IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received June 21, 2016, accepted July 8, 2016, date of publication August 2, 2016, date of current version September 28, 2016.

Digital Object Identifier 10.1109/ACCESS.2016.2592381

MAPE-K Interfaces for Formal Modeling of
Real-Time Self-Adaptive Multi-Agent Systems

AWAIS QASIM AND SYED ASAD RAZA KAZMI

Department of Computer Science, Government College University, Lahore 54000, Pakistan

Corresponding author: A. Qasim (awais @gcu.edu.pk)

ABSTRACT Formal modeling of multi-agent systems is an active area of research. The use of precise and
unambiguous notation of formal methods is used to accurately describe and reason about the system under
consideration at the design time. Multi-agent systems deployed in dynamic and unpredictable environment
needs to have the ability of self-adaptation, making them adaptable to the failures. State of the art encourages
the use of MAPE-K feedback loop for the provision of self-adaptation in any system. There is a dire need of
formal vocabulary that can be used for the conceptual design of any real-time multi-agent system with self-
adaptation. In this paper, we have proposed a set of predefined interfaces for the provision of self-adaptation
in real-time multi-agent systems. The interfaces are based on monitor, analyze, plan, and execute phases
of the MAPE-K feedback loop. We formally specify our interfaces using timed-communicating object-Z
language. The complete framework is elaborated using a trivial case-study of conveyor belt system based on
a real-time agent architecture.

INDEX TERMS Formal methods, self-adaptation, autonomic computing, multi-agent systems, real-time

systems.

I. INTRODUCTION

Formal modelling means using some technique of formal
methods to create a mathematical model of a system for the
purpose of analyses and enhanced understanding. The use
of formal methods provides an opportunity to analyze the
system at the design time without worrying about the actual
implementation details. In programming the term interface
refers to an abstract type that defines behaviors as methods.
In contrast to the inheritance, a class can implement as many
interfaces as required to provide the desired functionality.
Interfaces are especially useful at the design time to make
classes inter-operable because rather than specifying a par-
ticular class, the type of the object to be exchanged can be
defined in terms of its interface. Also in the development pro-
cess, a mock implementation may be substituted for the test-
ing purpose that is later replaced by the real code. An agent
is a software that performs various actions continuously and
separately on behalf of an individual or an organization in
a specific environment. It is reserved by other processes
and agents, but it can also learn from its experience during
functioning in an environment over a longer period of time.
An agent with restrictive timing constraints is called a
Real-Time Agent (RTA). RTAs are expected to complete
their task within the specified deadline or else they are of
no use. Usually an off-line schedulability analysis is done

before these RTAs are deployed to make sure that these
agents will meet their deadlines. A multi-agent system with
at least one real-time agent is called a Real-Time Multi-
Agent system (RTMAS). Multi-agent systems paradigm has
emerged as a useful technique to model real-time systems
like mobile robots, online auction systems, intrusion detec-
tion systems, control processes, etc. Since it is not possible
to build RTMASs with all the world knowledge incorpo-
rated into them they are expected to face unfamiliar situa-
tions. Self-adaptation endows a system with the ability of
self-organization according to the changes in the user
requirements and execution context. This ultimately leads
to better fault tolerance in case of any failure without
affecting the system’s overall functionality. Ideally to an
external observer/user of the system, the restructuring of
the system as part of its self-adaptation should be as
abstract as possible. We believe that the formal modelling
of these systems with temporal deadlines and adaptation
capability will help to better analyze and understand them.
This work has focused on the formal modelling of real-
time self-adaptive multi-agent systems, where the system’s
domain functionality is provided by the autonomous working
agents.

