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ABSTRACT With the research on implementing a universal quantum computer being under the
technological spotlight, new possibilities appear for their employment in wireless communications systems
for reducing their complexity and improving their performance. In this treatise, we consider the downlink
of a rank-deficient, multi-user system and we propose the discrete-valued and continuous-valued quantum-
assisted particle swarm optimization (PSO) algorithms for performing vector perturbation precoding, as
well as for lowering the required transmission power at the base station (BS), while minimizing the expected
average bit error ratio (BER) at the mobile terminals. We use the minimum BER criterion. We show that the
novel quantum-assisted precoding methodology results in an enhanced BER performance, when compared
with that of a classical methodology employing the PSO algorithm, while requiring the same computational
complexity in the challenging rank-deficient scenarios, where the number of transmit antenna elements at the
BS is lower than the number of users. Moreover, when there is limited channel state information feedback
from the users to the BS, due to the necessary quantization of the channel states, the proposed quantum-
assisted precoder outperforms the classical precoder.

INDEX TERMS Channel quantization, computational complexity, Dürr-Høyer algorithm, Grover’s quantum
search algorithm, multiuser transmission, orthogonal frequency division multiplexing, particle swarm
optimization, quantum computing, vector perturbation.

LIST OF ABBREVIATIONS
AE Antenna Element
AWGN Additive White Gaussian Noise
BD Block Diagonalization
BS Base Station
CF Cost Function
CFE Cost Function Evaluation
CIR Channel Impulse Response
CoMP Coordinated Multi-Point
cPSO continuous-valued Particle Swarm

Optimization
cQPSO continuous-valued Quantum-assisted

Particle Swarm Optimization
CSI Channel State Information
DHA Dürr-Høyer Algorithm
dPSO discrete-valued Particle Swarm

Optimization

dQPSO discrete-valued Quantum-assisted
Particle Swarm Optimization

DS-CDMA Direct Sequence - Code Division Multiple
Access

EVA Extended Vehicular A
FD-CHTF Frequency-Domain CHannel Transfer

Function
FDD Frequency Division Duplexing
IDMA Interleave Division Multiple Access
LLR Log-Likelihood Ratios
MAP Maximum A Posteriori
MBER Minimum Bit Error Ratio
MC-IDMA Multi-Carrier Interleave Division Multiple

Access
MIMO Multiple-Input Multiple-Output
MMSE Minimum Mean Square Error
MUD Multi-User Detection
MUT Multi-User Transmission
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NOMA Non-Orthogonal Multiple Access
OFDMA Orthogonal Frequency Division Multiple

Access
OMA Orthogonal Multiple Access
QPSK Quadrature Phase Shift Keying
QPSO Quantum-assisted Particle Swarm

Optimization
QSA Quantum Search Algorithms
SDMA Spatial Division Multiple Access
SISO Soft-Input Soft-Output
SNR Signal to Noise Ratio
TDD Time Division Duplexing
VP Vector Perturbation
ZF Zero Forcing

I. INTRODUCTION
In Orthogonal Multiple Access (OMA) systems, such as
the traditional Direct Sequence - Code Division Multi-
ple Access (DS-CDMA) [1], where each user has been
allocated a unique, orthogonal spreading sequence, or
in conventional Orthogonal Frequency Division Multiple
Access (OFDMA) [2], where each user has been allocated
a frequency band including multiple, but unique, orthog-
onal subcarriers, the search for a precoding matrix and
the employment of vector perturbation is simple. The rea-
son is that orthogonal multiple access systems are usually
under-loaded systems, since the number of transmit Antenna
Elements (AE) at the Base Station (BS) is typically higher
than the number of receive AEs at the single user supported
on a specific frequency, time or code resource element. Due
to this fact, the employment of linear precoding techniques at
the BS leads to satisfactory performance.

