorithm
1: procedure LCNR.report(IDdet )
F Executed by CM i upon detection of a node compro-
mise; IDdet is the list of detected compromised node IDs.

2: delete IDdet records from Ti
3: update Li add IDdet
4: if CM i is a CH then
5: Payloadi→∗← Enc(k�i ,Ci→� ‖ IDdet )
6: send mi→∗ : IDi ‖ Payloadi→∗
7: CSU.ch( )
8: else
9: adjust transmission power to connect to all

remaining CMs
10: Payloadi→∗ ← Enc(k�i ,Ci→� ‖ declareCH ‖

IDdet )
11: send mi→∗ : IDi ‖ Payloadi→∗
12: CSU.ch( )
13: end if
14: end procedure

15: procedure LCNR.revoke(mi→∗)
F Executed by CM j upon receipt of a local revocation
broadcast from CH.

16: if the sender of mi→∗ is the a previously declared CH
then

17: Ci→� ‖ IDdet ← Dec(k�i ,Payloadi→∗)
18: else
19: Ci→� ‖ declareCH ‖ IDdet ←

Dec(k�i ,Payloadi→∗)
20: end if
21: delete IDdet records from Tj
22: update Lj add IDdet
23: end procedure

IDs of the detected compromised CMs. The
message is encrypted using k�i .

3) Performs a cluster setup using the CSU
protocol.

Upon receipt of the compromise report broadcast, CM j per-
forms the LCNR.revoke() procedure. Firstly, CM j decrypts
the received message using k�i to obtain the list of detected
compromised node IDs. Then, it deletes the records of
the compromised nodes from Tj and adds the IDs of the
detected compromised nodes to Lj. After that, CM j waits
for further instructions to setup the cluster based on the
CSU protocol.

6) GLOBAL COMPROMISED NODE REVOCATION (GCNR)
The global compromised node revocation is done using the
GCNR protocol (Algorithm 7). The protocol has four proce-
dures: GCNR.report() performed by a CH to report detected
node compromises to the BS, GCNR.receive() performed
by the BS to receive node compromise reports from CHs,
GCNR.notify() performed by the BS to notify all nodes about
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Algorithm 7 GCNR Protocol Algorithm
1: procedure GCNR.report(IDdet )
F Executed by the CH upon detection of a node compro-
mise.

2: Payloadi→B← Enc(kBi,Ci→B ‖ IDdet )
3: send mi→B : IDi ‖ Payloadi→B
4: end procedure

5: procedure GCNR.receive(mi→B)
F Executed by the BS upon receipt of a reported node
compromise.

6: Ci→B ‖ IDdet ← Dec(kBi,Payloadi→B)
7: update LB add IDdet
8: end procedure

9: procedure GCNR.notify( )
F Executed by the BS before the end of the current
clustering interval.

10: update kN
11: PayloadB→∗← Enc(kN ,CB→∗ ‖ IDdet )
12: send mB→∗ : IDB ‖ PayloadB→∗
13: end procedure

14: procedure GCNR.revoke(mB→∗)
F Executed by any node i upon receipt of a revocation
broadcast from BS.

15: CB→∗ ‖ IDdet ← Dec(kN ,PayloadB→∗)
16: if IDdet ∈ Ti then
17: delete IDdet records from Ti
18: update k∗i
19: end if
20: update Li add IDdet
21: end procedure

the node compromises and GCNR.revoke() performed by all
nodes to revoke the compromised nodes notified by the BS.

In GCNR.report(), a current or declared CH composes a
unicast message to be sent to the BS. This message con-
tains the ID(s) of the detected compromised CM(s) and is
encrypted using the Individual Key that the CH shares with
the BS, kBi. When the BS receives the message, it executes
GCNR.receive(). The BS decrypts the message using kBi and
obtains the list of detected compromised node IDs. Then,
it adds the IDs of the detected compromised nodes to the
Compromised Node List that it maintains.

Before expiry of the current clustering interval, the BS
executes the GCNR.notify() procedure. The procedure starts
by updating the Network Key, kN , that may be exposed to
adversaries through the node compromises. The update of
kN is performed using the method discussed in Section IV-B.
Then, the BS composes a global broadcast message. Themes-
sage contains the list of all compromised nodes that have been
detected during the current clustering interval. The message
is encrypted using the updated Network Key kN . A node

receiving the BS global broadcast message should execute
GCNR.revoke(). The node decrypts the message using kN
and obtains the list of compromised node IDs. Then, the node
deletes the records of the compromised nodes from its Neigh-
bour Table if they exist and updates its Broadcast Key using
the method discussed in Section IV-B. Next, the node adds
the IDs of the compromised nodes to its Compromised Node
List. Any future joining requests initiated by a compromised
node that has an ID matching with any of the IDs in the
Compromised Node List will not be processed.

B. AdaptENCD IN ACTION
The AdaptENCD three phases (i.e., Node Initialization,
Network Setup and Operational) are detailed below.

1) NODE INITIALIZATION PHASE
This is a phase executed prior to the deployment of a network.
In this phase, each node i is preloaded with the parameter
values: IDi, kN and kBi.