Much work has been done in the past on the formal
specification and verification of multi-agent systems and
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self-adaptive multi-agent systems. However according to our
knowledge no work has been done for the formal modelling of
self-adaptive real-time multi-agent systems. Time-extended
models like timed automata have been proposed for the
formal verification of real-time systems in [1] and [2], but
not for multi-agent systems. In [3] a technique for control-
ling decentralized multi-agent systems using LTL specifi-
cations have been proposed. An Eclipse based CASE tool
for the development and verification of multi-agent systems
comprising heterogeneous agents has been discussed in [4].
They have used model checking approach for the verifica-
tion of such systems. Reference [5] presented a prototyping
approach for the formal modelling of multi-agent systems.
Their framework described the key entities like organization,
role and interaction using a language called OZS, which
is a formal language combining Object-Z and state charts.
Reference [6] has specified distributed multi-agent systems
using Timed Communicating Object-Z (TCOZ) language,
which is a combination of Object-Z and Timed CSP. The
work of [7] has focused on handling fault-tolerance in multi-
agent system’s interaction using Event-B Patterns. Event-B
is a formal technique used for the modelling of distributed
systems for their analysis. In [8] Object-Z has been used
to formally model the incremental development of multi-
agent systems. Basically they introduced a notion of action
refinement for agent’s decision-making and inter-agent nego-
tiations in Object-Z. In [9] hierarchical real-time systems
have been formally modelled and verified using an extension
of Timed CSP called Stateful Timed CSP. Mainly they solved
the problem of verification with non-Zeroness assumption.
Additionally many researchers have proposed several frame-
works for constructing systems with self-adaptation ability.
In [10] different stages of self-adaptation has been identi-
fied as MAPE-K conceptual framework. According to [11],
feedback-control loop is an essential activity in any self-
adaptive system. In [12] an architectural model has been
presented for adaptivity, which divides change management,
component control and goal management into three differ-
ent levels. A software architecture-based approach has been
recommended in [13]-[15] for change management and
assessing the adaptation decisions. A Timed CSP based
approach for the specification and verification of embed-
ded distributed real-time systems has been proposed in [16],
but not for RTMAS. Multi-agent systems have been for-
mally specified and verified using modal mu-calculus and
Timed-Arc Petri-nets in [17] and [18]. In [19] a framework
for formal modelling of distributed self-adaptive systems
has been proposed called FORMS, which provides differ-
ent modelling elements and a set of relationships guiding
the design of self-adaptive software systems. Reference [20]
has formally modelled real-time systems using an exten-
sion of the Rebeca language. They used Structural Oper-
ational Semantics for modeling distributed systems with
temporal constraints. In [21] a new language named STeC
(an extension of process algebra) has been proposed for the
formal specification of location-trigger real-time systems.
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In [22] a multi-agent system approach has been presented
for the real-time operation of scheduling and demand man-
agement in microgrids. Reference [23] has presented a new
model-checker named MCMAS for the formal verification
of multi-agent systems. Their model checker can be used
to verify the epistemic, strategic and temporal properties of
interest for these multi-agent systems. Reference [24] has
presented a new combined model checking approach for
eliminating the problem of introducing new logic for the
verification of different aspects of multi-agent systems like
knowledge and time, knowledge and probability, real-time
and knowledge, etc. This will help to reduce the problem
of having different model checking tools targeting different
aspects of multi-agent systems. Reference [25] has proposed
timed automata based behavior specification and property
specification templates based on MAPE-K feedback loop
for the formal modeling of self-adaptive systems. However
their templates are not directly applicable to the multi-
agent system’s domain. Reference [26] has comprehensively
analyzed the self-adaptive software systems to tackle the
problem of assuring that the system provides its domain
functionality under uncertain conditions. Reference [27] pro-
posed an analytical framework for the architectural reason-
ing of self-adaptive systems. Their framework extended the
Architectural Reasoning Framework (eARF) to ensure that
the design complies to the requirements for single product
instance. It has been argued in [28] and [29] that the formal
methods should be used for the automated verification of
safety critical and real-time systems to ensure their correct
functioning.

However up to our knowledge currently we do not have
a precise vocabulary for the formal specification of key
architectural characteristics of self-adaptive real-time multi-
agent systems. Encompassing different perspectives of self-
adaptation into the real-time multi-agent systems would
help in the construction of such systems. The proposed
MAPE-K interfaces provides a conceptual design for the
system designer to integrate self-adaptation into any real-time
multi-agent system. For complex systems conceptual design
help to delegate responsibilities to different system entities
without the concern for the implementation details. A clear
distinction between the entities responsible for providing the
system’s domain functionality and entities responsible for the
self-adaptation would help in validating the system against
user requirements. In this paper we have proposed a set
of predefined interfaces for the provision of self-adaptation
in real-time multi-agent systems. The interfaces are based
on Monitor, Analyze, Plan and Execute phases of the
MAPE-K feedback loop. We formally specify our inter-
faces using Timed-Communicating Object-Z (TCOZ)
language.

The rest of this paper is divided as follows. In section 2
some preliminaries for MAPE-K feedback loop, TCOZ
language and ARTIS agent architecture are explained.
Section 3 describes the proposed interfaces and their for-
mal specification in TCOZ. In section 4 we demonstrate
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the application of our proposed interfaces using the
conveyor belt example. Section 5 concludes the

paper.

Il. PRELIMINARIES

A few terminologies have been described in this section that
will be used in the rest of the discussion for the specification
of the problem under analysis.

A. MAPE-K FEEDBACK LOOP

A self-adaptive system typically consists of a managed sys-
tem which provides the domain functionality and a feed-
back loop that deals with the architectural adaptations of
the system. Architecture-based adaptation requires a system
to interact with the environment, reason about its models
based on the stimulus received and then adapt itself. The
feedback loop is known as MAPE-K and it was proposed
in [10]. The MAPE represents Monitor, Analyze, Plan, and
Execute phase, whereas the K represents the models of the
system, its environment and adaptation goals. We refer the
reader to [10] for details concerning the MAPE-K feedback
loop.

B. ARTIS AGENT ARCHITECTURE

ARTIS agent architecture was proposed in [30] and it is an
extension of the blackboard model that has been modified to
work in environments with hard temporal constraints. This
agent guarantees that it will meet its temporal constraints
by the use of an off-line schedulability analysis. Agents
perception occurs through a set of sensors and the system’s
response is exhibited using a set of effectors. These per-
ception and action processes are real-time in nature. The
agent has two different categorization of processes namely
reflex process and a deliberative process. Every ARTIS agent
has a number of internal agents (In-agent) that provides the
domain functionality. Every In-agent is designed to solve a
particular problem. An In-agent is characterized as critical or
acritical. A critical In-agent has a period and a deadline and
the agent must perform its operations within those deadlines.
In other words it provides the minimum system functionality.
On the contrary acritical In-agent can utilize artificial intel-
ligence techniques to better achieve the system goal. Every
In-agent has two layers namely reflex layer and real-time
deliberative layer. When a task arrives for execution, the In-
agent checks the deadline if it can provide a response via a
real-time deliberative layer. The real-time deliberative layer
provides an improved response as compared to reflex layer,
hence it needs more time. The reflex layer only provides a
minimal quality response. For real-time environments most
of the In-agents are critical in nature. Each In-agent has a
set of beliefs comprising the domain knowledge relevant to
it. Each ARTIS agent has a Control Module that controls
the execution of all the In-agents that belongs to it. It is
divided into two sub-modules namely the Reflex server (RS)
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and the Deliberative server (DS). Reflex server controls the
execution of the tasks with critical temporal restrictions.
Deliberative server controls the execution of the deliberative
tasks.