Orthogonal multiple access systems exhibit limited
throughput, since different users are not allowed to share the
same resources. The concept of Non-Orthogonal Multiple
Access (NOMA) systems [3]–[5] allows more users to be
served at the same time, while using the same resources,
resulting in an increased normalized system throughput.
Examples of NOMA systems include specific OFDMA
arrangements, which allow multiple users to simultaneously
activate the same subcarriers [6], [7] and Spatial Divi-
sion Multiple Access (SDMA) systems, where the users
are separated based on their spatial signature [8]. Further-
more, classic DS-CDMA systems relying on non-orthogonal
m-sequence spreading codes, or Interleave Division Multi-
ple Access (IDMA) systems, where the users are separated
according to their unique interleaving sequences [9]–[11]
also belong to the family of NOMA systems. However, more
sophisticated signal processing techniques may have to be
adopted both in the uplink and downlink of NOMA systems,
for signal detection or signal preprocessing, respectively,
since the resultant systems may be rank-deficient, because
the number of AEs at the BS may be lower than the sum
of AEs of all users that simultaneously share the same
resources.

In this contribution, we focus our attention on the downlink
of a communications system, where the BS has to convey
information to the users supported. The BS preprocesses each
user’s symbols, based on the number of transmit AEs and
on the Channel State Information (CSI) between a transmit
AE at the BS and a receive AE of a user. The Multi-User
Transmission (MUT) regime of the downlink may be con-
sidered as the counterpart of Multi-User Detection (MUD)
in the uplink [12]. When Time Division Duplexing (TDD)
is used, the same frequency band is exploited for both the
uplink and the downlink communication between the BS and
the users, while the uplink and the downlink are separated
by having been allocated different time slots. Therefore, the
BS may estimate the CSI of all the required channels that will
be used for the downlink. On the other hand, when Frequency
Division Duplexing (FDD) is used, different frequency bands
are allocated for the uplink and downlink. Since in this case
the BS is unable to estimate the CSI, the users have to transmit
the estimated CSI of the downlink back to the BS through
feedback channels. In [13] generalized Zero Forcing (ZF)
and Minimum Mean-Square Error (MMSE) channel inver-
sion algorithms are proposed for multi-user Multiple-Input
Multiple-Output (MIMO) systems, in order to compensate for
the degraded performance of the Block Diagonalization (BD)
technique in imperfect channel estimation scenarios. How-
ever, linear preprocessing methods invoked for rank-deficient
systems exhibit a degraded performance, necessitating the
employment of sophisticated non-linear algorithms. Spread-
ing codes may be allocated to the users for exploiting the
multiple access interference [14], [15]. Other downlink pre-
coders, which exploit the interference between the downlink
users for enhancing the Signal to Interference-plus-Noise
Ratio (SINR) at the users supported in non-orthognal systems
have been proposed in [16]–[20].

In [21], the continuous-valued Particle Swarm
Optimization (cPSO) algorithmwas employed for finding the
optimal precoding matrix, based on the Minimum Bit Error
Ratio (MBER) criterion. A discrete-valued PSO (dPSO)
algorithm was employed in the context of Vector Perturba-
tion (VP) [22]–[28] in [29], for finding the optimal MBER
vector for perturbing the symbol vector, while keeping the
transmission power under a certain threshold. The same
authors in [30] proposed a preprocessingmethodology, where
a dPSO is initially used for VP given a precoding matrix
found with the aid of linear ZF or MMSE methods. Having
obtained the perturbation vector, a cPSO is employed for fine-
tuning the perturbed and preprocessed vector, again in terms
of the MBER criterion, while satisfying the transmission
power constraint. Table 1 summarizes selected contributions
in the field of multi-user transmission preprocessing with the
aid of vector perturbation.

WithMoore’s law expected to enter the quantum domain in
2017 [31], research focusing on creating a universal quantum
computer has intensified. Quantum computing [32]–[34]
is expected to replace specific technological applications.
In this treatise, we focus on the employment of
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TABLE 1. Selected contributions in vector perturbation - aided multi-user transmission.