2) NETWORK SETUP PHASE
In this phase, nodes discover their neighbours, establish Pair-
wise and Broadcast Keys and perform the initial clustering.
In the neighbour discovery process, each node broadcasts
discovery messages to its neighbours at a certain rate. The
discovery messages are also used to collect evidence on the
message loss in the underlying environment. This is achieved
by using the counter values carried in the transmitted mes-
sages as discussed in Section V-A2. Then, the nodes establish
the Pairwise and Broadcast Keys using EDDK methods [31].
Once the neighbour discovery and the Pairwise and Broadcast
Key establishment processes are executed, each node should
have identified its neighbours and populated its Neighbour
Table. Next, the clustering process starts. AdaptENCD is
independent of any clustering mechanism. However, we rec-
ommend using an anonymous clustering protocol such as the
Private Cluster Head Election (PCHE) protocol [35]. This
is to make it harder for an adversary to identify CHs by
observing the election of CHs during a clustering process.
Obviously, CHs are more attractive to a compromising adver-
sary as (1) they may contain more private data and/or secret
keys related to other neighbouring nodes, and (2) they may
be used to launch more effective privacy attacks after rede-
ploying them back to the network owing to their important
role compared to ordinary nodes. Upon completion of the
clustering process, the CH together with the CMs execute the
CSU protocol. This protocol establishes the Cluster Broad-
cast Keys for the CMs, estimates the HB message transmis-
sion rate and performs the CH ranking process. This prepares
the clusters for the Operational phase.

3) OPERATIONAL PHASE
In theOperational phase, the CMswithin each clustermonitor
each other using the HB protocol. To detect node compro-
mises, each CM performs the NCD algorithm at the end
of each HB round. If a node compromise is detected, the
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FIGURE 5. Scenario describing the timing structure of detecting node compromises in AdaptENCD.

CMs execute the LCNR protocol to first revoke the com-
promised node locally from the cluster. The compromised
node will later be revoked globally by performing the GCNR
protocol before the end of the current clustering interval.
By the end of the clustering interval, a new clustering process
starts where the nodes may reorganize into different clusters.
In each newly formed cluster, the elected CH together with
the CMs perform the CSU protocol to setup the cluster and
the monitoring process repeats.

C. AdaptENCD TIMINGS
Fig. 5 shows the AdaptENCD timing structure based on a
scenario of aWSN consisting of a single BS and three clusters
(i.e., Clusters 1, 2 and 3) in one clustering interval. The
clusters are deployed in an environment with varying levels
of MLR (i.e., low, medium and high, respectively). To ensure
the effectiveness of the node compromise detection while
minimizing false positives, each CH in a cluster uses the
HB-Rate algorithm to compute the HBmessage transmission
rate, x, that should be used by the CMs. This means that
each CM in the cluster should transmit x HB messages to
its in-cluster neighbours within the tddet duration. Based on
the HB-Rate algorithm and given the levels of MLR in each
cluster, Cluster 1 imposes the lowest rate of transmitting the
HB messages (x = 2), Cluster 2 imposes a medium rate
(x = 4) and Cluster 3 imposes the highest rate (x = 6). The
members of each cluster transmit HB messages by executing
the HB protocol.

Let us assume that at time instance t0, an adversary per-
forms node compromises in each cluster. Using the aliveness
evidence obtained from theHBmessages, each cluster should
detect the compromises by performing the NCD algorithm
at time t1 = t0 + tddet . At time t2 = t0 + tdloc, each
cluster should revoke the compromised nodes locally using
the LCNR protocol. Note that the duration tdloc is no longer
than tdmin, so by the time when the adversary redeploys the
compromised nodes back to the WSN, i.e., at t3 = t0+ tdmin,
the compromised nodes should have already been revoked
locally from each cluster, thus satisfying requirement FUN01.
Hence, a redeployed compromised node cannot participate
in further communication in its respective cluster as it has
already been revoked. In addition, the compromised node will
be unable to join another cluster as all clusters are closed
immediately after completing the clustering process.

In addition to the local revocations of the compromised
nodes, the CHs in each cluster report the node compromises
to the BS. So, when tdglo has passed at time t4 = t0 + tdglo,
the BS should have received the IDs of all compromised
nodes in all clusters. Based on the GCNR protocol, the BS
should be ready to notify all nodes to revoke the compro-
mised nodes by adding the IDs of the compromised nodes to
the Compromised Node List that each node maintains. This
ensures that global revocation is achieved in a time duration
no longer than the clustering duration, i.e., tdglo ≤ tdclu, thus,
satisfying requirement FUN02. At the end of the clustering
interval (at time t5), nodes should know the compromised
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node IDs and thus be able to reject any join request initiated
by a compromised node in the next clustering process.

VI. ANALYSIS AND EVALUATIONS
In this section, the security of AdaptENCD is analysed
with respect to the SEC01 requirement, and its performance
is evaluated with respect to the node compromise detec-
tion (NCD01 and NCD02) and efficiency (EFF01, EFF02
and EFF03) requirements.