C. TCOZ LANGUAGE

TCOZ is a formal specification language and was first pro-
posed in [31]. It is a assimilation of Object-Z and Timed
Communicating Sequential Processes (CSP). Object-Z incor-
porates object-oriented paradigm into the standard Z formal
specification language. It provides prevailing features for
recitation of complex data structures and their operations.
Incorporation of object-oriented paradigm improves the clar-
ity of formal specifications documents through enhanced
structuring. However Object-Z lacks the operators for deter-
mining the duration of the operations and assumes that all
the operations are atomic. Because of these limitations it
is intricate to use Object-Z for real-time concurrent sys-
tems modelling. Timed CSP is a real-time extension of
CSP notation and does not have significant modelling ele-
ments to encapsulate the state of a system. Hence both
Timed CSP and Object-Z supplement each other in their
perspicuity. The approach taken in TCOZ is to identify
the operation schemas with CSP processes that perform
only state update events. Non-terminating CSP processes
are represented by active classes in TCOZ. It also provides
special channel-based communications for inter-process
communications.

Ill. PROPOSED FORMAL MAPE-K INTERFACES

An overview of the proposed MAPE-K Interfaces is provided
in Figure 1. A TCOZ specification of the interfaces is pro-
vided along with.

<<interface>> <<interface>>
Monitor Analyze
Sense() GetData()
GetData() AnalyzeResources()
UpdateKnowledge() UpdateKnowledge()
Trigger() Trigger()

<<interface>> <<interface>>
Plan Execute
DevisePlanForUnsatisfied() AddResources()
DevisePlanForSatisfied() ReleaseResources()
Trigger() ExecutePlans()

FIGURE 1. Proposed MAPE-K interfaces.

The MonitorAgent will continuously perceive the envi-
ronment and after any pre-processing of data it will
update the models and trigger the next i-e AnalyzeAgent.
aAgent represents the AnalyzeAgent to whom this agent
will notify in case an event of interest occurs requiring
adaptation.
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— MonitorAgent

aAgent : AnalyzeAgent

__Sense’

senseAction : P Subsystem X

P State — P State
subsystem? : Subsystem

state’ = senseAction(subsystem?, state)

__GetDatd'
readAction : P ReflectionModel
x P State — P State

state’ = readAction(rModel, state)

__UpdateKnowledge'
writeAction : P State x
P ReflectionModel — P ReflectionModel

rModel = writeAction(state, rModel)

__Trigger’
triggerAction : P State x
AnalyzeAgent — AnalyzeAgent

aAgent’ = triggerAction(state, aAgent)

Sense = [subsystem? : Subsystem] e Sense’
— SKIP

GetData = GetData' — SKIP
UpdateKnowledge = UpdateKnowledge' —
SKIP

Trigger = Trigger’ — SKIP

MAIN = pT e Sense; GetData;
UpdateKnowledge; Trigger; T

The AnalyzeAgent will make decisions regarding whether
the adaptations are needed or not. In case an adaptation
is needed it will trigger the PlanAgent. pAgent represents
the PlanAgent to whom this agent will notify to plan for
the necessary adaptations. requiredResources represent the
resources that this agent needs to complete its assigned tasks.
availableResources are the resources that have been assigned
to this agent. At anytime the attribute rRequirement repre-
sents the situation of the resources for this agent. Resource
requirement can be divided into four classes, one in which
the system does not require additional resources, second in
which the system has more resources than it needs, third in
which the system needs more resources and fourth in which
it is not possible to get a predictable total of the system
resources.
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ResourcesRequirement ::= SATISFIED|
OVERSATISFIED|\UNSATISFIED|\UNDETERMINED

__AnalyzeAgent

pAgent : PlanAgent
requiredResources : IP Resource
availableResources : P Resource
rRequirement : ResourcesRequirement

—INIT
rRequirement = UNDETERMINED

__GetDatd'
readAction : P ReflectionModel
x P State — P State

state’ = readAction(rModel, state)

__AnalyzeResources’
ArequiredResources
AavailableResources

__UpdateKnowledge'
writeAction : P Statex
P ReflectionModel — P ReflectionModel

rModel’ = writeAction(state, rModel)

__Trigger'
triggerAction : P State x PlanAgent
— PlanAgent

aAgent’ = triggerAction(state, pAgent)

GetData = GetData' — SKIP
AnalyzeResources = [requiredResources?,
availableResources : Resource] o
((AnalyzeResources’ \ rRequirement

= SATISFIED)