Quantum Search Algorithms (QSA) [35] in a MUT applica-
tion. Grover’s QSA [36], [37] succeeds in finding a specific
entry in an unsorted database of size N with ∼100% prob-
ability of success, by querying the database O(

√
N ) times,

as long as the number of times the searched entry appears in
the database is known. Boyer et al. improved Grover’s QSA
in [38], by proposing an algorithm that finds the specific
entry in a database after O(

√
N ) queries, even when the

number of times the entry is included in the database is
unknown.Moreover, Dürr andHøyer in [39] presented a QSA
for finding the minimum entry in a database after O(

√
N )

queries, without any other prior knowledge, except for the
database’s size. In [8], we proposed a method for reducing
the complexity of the Dürr-Høyer Algorithm (DHA), solely
based on the database’s size and the algorithm’s statistics,
which may be obtained offline. In [7], [8], [11], and [40], we
have presented quantum-assisted multi-user detectors based
on the DHA and we have employed them in the uplink of
wireless communications systems for performing optimal
coherent and non-coherent hard-input hard-output quantum-
assisted MUD, as well as soft-input soft-output quantum-
assisted MUD.
Against this background, our novel contributions are:
1) We propose a heuristic Quantum-assisted Particle

Swarm Optimization (QPSO) algorithm, by incorpo-
rating the DHA in the cost function evaluation process
of each generation.We show the suitability of theQPSO
for conducting search both in discrete-valued, as well
as in continuous-valued search spaces.

2) We employ the QPSO in the context of MUT
and we conclude that the QPSO achieves better
performance than the PSO for the same complexity.

Similarly, we demonstrate that the QPSO achieves
equivalent performance to the PSO, while requiring
lower computational complexity. The discrete-valued
QPSO (dQPSO) may replace the dPSO in the VP
search, while the continuous-valued QPSO (cQPSO)
may be used instead of the cPSO for either improv-
ing the achievable performance, or for reducing the
complexity.

3) We use the MBER criterion for optimizing the prepro-
cessed transmitted signal in the downlink of a NOMA
system. More precisely, we investigate a rank-deficient
Multi-Carrier IDMA (MC-IDMA) system, where mul-
tiple users are allowed to share the same subcarriers
during the same time slots, while each user’s data
is interleaved with the aid of a different interleaving
sequence. The powerful MBER criterion [41]–[43]
uses a more complex cost function than the MMSE
criterion, hence requiring the powerful parallel search
technique conceived in this treatise. At the same time, it
yields an improved performance, since it directly leads
to the multi-level vector that minimizes the BER instead
of the mean square error [21], [44], [45].

4) When FDD is used, the mobile users send quantized
versions of the estimated CSI to the BS. The impact
that erroneous and quantized CSI availability at the
base station has on VP precoding has been studied
in [46]–[48]. Assuming perfect channel estimation and
noiseless feedback channels, we investigate the effect
that the precision of the quantization has in our pro-
posed quantum-assisted MUT algorithm.

The paper is structured as described in Fig. 1. In Section II,
we analyse the downlink of the NOMA system, including the
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FIGURE 1. Summary of the sections of the paper.

MUT process at the BS, as well as the channel quantization at
the mobile terminals. In Section III, we state the prerequisites
of quantum computing and briefly introduce the quantum
search algorithms that are employed in the proposed QPSO,
which is explored in Section IV. The simulation results of
using the QPSO for operating the MUT scheme are dis-
cussed in Section V. Finally, our conclusions are offered
in Section VI.

II. SYSTEM MODEL
The downlink of a MC-IDMA system supporting U users
is depicted in Fig. 2. The BS encodes the information
bits of each user {bu}, for u ∈ {1, 2, . . . ,U}, using a
turbo convolutional code, before interleaving the encoded
bit streams {cu} using user-specific interleaving sequences.
The encoded and interleaved bits {iu} are then mapped to
Quadrature Phase Shift Keying (QPSK) symbols, forming the
symbol streams {xu}.
For simplicity, let us interpret the MUT as the dual coun-

terpart of an MUD. Explicitly, when a pair of QPSK users
transmit in the uplink, the MUD may consider all 16 2-user
symbols for jointly detecting their signals. Can we now view
the downlink MUT problem as the transmission of a specific
16-ary symbol, so that each of the two downlink receivers
can recover its intended signal after some low-complexity
manipulations? The answer is a resounding ‘‘yes’’. Let us
hence explore this in more detail.