A. SECURITY ANALYSIS
AdaptENCD revokes a detected compromised node from its
respective cluster within tdloc. This is done by a key updat-
ing method implemented in the key establishment process.
With this method, a CH, after detecting a node compromise,
generates a new Cluster Broadcast Key. This key is sent to
each CM through a unicast message. The unicast message
is encrypted using a Pairwise Key that is only known to
the CH and the respective CM. Hence, it is difficult for
an eavesdropping adversary to decrypt the message without
knowing the encryption key. In addition, reading the compro-
mised node’smemory does not leak information regarding the
new Cluster Broadcast Key as this key is generated indepen-
dently by the CH using a pseudorandom function generator.
All non-compromised CMs will use the new Cluster Broad-
cast Key received from the CH to compute new Cluster
Broadcast Keys. Consequently, future communication among
the CMs will be based on the newly computed keys. As the
compromised node has no access to these new keys, it cannot
participate in future communication in the cluster. Further,
it is hard for a compromised node to join any other cluster
when it is being redeployed during the same clustering inter-
val as the clusters are already closed; they will not accept any
joining request outside the clustering process period. During
the next clustering process, each node should have received
the list of compromised node IDs from the BS. Hence, it is
also difficult for the compromised node to participate in the
clustering process.

In AdaptENCD, a CH is responsible for monitoring and
detecting any compromise of the CMs in its cluster, whereas
the responsibility for detecting any compromise of the CH
lies with the DCH in the cluster. In addition, a CM with a
CHR

= 3 in a cluster can detect simultaneous compromises
of the CH and DCH in the cluster. However, an adversary
may use timed compromises of the CH and DCH rather than
simultaneous compromises, hoping to bypass the detection
of the compromises by the CM with a CHR

= 3. The timed
compromises mean that an adversary may capture the CH
and DCH in sequence at two different time instances where
the difference between the two instances is carefully chosen
in order to bypass compromise detection. For example, the
adversary may capture the CH at time t0, and then, DCH at
time t1 = t0 + (tddet − 1t), where 1t < tddet . By time t1,
the DCH has not yet detected the compromise of the CH.
According to the NCD algorithm, a CM with a CHR

= 3
will need at least tddet from when the DCH is compromised

(i.e., t2 = t0 + tddet − 1t + tdet ) to detect the compromises
of both the CH and DCH. However, at time t3 = t0 + tdmin,
the adversary may redeploy the CH back into the network
which is followed by the redeployment of the DCH at time
t4 = t1+tdmin. Thus, the two compromises will be undetected
if t3 < t2. Given that AdaptENCD is designed such that
tddet = tdmin/2, we can see that t3 = t0 + 2 × tddet and
t2 = t0 + 2 × tddet − 1t . This means that the time when
the adversary redeploys the CH (i.e., t3) comes after the time
when the CM with a CHR

= 3 can detect the compromise of
both the CH and DCH (i.e., t2). Therefore, AdaptENCD can
effectively thwart the risk of such a timed compromise attack.

Let us also analyse the case when an adversary captures a
node during a clustering process. In such a case, the captured
node will not be able to complete the clustering process as it
will be removed from the network for at least tdmin where
tdmin is longer than the duration of the clustering process
(see assumption (A3) in Section IV-D). Therefore, the node
will not be part of any cluster during the current clustering
interval. However, the node may be able to participate in
future clustering processes, thus bypassing the compromise
detection process. This can be addressed by allowing the CHs
to send the clustering structure (i.e., the IDs of all the CMs
of their respective clusters) to the BS immediately after the
clustering process. As the BS has knowledge of all nodes in
the WSN, it can easily spot missing nodes after receiving the
clustering information from every CH. Therefore, the BS can
addmissing nodes into its CompromisedNode List and notify
all the nodes to revoke the missing (compromised) nodes
before the start of the next clustering process.

The confidentiality of all transmitted messages is always
protected while in transit. This is achieved using encryption.
The key used for encryption is only known and shared by
the communication entities (i.e., the sender and receiver(s)
of a message). By selecting a standard symmetric encryp-
tion algorithm such as AES and by using sufficiently large
keys (e.g., 128 bits), it is computationally hard for an eaves-
dropping adversary to decipher any eavesdropped message.
However, we note that an adversary may be able to attack
the integrity of the transmitted messages which may lead
to wrong node compromise detection decisions. This prob-
lem can be thwarted by appending a message authentication
code (MAC) to each transmitted message to protect the mes-
sage integrity and authenticity. The MAC can be generated
using a keyed hash function such as HMAC. However, this
may be provided at an additional computational and trans-
mission costs. To reduce transmission costs, truncated MAC
values can be used.

B. SIMULATION RESULTS
This section provides performance investigation of Adap-
tENCD in relation to requirements NCD01, NCD02 and
EFF01. The investigation is done using the Castalia simula-
tor [36]. Castalia is specially designed for simulating WSNs
and is based on the discrete event simulator OMNET++ [37].
The simulatedWSN consists of 576 nodes deployed in a field
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200m×200m. We have implemented both AdaptENCD and
SEFSD schemes in the simulator, and the implementation is
done at the application level. We have analysed the results
produced from the AdaptENCD scheme and compared them
with those from the SEFSD scheme in terms of compromised
node detection effectiveness (i.e., FPR and FNR) and the
efficiency metric MO (i.e., total number of messages gen-
erated for the monitoring process). Node compromises are
randomised in terms of node selections as well as the time of
their compromise. Simultaneous compromises are also possi-
ble. All nodes have equal probability of being compromised
regardless of their roles (CM, DCH or CH). The maximum
proportion of nodes that can be compromised during a simu-
lation run is 25%. A compromised node is simulated by stop-
ping the node’s resource manager, simulating the node being
removed from the network. The minimum time required to
compromise a node, tdmin, is set to 30 s. To obtain statistically
significant results, each simulation result is the average value
of 30 results produced from 30 repeated simulation runs. The
parameter values used in the simulation are given in Table 3.
We have considered two scenarios: (1) the entireWSN suffers
the same level of MLR, and (2) different parts of the network
suffer different levels of MLR. In the following sections, the
simulation results are discussed.