O(AnalyzeResources' N\ rRequirement
= UNDERSATISFIED))
O(AnalyzeResources' A rRequirement
= OVERSATISFIED)) — SKIP
UpdateKnowledge = UpdateKnowledge'
— SKIP

Trigger = Trigger’ — SKIP

MAIN = ;4 T o GetData;
AnalyzeResources; UpdateKnowledge;
Trigger; T

The PlanAgent will prepare a set of tasks/actions that
are required for the adaptation and then it will trigger the
ExecuteAgent. It basically plans two type of actions. In case
the system resources are unsatisfied it creates plans to add
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the resources to the system. On the contrary if the system
resources are over satisfied it creates plans to release the
extraresources. eAgent represents the ExecuteAgent to whom
this agent will notify to execute the actions required for
the necessary adaptations. In case the resources are under-
satisfied, a set of plan actions are devised in order to add the
resources to the managed system. Similarly in case of over-
satisfied, a set of plan actions are devised in order to release
the extra resources of the managed system. We define a new
type Plan which is a collection of tasks.
Plan := P Task

__PlanAgent

eAgent : ExecuteAgent
rRequirement : ResourcesRequirement

—INIT
rRequirement = UNDETERMINED

__DevisePlanForUnsatisfied
rRequirement? = UNSATISFIED
plans? : Plan

cIplans

__DevisePlanForOversatisfied'
rRequirement? = OVERSATISFIED
plans? : Plan

cplans

__Trigger'
triggerAction : P State X ExecuteAgent
— ExecuteAgent

eAgent’ = triggerAction(state, eAgent)

DevisePlanForUnsatisfied = [rRequirement

: ResourcesRequirement; plans? : Plan] e
(DevisePlanForUnsatisfied’ N rRequirement
= UNSATISFIED) o ¢?(plans) — SKIP
DevisePlanForOversatisfied = [rRequirement
: ResourcesRequirement; plans? : Plan] e
(DevisePlanForOversatisfied' N\ rRequirement
= OVERSATISFIED) e c?(plans) — SKIP
Trigger = Trigger’ — SKIP

MAIN = u T e (DevisePlanForUnsatisfied
ODevisePlanForOversatisfied); Trigger; T

The ExecuteAgent is responsible for executing the adap-
tation actions of the generated plans. There are three
phases in an execute behavior i-e PreProcess, ExecutePlan
and PostProcess. In PreProcess the agent acquires all
the resources that are required for the adaptation goals.
Once all the pre-processing has been completed, the
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agent performs ExecutePlan to perform the necessary
adaptations. After all the plans have been executed the
agent performs PostProcess to release all the acquired
resources.

— ExecuteAgent

InAgent

requiredResources : P Resource
availableResources : P Resource
rRequirement : ResourcesRequirement

__INIT
rRequirement = UNDETERMINED

__AddResources’
newResources? P Resource
ArequiredResources
AavailableResources

Aalloc

availableResources’ = availableResources
U{newResources}
requiredResources’ = requiredResources
\{newResources}

__ExecutePlans’
plans? : Plan
execute : Plan x P Statex

P ReflectionModel — P ReflectionModel

plans # @
V(plan € plans N execute(plan, state,
rModel))

__ReleaseResources’
extraResources? P Resource
AavailableResources
Aalloc

availableResources’ = availableResources
\{extraResources}

PreProcess = [newResources? : Resource|
o (AddResources’ N rRequirement =
UNSATISFIED) — SKIP

ExecutePlans = [plans? : Plan]

e ExecutePlans’ — SKIP

PostProcess = [extraResources? : Resource]
o (ReleaseResources’ N rRequirement =
OVERSATISFIED) — SKIP

MAIN = 1 T e PreProcess; ExecutePlans

; PostProcess; T

A model is a representation describing entities of interest
in the physical or virtual world. Concrete models can have
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different types of representations. Models are defined as
generic constant.

— [Model[Representation]]
rep : P Representation

rep # &

A domain model contains representations of entities
necessary for the provision of required features. Here
EnvironmentRepresentation specifies the attributes of the
environment. Domain model is defined as a passive class. The
channel c is used for communication with any active class.
The domain model here represents the K (Knowledge) part
of the MAPE-K feedback loop.

— DomainModel
Model[EnvironmentRepresentation)
map : P Attribute <>
EnvironmentRepresentation
envr : chan

dommap C {attrs : P Attribute

| attrs C envr?.attributes}

ranmap = {r : EnvironmentRepresentation
| r € rep}

IV. APPLICATION OF MAPE-K INTERFACES

In this section we explain the application of our proposed
MAPKE-K interfaces. We have chosen ARTIS agent as
described in section 2 for this purpose.