The vector precoder of Fig. 2 maps the users’ symbols to
the signals to be transmitted by the NT transmit antennas
of the BS, while also taking into account the effect of the
fading channel imposed on the received signals at each user’s
terminal. By predicting and then carrying out the inverse of
these applications at the BS, most of the complexity that
would have been required by the detection stages of each user
is shifted to the BS’s side. The vector precoding technique,
which is adopted in the downlink, may be employed in any
NOMAmultiple-access scheme. In our contribution we opted
for a special case of MC-IDMA, by employing the unique
interleaving sequences per user, but without including an
additional repetition code for increasing the length of the
bit sequence. The only difference between the employed
system and an SDMA-OFDM system is that the interleaving
sequences are user-specific.

In the MC-IDMA system investigated, vector precoding
takes place on a per subcarrier basis. When assuming Q
available orthogonal subcarriers and that all users transmit on
all subcarriers, the MC-IDMA system may be described as a
NOMA system, where the users are separated in the spatial
domain based on their Channel Impulse Responses (CIR).
On the qth subcarrier, with q ∈ {1, 2, . . . ,Q}, the vector
precoder has to determine the (NT × 1)-element vector dq,
based on the (U × 1)-element vector xq, which includes the
symbols that have to be conveyed to their corresponding users
on the qth subcarrier, as well as on the (U × NT )-element
Frequency-Domain CHannel Transfer Function (FD-CHTF)
matrix of the qth subcarrierHq. The CIRs are either estimated
at the BS if TDD is used, or estimated at and fed back by
the users if FDD is used. From this point onwards, let us
omit the subscript q, by simply mentioning that the same
procedure is followed on allQ subcarriers. The signal vector d
is constructed by the vector precoder as in

d = P · (x+ w) , (1)

where the (NT×U )-element matrix P is the precodingmatrix,
whichmay be efficiently computed using the conventional ZF
or the MMSE precoders, while the (U × 1)-element vector x
includes the users’ symbols and the (U×1)-element vectorw
is the discrete perturbation vector, which is appropriately
selected for minimizing the optimization criterion, such as the
BER or theMSE, while satisfying the maximum transmission
power constraint.

Initially in our proposed methodology, the precoding
matrix P is found based on the MMSE criterion, as encap-
sulated in

P = HH
(
HHH

+ σ 2
n IU

)−1
, (2)

where σ 2
n is the Additive White Gaussian Noise’s (AWGN)

variance at the users’ receive antennas and IU is the
(U × U )-element identity matrix. In our simulations, we
have assumed a normalized transmission power of ET = 1,
hence the average Signal to Noise Ratio (SNR) is equal to
SNR = 1/σ 2

n . In lightly loaded, or full-rank systems,
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FIGURE 2. Downlink of MC-IDMA communication system’s block diagram supporting U single-antenna users employing turbo convolutional coding and
multi-user transmission precoding with the aid of vector perturbation.

where we have NT ≥ U , simply substituting the precoding
matrix of (2) into (1), while setting w equal to the (U × 1)-
element zero vector would result in a satisfactory perfor-
mance. However, in the rank-deficient systems investigated,
whereNT < U , applying the samemethodology would result
in a degraded performance. Nevertheless, we may employ the
calculation of the precoding matrix as the first step of the
vector precoding process and based on this we may proceed
by computing the perturbation vector w of (1).
Let us consider a tutorial example, by investigating the

downlink a rank-deficient system having a BS with NT = 2
transmit AEs supportingU = 4 users. Let us also assume that
the four QPSK symbols that have to be conveyed to the four
users over the first subcarrier are

xex =


0.71− j · 0.71
0.71− j · 0.71
−0.71+ j · 0.71
−0.71+ j · 0.71

 (3)

and that the frequency-domain channel states between the
NT = 2 transmit AEs and the U = 4 users are

Hex =


0.52+ j · 1.87 0.93+ j · 0.16
−0.54− j · 0.38 −0.51− j · 0.10
−0.33− j · 0.61 0.02− j · 0.72
−1.46+ j · 0.80 −0.14− j · 1.01

. (4)