TABLE 3. Simulation parameters.

1) SCENARIO 1 - SAME LEVEL OF MLR ACROSS
THE ENTIRE WSN
This section reports the performance of AdaptENCD mea-
sured in terms of FPR, FNR and MO with varying MLR
values using Scenario 1. It also compares the performance
results with those from SEFSD. To simulate a given MLR
value, we set channel conditions as ideal (i.e., no error), but
assign a probability of successful message delivery to every
transmitted message accordingly. For example, to simulate
MLR=0.1, the probability of successful message delivery
assigned to each message is set to 0.9 and for MLR=0.2, the
probability of delivery is set to 0.8, and so on. In this way,

we facilitate a fairer comparison between the two schemes,
AdaptENCD and SEFSD, than by altering the error rates
in the channels. The performance results are collected with
MLR values ranging from 0 to 0.6 with an increment of 0.1.

FIGURE 6. False positive ratio (FPR) against varied levels of message loss
ratio (MLR) in Scenario 1.

a: False positive ratio (FPR)
Fig. 6 shows the FPR results of the two schemes against MLR
values ranging from 0 to 0.6. From the figure, it can be seen
that the FPR for SEFSD increases steadily from 0 to 0.9 when
the MLR value increases from 0 to 0.6. These results indicate
that, when theMLR value is 0, i.e., when the network does not
suffer from message loss, SEFSD performs well. However,
as the MLR value increases, the network quickly becomes
dis-functioning as a majority of the nodes in the network are
revoked either because they have been compromised or have
been wrongly detected as such.

In contrast, when the MLR value increases from 0 to 0.4,
the FPR for AdaptENCD hardly increases, maintaining a
value of nearly 0. Onlywhen theMLRvalue increases beyond
0.4, does the FPR show slight increase, reaching to 0.06 at
MLR=0.6. This slight increase in FPR at the MLR value
of 0.6 can be explained as follows. When the MLR value
increases, each cluster would generate more traffic as the
CMs would sendHBmessages at a higher rate to compensate
for the message loss. As a result, message collisions are more
likely. So, the actual MLR is, in fact, higher than the average
message loss ML estimated by a CH at the beginning of the
clustering interval. This issue can be addressed by allowing
the CH to perform more frequent estimation of ML (and
consequently the x parameter) within the same clustering
interval. If there is a change in x, the CHmay inform the CMs
to increase the rate of sending the HB messages accordingly.

Further, from the figure, we see that AdaptENCD signif-
icantly outperforms SEFSD across all MLR values except
when MLR=0 (i.e., the case when there is no message loss
in the network). This is because the decisions made about
node compromises in SEFSD are based on a single piece
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of evidence, Hello and probe messages sent by a monitored
node. However, in AdaptENCD, the decision on a node com-
promise is based on a collective set of evidence gathered by
the in-cluster neighbours of a compromised node.

FIGURE 7. False negative ratio (FNR) against varied levels of message
loss ratio (MLR) in Scenario 1.

b: False negative ratio (FNR)
The results related to FNR against MLR are presented in
Fig. 7. As can be seen, SEFSD reports an FNR value of 0
when MLR is set to 0 and 0.1. However, when the MLR
value goes higher than 0.1, FNR increases steadily as MLR
increases. This is because, with SEFSD, as MLR increases
more false positives are reported (see Fig. 6) and conse-
quently more nodes are revoked. As a result, the number of
monitoring nodes decreases. When the number of monitoring
nodes decreases, it is likely that the real node compromises
go undetected. In contrast, AdaptENCD has achieved an FNR
value of 0 for all the MLR settings. This means that, with
AdaptENCD, all the node compromises have been detected
regardless of the MLR values under investigation.

c: Monitoring overheads (MO)
The MO refers to the total number of messages generated in
the WSN for monitoring node compromises during a spe-
cific period of time. It constitutes the major communica-
tion costs incurred in an early node compromise detection
process. In our experiment, the simulator reports the total
number of monitoring messages generated in each scheme
(AdaptENCD and SEFSD) within the whole length of simu-
lation time. In AdaptENCD, the monitoring messages areHB
messages, so theMO covers the total number ofHBmessages
transmitted by all nodes. In SEFSD, the monitoring messages
are Hello, AYT and IMF messages, so the MO covers the
total number of these three messages. Revoked nodes due to
being compromised or mistakenly detected as compromised
(i.e., false positives) are not considered as part of the network
and therefore they do not contribute to the overheads (as they
do not produce further monitoring messages).

FIGURE 8. Monitoring overheads (MO) against varied levels of message
loss ratio (MLR) in Scenario 1.