A. CONVEYOR BELT SYSTEM

In this section we will demonstrate the working of conveyor
belt system as described in [30]. The system under consid-
eration is a control system for a conveyor belt in a glazed
tile factory. A conveyor belt moves glazed tiles from left to
right at the configured speed. There is a robot arm at the
start of the conveyor belt on the left side whose job is to
place glazed tiles on the conveyor belt. The speed of the
tiles movement is adjustable. An optical sensor equipped
with an infrared system and a video camera will detect the
faulty glazed tiles. A robot arm adjacent to the optical sensor
will remove the faulty tiles. Another robot arm at the right
side of the conveyor belt is responsible for picking the non-
faulty glazed tiles. Analysis of the glazed tiles is the main
goal of the system. Main features of the system are defined
below.

o The glazed tiles are placed on the conveyor belt at a pre-
defined speed. The robot arm responsible for this can be
configured to change the number of tiles placed on the
conveyor belt per unit time.

o The optical sensor will be responsible for analyzing the
quality of the glazed tile passing in front of it within the
temporal constraints.

o The robot arm will remove a faulty glazed tile from
the conveyor belt. However if the deadline allows
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(system throughput is low) it will classify the faulty
glazed tile into three different categories. These cate-
gories are first quality, second quality, or garbage.

o The remaining non-faulty glazed tiles are removed from
the conveyor belt by a robot arm.

o The system throughput can be increased or decreased
by changing the conveyor belt speed. This will require
adaptive behavior from all the working components of
the system.

The system will utilize three ARTIS agents namely
PlacingARTISAgent, WorkingARTISAgent and PickingARTI-
SAgent. The temporal restrictions of these ARTIS agents
needs to be evaluated at the system design time. An off-line
schedulability test will ensure that all the agents meet their
deadlines. The PlacingARTISAgent will be responsible for
placing tiles on the conveyor belt at a defined speed. It will
contain only one In-agent namely PlacingRobotArmInAgent
which will be in charge of placing the tiles on the conveyor
belt. Its reflex action is to place the tiles on the conveyor
belt at the defined speed. Its cognitive action is to try to
increase the system throughput by coordinating with the
In-agents of other ARTIS agents. The WorkingARTISAgent
will be responsible for removing the faulty tiles from the
conveyor belt and categorizing the faulty tiles. It will con-
tain two In-agents namely WorkingOpticalSensorlnAgent
and WorkingRobotArmInAgent. The WorkingOpticalSensor
InAgent will examine the tiles and store its visual pattern in
a shared memory. The visual pattern can be in the form of
an image or video. Its reflex action is to get a visual pattern
of the tile in the form of an image based on the infrared.
Its cognitive action is to get a visual pattern of the tile in
the form of video by means of a video camera. The Work-
ingRobotArmInAgent will use the visual pattern obtained by
the optical sensor In-agent and evaluate the tile’s quality.
Its reflex action is to detect the faulty tiles and remove
them from the conveyor belt. Its cognitive action is to cat-
egorize the faulty tiles according to the first quality, sec-
ond quality or garbage. The PickingARTISAgent will be
responsible to pick the non-faulty tiles from the conveyor
belt at a defined speed. It will contain only one In-agent
namely PickingRobotArmInAgent. The PickingRobotArml-
nAgent will pick the tiles from the conveyor belt. Since
this agent cannot increase the throughput itself like placing
ARTIS agent so it will not have the cognitive action. Its reflex
action is to pick tiles from the conveyor belt at a defined
speed.

B. APPLICATION OF PROPOSED MAPE-K INTERFACES

TO CONVEYOR BELT SYSTEM

Conveyor belt system explained in the previous section is an
example of a real-time self-adaptive multi-agent system. The
system is real-time because of the temporal restrictions for
each agent to process the tiles and it is self-adaptive as each
agent has to reorganize itself based on the system parameters
like throughput. Hence a behavior feature of adaptivity is
necessary for the ARTIS agent to allow the system to react
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Conveyor Belt System
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FIGURE 2. Complete overview of the conveyor belt system.

to the environmental changes. Figure-2 provides a complete
overview of the conveyor belt system. For brevity we will
not provide the TCOZ specification of the Monitor, Analyze,
Plan and Execute agents again. We formally specify the con-
veyor belt system by individually specifying the entities in
TCOZ specification. First we give the type definitions and
the constant definitions.
TileType ::= UN_IDENTIFIED|FIRST _QUALITY |
SECOND_QUALITY |FAULTY |
NON _FAULTY
TileStatus ::= ON_BELT |GRASPED|
OpticalSensorStatus ::= RECOGNIZE |IDLE
WorkingAgentStatus ::= ANALYZE|IDLE
RobotArmStatus ::= HOLDING|EMPTY
ConveyorBeltStatus ::= MOVING|STOPPED
SystemThroughput ::= LOW |HIGH
TaskDuration ::= MAX |MIN
We define the conveyor belt system’s attributes and pro-
cesses that will be used further in the discussion. Conveyor
belt processes represents the different ongoing activities and
the communication between the agents.
conveyor_belt_attributes == {GlazedTile, PlacingAR-
TISAgent, PlacingRobotArmInAgent, WorkingARTISAgent,
WorkingOpticalSensorlnAgent, WorkingRobotArmInAgent,
PickingARTISAgent, PickingRobotArmInAgent, Conveyor-
Belt}
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conveyor_belt_processes == {ReflexPlaceTile, Delib-
erativePlaceTile, ReflexRecognize, DeliberativeRecognize,
ReflexAnalyze, DeliberativeAnalyze, ~RemoveFaultyTile,
ReflexPickTile, ReflexPickTile, Move, Place, Stop, Start}

A conveyor belt environment is an environment with the
conveyor belt attributes and processes.
__ ConveyorBeltEnvironment