The results of MO against theMLR value for both schemes
are shown in Fig. 8. From the figure, we can make two
observations. Firstly, the monitoring overheads for SEFSD
decreases steadily, whereas the overheads for AdaptENCD
increases steadily, as the MLR value increases. These results
are consistent with the results shown in Fig. 6 and Fig. 7,
i.e., when the MLR value increases, SEFSD makes more
errors in node compromise detection.More such errors would
lead to more nodes being revoked bymistake and fewer nodes
remain in the network, thus fewer monitoring messages being
transmitted. In contrast, AdaptENCD is designed to adjust
the monitoring overheads in response to MLR, therefore,
the higher the MLR value, the more HB messages will be
transmitted, thus the higher the monitoring overheads.

Secondly, as shown in Fig. 8, when the MLR is
small (approximately below 0.2), AdaptENCD generates
fewer monitoring messages than SEFSD; the largest dif-
ference between the two is when the MLR value is 0
(40,000 vs 106,000 messages, approximately). This differ-
ence disappears when the MLR value increases beyond 0.1.
When the MLR value is 0.2 or higher, AdaptENCD generates
more monitoring messages than SEFSD, and the gap between
the two increases as MLR value increases. The reason is that
when the MLR values are higher than 0.2, more nodes in
SEFSD get revoked because of being mistakenly reported as
false positives and therefore the total number of generated
monitoring messages decreases. As the MLR increases, the
false positives in SEFSD are reported at an earlier stage in the
simulation run causing such dramatic decrease in the number
of monitoring messages. This further justifies the increased
gap between the two schemes.

These results, combined with our observations made in
Fig. 6 and Fig. 7, tell us that AdaptENCD is more effec-
tive and efficient than SEFSD in detecting node compro-
mises. This is because the two ideas adopted in AdaptENCD,
i.e., the collective decision making approach to node compro-
mise detection and adaptive approach to monitoring message
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transmission rate selection, can reduce false positive errors
when the MLR value is high and prevent unnecessary mon-
itoring message transmissions in conditions when the MLR
value is low.

2) SCENARIO 2 - VARYING LEVELS OF MESSAGE LOSS
ACROSS THE WSN
In this scenario, theWSN is assumed to be deployed in an area
with varying levels of MLR (e.g., mixing outdoor and indoor
deployments or mixing open and obstructed environments).
So, the WSN is divided into several groups of nodes and
each group is assigned with a certain level of MLR that is
randomly selected to be between 0 and 0.6. The scenario is
studied with a number of groups ranging between 4 and 24
with an increment of 4 every time. The results are discussed
below.

FIGURE 9. False positive ratio (FPR) against number of groups in
Scenario 2.

a: FALSE POSITIVE RATIO (FPR)
Fig. 9 shows the FPR against the number of groups for the
two schemes, AdaptENCD and SEFSD. The results show that
the reported FPR in SEFSD exceeds 0.6 in all the simulated
number of groups. In addition, the FPR increases slightly as
the number of groups increases. This behaviour is in line
with the results obtained in Scenario 1 in which SEFSD
performs perfectly only when there is no message loss in
the environment. In the mixed environment deployment, half
of the groups will probabilistically suffer an MLR of more
than 0.3. As SEFSD is not resilient to message loss especially
when the MLR exceeds 0.1, the detection process is likely to
report a higher number of false positives.

AdaptENCD maintains a much lower level of FPR than
SEFSD (0.04 for AdaptENCD and 0.7 for SEFSD on
average). This confirms that AdaptENCD is more suited to
WSNs deployed in environments with varying levels ofMLR.
The results also show that there is a slight increase of FPR
in AdaptENCD as the number of groups increases. This can
be explained as follows. The higher the number of groups,

the more clusters are formed with nodes that belong to two
different groups (i.e., clusters formed at the border of the
two groups), where those two groups have different levels of
MLR.Given that the CH computes the averageMLRbased on
the messages received from its neighbours, when the majority
of the CMs belong to a group assigned with a lower level
of MLR, it is likely that the estimated average HB message
transmission rate within the cluster may not be enough to
prove the aliveness of the nodes that belong to the group
experiencing a higher level ofMLR. Thus, such nodes may be
revoked due to detection errors. This issue may be resolved
by changing the method of estimating the ML value by a
CH (refer to the HB-Rate algorithm). Instead of estimating
ML using the average value over all the neighbouring nodes
as computed by (7), the average message loss from each
neighbour is estimated independently and then the maximum
value among all estimated values is used to compute the HB
message transmission rate within the cluster. However, this
may increase theHBmessage transmission rate considerably.
Alternatively, the issue may be addressed during the cluster-
ing process where each node, before the start of the clustering
process, computes ML based on the information stored in its
Neighbour Table using (7). If a node announces itself as a CH,
it should broadcast its computed ML value to its neighbours.
Each node in the neighbourhood can then choose to join the
CH which provides the ML value that is the closest to the
ML value computed by the node itself. In this way, we can
limit forming clusters using nodes from different groups.

FIGURE 10. False negative ratio (FNR) against number of groups in
Scenario 2.

b: FALSE NEGATIVE RATIO (FNR)
Fig.10 shows the results related to FNR against the number
of groups. It can be seen that SEFSD suffers a moderate
level of FNR. Again these results are due to the inability
of SEFSD to maintain a sufficient number of monitoring
nodes especially in areas where the MLR value is high.
In contrast, AdaptENCD has achieved an FNR value of 0
for all settings. This confirms that AdaptENCD can maintain
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a high detection capability even in areas with varying levels
of MLR.

FIGURE 11. Monitoring overheads (MO) against number of groups in
Scenario 2.

c: MONITORING OVERHEADS (MO)
The results related to the MO against the number of groups
are shown in Fig. 11. SEFSD results show that the number
of monitoring messages decreases slightly as the number of
groups increases. This is because FPR increases slightlywhen
the number of groups increases, as shown in Fig. 9, and when
FPR increases, the number of monitoring messages decreases
as more nodes get revoked.

The results related to AdaptENCD show that it exhibits
higher monitoring overheads than SEFSD. This is the cost
incurred in being able to detect node compromises more
effectively as demonstrated in Fig. 9 and Fig.10. In addition,
AdaptENCD maintains the same performance regardless of
the number of groups with a slight decrease in the number
of monitoring messages when the number of groups is set
to 24. This is because AdaptENCD has reported a slightly
higher level of FPR when the number of groups is set to 24
(see Fig.9). In other words, the total number of monitoring
messages is slightly reduced as more nodes get revoked.

C. COMPROMISE REPORTING AND REVOCATION
OVERHEADS (CRRO)
This section analyses the CRRO (design requirement EFF02)
incurred by AdaptENCD and SEFSD in the process of report-
ing and revocation of compromised nodes. CRRO are inves-
tigated analytically for both schemes by estimating the total
number of reporting and revocation messages generated in
the network within a time duration equivalent to tdclu given a
certain number of node compromises. The estimation is based
on two scenarios: (1) for a single node compromise, and (2)
for multiple node compromises.

1) SCENARIO 1: A SINGLE NODE COMPROMISE
In AdaptENCD, upon the detection of a node compromise,
the revocation is carried out in two steps: (1) locally from

the cluster within a time duration ≤ tdmin, and (2) globally
from the entire network within a time duration ≤ tdclu.
Let the average number of nodes in a cluster be n and the
average number of single-hop neighbours of each node be b.
For (1), the CH, based on the LCNR protocol, sends one
local broadcast message (LB) to the CMs in the cluster to
revoke the compromised node. Then, the CH executes the
CSU protocol to setup the cluster by sending one single-
hop unicast message (SU ) to each CM in the cluster. So, the
total number of messages sent to revoke a single node from a
cluster within tdmin = LB+(n−1)×SU . For (2), the CH sends
a multi-hop unicast message (MU ) to the BS soon after each
local compromise detection. The BS, in turn, will firstly need
to update the Network Key. The cost of updating the Network
Key is approximately equivalent to a global broadcast (GB).
Then, the BS will send another GB to notify the nodes about
the list of compromised node IDs. In addition, each node
that has a compromised neighbour will also need to send
one SU to each non-compromised neighbour to update the
Broadcast Key. The affected number of nodes is b − 1 and
each node has to sent b − 1 unicasts to update its Broadcast
Key. So, the total number of messages sent in revoking the
compromised node from the entire network within tdclu =
MU + (b− 1)2 × SU + 2× GB.
In SEFSD, upon the detection of a node compromise, the

monitoring node sends a multi-hop unicast (MU ) message
(i.e., Captured message) to the BS to report the compromise.
Then, the BS should send a global broadcast (GB) message
(i.e., AlertUpdate message) that contains the ID of the com-
prised node to the entire network to revoke the compromised
node within tdmin. In addition, the BS sends another global
broadcast to update the key list. Therefore, the total number
of messages sent in revoking a node from the entire network
within tdmin = MU + 2× GB.

2) SCENARIO 2: MULTIPLE NODE COMPROMISES
For this scenario, we estimate the minimum and maximum
CRRO incurred by each scheme in case there are c node com-
promises in the network. The minimum CRRO is incurred
when all the c node compromises are performed simul-
taneously and reported by the same node (Case_A). The
maximum CRRO is incurred when the c node compromises
are performed at different time instances where the dura-
tion between each node compromise and the next one is at
least tdmin, and each compromise is reported by a different
monitoring node in the network (Case_B). We assume that
tdclu >> (c× tdmin) to give a sufficient time to revoke all the
c compromised nodes from the entire network.

Let us first analyse Case_A. Assuming that the IDs of the
compromised nodes can be contained in one message whilst
notifying the BS or other nodes about the compromises, the
CRRO incurred by each scheme is nearly equivalent to the
CRRO incurred in Scenario 1. The only noted difference is
that in AdaptENCD, upon locally revoking the c compro-
mised nodes from the cluster, the remaining alive nodes in
the cluster will be n − c. Therefore, the CH should send
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TABLE 4. CRRO incurred by AdaptENCD and SEFSD to report and revoke node compromises based on a single and multiple node compromises.

fewer unicast messages to setup the cluster based on the
CSU protocol, i.e., (n − c) × SU messages compared to
(n− 1)× SU messages in Scenario 1. Similarly, the number
of SUs required to update the Broadcast Keys is reduced to
(b− c)2 × SU .