Environment

attributes C conveyor_belt_attributes
processes C conveyor_belt_processes

We consider the following Conveyor belt environment rep-
resentations.
Tile, PlacingAA, PlacingRAI, WorkingAA,
Working OSI, WorkingRAI, PickingAA,
PickingRAI, CBelt, Ping,
Echo : EnvironmentRepresentation

cb_environment_representations == {Tile, PlacingAA,
PlacingRAI,  WorkingAA,  WorkingOSI,  WorkingRAI
PickingAA, PickingRAI, CBelt, Ping, Echo}

Environment representations and attribute sets are
mapped as

cb_attribute_representation_mapping == { GlazedTile
> Tile, PlacingARTISAgent, PlacingRobotArmInAgent,
WorkingARTISAgent, WorkingOpticalSensorInAgent,

VOLUME 4, 2016



A. Qasim and S. A. R. Kazmi: MAPE-K Interfaces for Formal Modeling of Real-Time Self-Adaptive Multi-Agent Systems

IEEE Access

WorkingRobotArmInAgent, PickingARTISAgent,
RobotArmInAgent, ConveyorBelt }
A conveyor belt model is defined as
— ConveyorBeltModel
Model|EnvironmentRepresentation)
mapping : P Attribute <
EnvironmentRepresentation
c : chan

Picking-

reps C cb_environment_representations
dommap C {attrs : P Attribute

| attrs C c?.attributes}

ran map = {r : EnvironmentRepresentation
| r € reps}

The specification below introduces the features and oper-
ations of a glazed tile. A glazed tile has a unique identifier
position, status, type and identifier of the conveyor belt on
which it is placed. There are two operations defined for a
glazed tile, to change its position and to change its status.
The id of a part cannot be changed. It is defined as a passive
class.

__GlazedTile

id: N

type : TileType
position : Point
status : TileStatus
cbld : ConveyorBelt

_INIT

id# &

type = UN_IDENTIFIED
cbld # &

_ ChangePosition __
A(position)
newPosition? : Point

position' = newPosition?

_ ChangeStatus ___
A(status)
newStatus? : TileStatus

status’ = newStatus?

_ChangeType

Al(type)
newType? : TileType

type' = newType?

Before specifying the agents we introduce an abstract type
for the coordinating agents. Each agent has two type of
roles.
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Role ::= master | slave
The coordination protocol used by the agents is defined
below.
MasterSlave
role : Role

Now we define the coordination model used by the agents.
Partners represent the name of the agents with which this
agent is currently communicating with. There can be only
one partner of a slave, which is its master. For master, its
partners are its slaves. NeighborOrganizations corresponds
to the masters of the neighboring organizations.

OrganizationPartners
partners : Pld
neighborOrganizations : P Id

To represent the messages exchanged between the
agents, we define a message type. It contains the iden-
tifier of the sender, the receiver and the actual message
content.

MasterSlave
to: Ild

from : Id
content : Content

The coordination mechanism used by the agents is defined
below. The function senderOrReceiver means either one of
the sender or the receiver of the channel.

— DynamicAgentOrganizations
cbsProtocol : MasterSlave
cbsModel : OrganizationPartners

Vp : cbsModel.partners 31 : chan e
senderOrReceiver(l) = p A

Y org : cbsModel.neighborOrganizations e
31 : chan e senderOrReceiver(l) = org

The PlacingARTISAgent will be responsible to place the
tiles on the conveyor belt at a defined speed. It will contain
only one In-agent namely robot arm In-agent.

—PlacingARTISAgent

ARTISAgent

id: Id

agent : PlacingRobotArmInAgent
cbCoordnationMechanism :
DynamicAgentOrganizations

_INIT
distance = MIN_DISTANCE

Each PlacingRobotArmInAgent is in-charge of placing the
tiles on the conveyor belt one by one. The attribute position
represents the position of the RobotArm. Its reflex action is
to place the tiles on the conveyor belt at a defined speed.
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Its deliberative action is to try to increase the system
throughput by coordinating with the In-agents of other
ARTIS agents. In operations DeliberativePlaceTile and
ReflexPlaceTile the attributes 6 and throughput are inversely
proportional to each other. When throughput will be high the
time taken to place a glazed tile on the conveyor belt will be
minimum and vice versa.

__PlacingRobotArmInAgent

InAgent

id: Id

belt : ConveyorBelt
cbCoordnationMechanism :
DynamicAgentOrganizations
position : N

throughput : SystemThroughput
status : WorkingAgentStatus
armstatus : RobotArmStatus

_ReflexPlaceTile __
tile? : GlazedTile

0 = MAX
throughput = HIGH

_DeliberativePlaceTile
tile? : GlazedTile

0 = MIN
throughput = HIGH

_INIT
status = IDLE

_ChangeStatus ___
A(status)

status’ = if status = ANALYZE
then IDLE

else if status = IDLE

then ANALYZE

—ChangeSpeed
A(speed)
newSpeed? : N

speed’ = newSpeed?