For Case_B, in AdaptENCD, each reporting node will send
LB + (n − 1) × SU messages within tdmin to revoke each
compromised node locally from the respective cluster. For
c node compromises, the overheads would be c × (LB +
(n− 1)× SU ) messages. To globally revoke all the reported
compromised nodes from the entire network within tdclu, the
overheads would be c×MU+(N−c)×(b−1)×SU+2×GB
messages (assuming that every remaining node in the network
will need to update its Broadcast Key). SEFSD would incur
MU+2×GBmessages within tdmin to report and revoke each
compromised node. For c node compromises, the CRRO is
c× (MU + 2× GB) messages.
Table 4 summarises the CRRO incurred by the two

schemes in both scenarios. It can be seen that in Scenario 1,
AdaptENCD incurs slightly higher CRRO than SEFSD. This
is because the revocation in AdaptENCD is done in two steps,
locally from the cluster and globally from the entire network.
So, the additionally incurredCRRO inAdaptENCDare due to
the local revocation of the compromised node from the cluster
and also due to the need to update the Broadcast Key of the
affected nodes.

In Scenario 2, we make two observations. The first is that
in Case_A, each scheme incurs nearly the same CRRO it
incurs in Scenario 1, indicating that AdaptENCD still incurs
slightly higher CRRO than SEFSD. Again this is due to
implementing a two-step revocation in adaptENCD (local and
global), whereas SEFSD revocation is done in one step.

The second observation is that in Case_B, AdaptENCD
incurs less CRRO than SEFSD. This is in contrast to the
observations discussed above in Scenario 1 and Scenario
2-(Case_A). The reason for this change is that in SEFSD,
the BS must revoke a compromised node from the entire
network within tdmin (i.e., before an adversary can redeploy
the node to join the network). For c node compromises, the BS
sends a considerable number of global broadcast messages
(c × 2 × GB messages). On the contrary, the BS in Adap-
tENCD only sends 2× GB messages within tdclu to globally

revoke all reported compromised nodes. Given that global
broadcast messages aremuchmore expensive than single-hop
unicast and local broadcast messages, we can see that
AdaptENCD is more efficient than SEFSD in this case.

To summarise, the CRRO in SEFSD increases steadily
as more compromised nodes are detected by different mon-
itoring nodes at dispersed time instances. This is because
SEFSD depends highly on global broadcast messages (the
most expensive) to revoke the compromised nodes. In con-
trast, CRRO in AdaptENCD increases only slightly as all
the compromised nodes get revoked from the cluster using
local broadcast and unicast messages whereas, the number of
global broadcast messages used to revoke the compromised
nodes from the entire network is kept constant at a minimum
level.

D. MEMORY REQUIREMENTS
This section investigates the memory requirements for the
parameters used in AdaptENCD and compares them to those
of SEFSD. Each node i in AdaptENCD needs to store the
following parameters:
• Parameters related to the the node itself: One ID (IDi),
two keys (k∗i , k

�

i ), two counters (Ci→∗,Ci→�) and one
CH-rank (CHR

i ).
• Parameters related to the BS: One ID (IDB), two keys
(kBi, kN ), three counters (Ci→B,CB→i,CB→∗), two tal-
lies of received messages (σUB , σ

∗
B ) and one RSSI value

(RSSIB).
• Parameters related to each one-hop neighbour j:
One ID (ID

′′

j ), two keys (kij, k∗j ), three counters
(Ci→j,Cj→i,Cj→∗), two tallies of received messages
(σUj , σ

∗
j ) and one RSSI value (RSSIj).

• Additional parameters related to each in-cluster neigh-
bour u: one key (k�u ), one counter (Cu→�), one tally of
received messages (σ�u ) and one CH-rank (CHR

u ).
Let us assume a dense networkwhere node i has 100 single-

hop neighbours and 10 in-cluster neighbours. Given that ID
size = 8 bytes, key size = 16 bytes, counter size = 4 bytes,
tally of received messages size = 4 bytes, RSSI size = 8
bytes and CH-rank size = 1 byte, the total memory require-
ment of AdaptENCD is 7.00KB. A typical sensor node such
as TelosB mote [38] has an architecture where the entire
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memory (48KB of flash memory, 10KB of RAM and 1MB
of external EEPROM) is accessible for code and data. There-
fore, the memory requirements of AdaptENCD can be easily
accommodated in the memory of TelosB.

In SEFSD, each node has to store the IDs of its neighbours
and a common key list. Given that Hellomessages are sent at
a specified rate and the messages sent in each time period
is encrypted using the same key drawn from the key list,
then each node has to store a large key list to avoid the costs
of frequent re-keying. Using the same assumptions used for
AdaptENCD above and additionally assuming that the size
of the key list is 1000 keys, the total memory requirement of
SEFSD is 16.40KB. Therefore, SEFSD incurs high memory
requirements compared to AdaptENCD.

FIGURE 12. Detection error ratios (FPR and FNR) in AdaptENCD when the
HB message transmission rate is reduced by 1.