ReflexPlaceTile = [armstatus = HOLDING
A status = IDLE| A [tile? :

Glazed_Tile | tile.position = position

A tile? status = GRASPED] o
ChangeStatus N tile?.ChangePosition
[old_position/new_position] A

[newst? : TileStatus | newst? = ON_BELT)
o tile?.ChangeStatus ® § = MAX

— SKIP

DeliberativePlaceTile = [armstatus =
HOLDING A status = IDLE] A\
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[tile? : Glazed_Tile | tile.position =
position A tile?.status = GRASPED)] o
ChangeStatus N tile?.ChangePosition
[old_position/new_position] A

[newst? : TileStatus | newst? = ON_BELT)
o tile?.ChangeStatus  § = MIN

— SKIP

MAIN = u T o (ReflexPlaceTile
ODeliberativePlaceTile); T

The WorkingARTISAgent will be responsible for remov-
ing the faulty tiles from the conveyor belt and categorizing the
faulty tiles. It will contain two In-agents namely WorkingOp-
ticalSensorInAgent and WorkingRobotArmInAgent.

_ WorkingARTISAgent

ARTISAgent

id: Id

agent : WorkingRobotArmInAgent
agent : WorkingOpticalSensorIlnAgent
cbCoordnationMechanism :
DynamicAgentOrganizations

_INIT
distance = MIN_DISTANCE

The WorkingOpticalSensorInAgent will examine the tiles
and store its visual pattern in a shared memory. The visual
pattern can be in the form of an image or video. Its reflex
action is to get a visual pattern of the tile in the form of
an image based on infrared. Its cognitive action is to get a
visual pattern of the tile in the form of video by means of a
video camera. Its attribute status is used to indicate whether
the agent is currently analyzing a tile or is idle. Initially, it is
idle but when it is analyzing a tile, its status changes from
IDLE to RECOGNIZE.

— WorkingOpticalSensorInAgent

InAgent

id: Id

status : OpticalSensorStatus
¢ : chan

position : N
cbCoordnationMechanism :
DynamicAgentOrganizations

_INIT
status = IDLE

_ReflexRecognize' _
A(status)

tile? : GlazedTile

image! : IMAGE

tile? .position = self .position
status = IDLE

status’ = RECOGNIZE
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_DeliberativeRecognize’'
A(status)

tile? : GlazedTile
video! : VIDEO

tile? position = self .position
status = IDLE
status’ = RECOGNIZE

_Idle
A(status)
newStatus? : OpticalSensorStatus

status = RECOGNIZE
status' = IDLE

ReflexRecognize = [tile? : GlazedTile
; image! : IMAGE) e ReflexRecognize’
— cl(image) — SKIP
DeliberativeRecognize = [tile? :
GlazedTile; video! : VIDEO] e
DeliberativeRecognize' —

c!(video)

— SKIP

MAIN = T e (ReflexRecognize

O DeliberativeRecognize); T

The WorkingRobotArmInAgent will use the visual pattern
obtained by the WorkingOpticalSensorInAgent and evaluate
the tile’s quality. Its reflex action is to detect the faulty tiles
and remove them from the conveyor belt. Its cognitive action
is to categorize the faulty tiles according to the first quality,

second quality or garbage.

— WorkingRobotArmInAgent

InAgent

id: Id

status : WorkingRobotArmStatus
position : N

c : chan
cbCoordnationMechanism :
DynamicAgentOrganizations

_INIT
status = IDLE

_DeliberativeAnalyze'
A(status)

video? : VIDEO

type! : TileType

status = IDLE
status’ = ANALYZE

type! = tile?.type
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_ReflexAnalyze' __
A(status)
image? : IMAGE
type! : TileType

status = IDLE
status’ = ANALYZE
type! = tile? .type

_ChangeStatus ___
A(status)

status’ = if status = ANALYZE
then IDLE

else if status = IDLE

then ANALYZE

_Idle
A(status)
newStatus? : WorkingRobotArmStatus

status = ANALYZE
status’ = IDLE

ReflexAnalyze = [image? : IMAGE; type!
: TileType] o ReflexAnalyze' —

c!(type) — SKIP

DeliberativeAnalyze = [video? :

VIDEO; type! : TileType] o
DeliberativeAnalyze' — c!(type)

— SKIP

RemoveFaultyTile = [status = IDLE)]

A [tile? : Glazed_Tile | tile? .position

# position A tile? .status = ON_BELT]

e ChangeStatus N tile?.ChangePosition
[position/new?] A [newst? : TileStatus

| newst? = GRASPED] e tile?.ChangeStatus
— SKIP

MAIN = uT e (ReflexAnalyze

O DeliberativeAnalyze

O RemoveFaultyTile); T

__ PickingARTISAgent

The PickingARTISAgent will be responsible to pick the
non-faulty tiles from the conveyor belt at a defined speed.
It will contain only one In-agent namely PickingRobotArmli-

ARTISAgent

id: Id

agent : PickingRobotArmInAgent
cbCoordnationMechanism :
DynamicAgentOrganizations

_INIT
distance = MINDISTANCE
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The PickingRobotArmInAgent is in charge of pick-
ing the tiles from the conveyor belt. Since this agent
cannot increase the throughput like placing agent so it
will not have the cognitive action. Its reflex action is
to pick the tiles from the conveyor belt at a defined
speed.