VII. FURTHER DISCUSSIONS
In this section, we discuss minimising monitoring overheads.
AdaptENCD is designed to detect node compromises effec-
tively and efficiently in a WSN environment. By effec-
tive, we mean the scheme should keep detection errors as
low as possible, and by efficient, we mean the scheme
should cost as low transmission overheads as possible. The
overheads include the monitoring and revocation overheads.
In Section I, we claimed that, by using a cluster-based col-
lective decision making approach to node compromise detec-
tion and an adaptive approach to monitoring message trans-
mission rate selection, we can reduce monitoring overheads
as much as possible without compromising effectiveness in
compromised node detection. One way to achieve this is to
use a HB message transmission rate that is no more than
necessary for each cluster. To provide further proof that we
cannot reduce the HB message transmission rate any further
without increasing detection errors (FPR and FNR), we have
repeated the experiment carried out for Scenario 1 but with
a reduced HB message transmission rate estimated for each
cluster. More specifically, we reduce x by 1 (i.e., x = x − 1),
and examine the effects of this reduction on FPR and FNR
with varying values of MLR. Fig. 12 shows the results of

this experiment. From the figure, it can be seen that the FPR
has increased to a level that is much higher than the set target
of false positive threshold (PFP = 0.01) especially for higher
levels of MLR. Nevertheless, FNR results have not experi-
enced any deterioration as the scheme provides a sufficient
number of monitoring nodes even when the reported level
of FPR reaches 0.2 at MLR=0.6. These results confirm that
AdaptENCD uses minimum HB message transmission rates
within each cluster without impeding the effectiveness of
node compromise detection.

Using HB messages to detect node compromises intro-
duces considerable transmission overheads in the network
as discussed in Section VI-B. Therefore, efforts should be
made to minimize these overheads, thus minimising energy
consumption, which, in turn, could prolong network lifetime.
In the following, we provide ways that such overheads could
be further reduced:

1) Increase the time duration required by an adversary
to compromise a node (tdmin): If we could increase
this time, we could afford to increase the Heartbeat
duration (tdHB). Therefore, the total number of gen-
erated HB messages by a CM in a specific period
of time is reduced. Increasing the node compromise
duration (tdmin) can be accomplished by implement-
ing extra security measures in the nodes. In addition
to the standard precautions for protecting the nodes
from unauthorised access (e.g., disabling interfaces that
may be exploited by adversaries to gain access to the
node’s microcontroller), Bacher et al. [2] recommend
other protection measures such as choosing a hardware
platform appropriate for the desired security protection
level. They also propose a method to protect the boot-
strap loader password against adversaries who have
detailed knowledge about the node’s software. These
protection measures could increase the effort and time
required by an adversary to launch a successful com-
promise attack.

2) Integrate monitoring operations with periodic data col-
lection operations: In other words, data messages gen-
erated during a data collection operation can be used to
carry out the monitoring operation. Such a technique
can save energy, especially in applications where data
is collected at high rates.

3) Increase cluster sizes: As can be inferred from the
computations of x andML∗ (refer to (4) and (6), respec-
tively), increasing the size of a cluster can increase
the probability that a node can be heard by one of its
in-cluster neighbours. Therefore, to obtain the same
level of false positive threshold (PFP), and by using
larger clusters, the HB message transmission rate can
be reduced. To confirm the effectiveness of this mea-
sure, we have carried out a simulation experiment to
investigate the average number of HB messages sent
by each node in a cluster using different cluster sizes
and varying levels of MLR in the network. To measure
the effect more accurately, we did not implement node
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FIGURE 13. Average number of HB messages generated by each CM
when varying cluster size and message loss ratio (MLR).

compromises in this experiment. The results are shown
in Fig. 13. It can be seen that for each value of MLR,
there exists a minimum size of a cluster where the
average number of HB messages per node is minimal.
In addition, the minimum size of a cluster increases
as the MLR increases. For example, for a MLR=0.1,
the minimum cluster size is 10 and for a MLR=0.2,
the minimum cluster size is 20 and so on. However,
this measure can only be implemented in dense WSNs
where the use of a large cluster size is feasible.

VIII. CONCLUSION
This paper has presented the design and evaluation of a novel
adaptive early node compromise detection scheme, Adap-
tENCD. The scheme is designed for cluster-based WSNs to
effectively detect node compromises in a distributed manner
in the presence of unreliable communication channels while
maintaining false positives below a certain threshold level.
This is achieved by allowing each cluster to measure the
message loss ratio in the underlying environment and use
the measured value to dynamically adjust the transmission
rate of Heartbeat (i.e., monitoring) messages among the
cluster members. Security analysis of the scheme demon-
strates its effectiveness in revoking compromised nodes, thus
preventing them from participating in future network com-
munications. This can reduce the need for implementing
expensive measures to protect the network against fur-
ther attacks launched by re-deployed compromised nodes.
Performance evaluations by means of simulations have been
conducted to evaluate the effectiveness and efficiency of
the scheme in terms of false positive ratio, false negative
ratio and monitoring overheads and the results have been
compared against those from the most relevant scheme in
the literature. The comparisons have shown that our scheme
significantly outperforms the related scheme in terms of com-
promised node detection reliability under both low and high
message loss ratio conditions.Whenmessage loss ratio is low,
our scheme outperforms the related scheme both in terms

of compromised node detection reliability and overhead
cost. When the message loss ratio is high, our scheme can
detect node compromises much more reliably than the related
scheme. These results demonstrate that AdaptENCD is effec-
tive in facilitating compromised node detection in the pres-
ence of channel unreliability in WSNs. The paper has also
discussed other measures to further minimise the monitoring
overheads; future work will study these measures.
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