__PickingRobotArmInAgent

InAgent

id: Id

belt : ConveyorBelt

position : N

throughput : SystemThroughput
status : WorkingAgentStatus
armstatus : RobotArmStatus
cbCoordnationMechanism :
DynamicAgentOrganizations

_DeliberativePickTile
tile? : GlazedTile

0 = MIN
throughput = HIGH

_INIT
status = IDLE

_ReflexPickTile
tile? : GlazedTile

0 = MAX
throughput = HIGH

_ChangeStatus ____
A(status)

status’ = if status = ANALYZE
then IDLE

else if status = IDLE

then ANALYZE

_ChangeSpeed
A(speed)
newSpeed? : N

speed’ = newSpeed?

DeliberativePickTile = [status = EMPTY|
A [tile? : Glazed_Tile | tile? .position

# position A tile? .status = ON_BELT) o
ChangeStatus N tile?.ChangePosition
[position/new?] A [newst? : TileStatus

| newStatus? = GRASPED)] e tile?
.ChangeStatus ® § = MAX — SKIP
ReflexPickTile = [status = EMPTY| A
[tile? : Glazed_Tile | tile? .position

# position A tile? .status = ON_BELT) o
ChangeStatus A tile?.ChangePosition
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[position/new?] A [newst? : TileStatus
| newStatus? = GRASPED)] e tile?
.ChangeStatus ® 6 = MIN — SKIP
MAIN = u T e (ReflexPickTile
ODeliberativePickTile); T

Every conveyor belt is of finite length and has a distinct
start and end point. The status of the conveyor belt indicates
whether it is moving or stopped. Its state invariant ensures
that no two glazed tiles on the conveyor belt occupy the same
position. Also it ensures that the position of every glazed tile
on the conveyor belt is within its region and their status is
ON BELT. There are four operations defined for a conveyor
belt i-e Start, Stop, Move and Place. The operations Start
and Stop denote the status when the conveyor belt is started
and is stopped respectively. Move operation specifies the con-
straints to move a conveyor belt through a distance dist and
asserts that the status of the conveyor belt should be MOVING
when it is invoked. The Move operation collectively moves all
glazed tiles on the belt. Due to the movement, some glazed
tiles may accidentally go out of the conveyor belt (indicated
by out! in Move). Finally, the Place operation defines the
constraints for placing a glazed tile on the conveyor belt.
It asserts that the id of the new glazed tile should not match
with the id of any other glazed tile on the conveyor belt and
every new glazed tile is placed at the start of the conveyor
belt.

_ ConveyorBelt

startofbelt - N

endofbelt : N

tiles : iseq GlazedTile
status : ConveyorBeltStatus

_INIT
tiles = ()
status = STOPPED
Vi,j: 1. #tiles ®
(i #j = tile(i).id # tiles(j).id N
tile(i).position # tiles(j).position) N
tiles(i).status = ONBELT A
IsOnBelt(tiles(i).position)
IsOnBelt(start_of _belt)
A IsOnBelt(end_of _belt)
start_of _belt # end_of _belt

_Move'

Altiles)

distance? : R

outofbelt! : iseq GlazedTile

status = MOVING

tiles = tiles’ ™ outofbelt!

Vi:l.#tiles’ o (3, : 1..#tiles

| tiles’(i).id = tiles(j).id e tiles' (i).position
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= tiles(j).position + distance?

A IsOnBelt(tiles’ (i).position))

Vtile : GlazedTile | tile € ran outofbelt!
o —(IsOnBelt(tile.position))

_ Start’
A(status)

status = STOPPED
status’ = MOVING

_Stop’
A(status)

status = MOVING
status’ = STOPPED

_Place’
Altiles)
newTile? : GlazedTile

newTile?.id & {tile : GlazedTile |
tile € tiles e tile.id}

tiles' = ((p tile : Glazed_Tile |
tile.id = newTile?.id N tile.status
= ONBELT A tile.position

= start_of _belt)) " tiles

Move = [distance? : R; outofbelt! :
iseq GlazedTile] « Move' — SKIP
Place = [newTile? : GlazedTile] o
Place’ — SKIP

Start = Start’ — SKIP

Stop = Stop’ — SKIP

MAIN = T o (MoveOPlaceOStart
OStop); T

V. CONCLUSION

In this paper we have proposed a set of interfaces for the for-
mal modelling of self-adaptive real-time multi-agent systems.
We proposed four set of interfaces, each targeting four phases
of the MAPE-K feedback loop namely Monitor, Analyze,
Plan and Execute. The multi-agent systems paradigm has
been in use for the ubiquitous and pervasive environments.
The dynamism in the execution of such systems has led
to the development of self-adaptive systems. Though there
exists many different frameworks for self-adaptive multi-
agent systems but according to our knowledge no work has
been done for the formal modelling of real-time multi-agent
systems with the ability of self-adaptation. Hence there is
a dire need of formal vocabulary that can be used for the
conceptual design of any real-time multi-agent system with
self-adaptation. We used TCOZ for the formal specifica-
tion of our proposed interfaces and the major advantage
was that we can utilize the active class concept of TCOZ
to express the non-terminating behavior of the autonomous
agents. The provision of communication channels in TCOZ
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greatly simplified the class definitions and class referencing
leading to their enhanced modularity. For future work we
intend to overcome the limitations of our research and provide
detailed specifications for managed system components and
self-adaptive units that will make a complete self-adaptive
system. We also intend to work on the issues of communi-
cation between multiple self-adaptive systems using diverse
agent platforms. Specifically issues related to the agent com-
munication languages for diverse agents with self-adaptive
ability.
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