Based on (4) and on (2) and assuming an SNR of 10 dB, we
have σ 2

n = 0.1 and hence the precoding matrix becomes

Pex =


0.03− j · 0.25 0.33+ j · 0.03

−0.05+ j · 0.049 −0.16+ j · 0.019
−0.04+ j · 0.05 0.02+ j · 0.24
−0.19− j · 0.16 0.017+ j · 0.41


T

. (5)

If we do not employ a perturbation vector, which corresponds
to w = [0, 0, 0, 0]T , then the signals transmitted by the
transmit AEs are

dex,w={0}U = Pex · xex =
[

0.08− j · 0.22
−0.34− j · 0.51

]
, (6)

with an associated transmit power of ‖dex,w={0}U ‖
2
= 0.43.

FIGURE 3. The resultant legitimate constellation, after applying a
perturbation vector. As an example, the specific symbol represented by
the filled circle of the original QPSK constellation, which is the closest to
the origin, would be transmitted without a perturbation vector. When that
symbol is subjected to the perturbation vector w = −1+ j , the top left
filled circle will be transmitted instead for the sake of minimizing the
interference at the receiver.

In this contribution, we will search for the optimal discrete
perturbation vector w based on the MBER criterion, while
taking into consideration the transmission power constraint.
The discrete perturbation vector maps a symbol from the
original constellation to the same symbol location of a shifted
constellation, as demonstrated in Fig. 3, which illustrates a
periodical replication of the original QPSK constellation. The
uth element of the perturbation vector belongs to

wu = αu · τ + j · βu · τ, (7)

where au and bu are integers for u ∈ {1, 2, . . .U} and
τ is a positive real number, which depends on the orig-
inally selected constellation. Based on [23], τ may be
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calculated as in

τ = 2 |c|max +1, (8)

where |c|max is the one-dimensional amplitude of the original
constellation’s symbol that has the maximum magnitude,
while 1 is the distance between the closest neighbouring
symbols of the original constellation. For example, when
QPSK associated with xu = ±1/

√
2± j/

√
2 is used, we have

|c|max = 1/
√
2 and 1 =

√
2, yielding τ = 2 ·

√
2 according

to (8).
In our tutorial example, the optimal discrete perturbation

vector w found by using the dPSO algorithm based on the
MBER criterion is

wex =


α1 + j · β1
α2 + j · β2
α3 + j · β3
α4 + j · β4

 · τ =

−1+ j · 0
0+ j · 0
1+ j · 0
1− j · 1

 · 2.83. (9)

The perturbed signal vector (xex + wex) may be interpreted
as four superimposed symbols of Fig. 3; one for each user
supported in the system. By using the perturbation vector
of (9), the resultant transmitted signals are

dex = Pex · (xex + wex) =
[
−1.11+ j · 0.74
0.003− j · 1.19

]
, (10)

with an associated transmission power of ‖dex‖2 = 3.22.
Having calculated the precoding matrix P and selected the

appropriate perturbation vectorw as analysed in Section II-A,
the signal vector d of (1) is transmitted to the users. On a per
subcarrier basis, the (U × 1)-element signal vector received

at the U mobile users ŷ =
[
ŷ1, . . . , ŷU

]T becomes

ŷ = H · d+ a−1n, (11)

where the (U × 1)-element vector n represents the AWGN
at the users’ receive antennas and a is a scalar parameter
chosen as a function of the transmitted signal’s power ‖d‖2

and the affordable maximum transmitted power ET , as encap-
sulated in

a =

√
ET
‖d‖2

. (12)

Even though the scaling factor a is applied at the BS before
transmission, we may model the system as if the transmission
power is equal to ‖d‖2 and the noise power varies depending
on a, as described in (11). In our simulations we consider
ET = 1.
Returning to our scenario, the received signals at theU = 4

users, if dex,w={0}U was transmitted, would be

ŷex,w={0}U = Hex · dex,w={0}U + α
−1
ex,w={0}U · nex

=


0.12− j · 0.32
−0.15+ j · 0.33
−0.62+ j · 0.23
−0.41+ j · 1.03

, (13)

where α−1ex,w={0}U =
√
‖dex,w={0}U ‖2 = 0.66 and

nex =


−0.16+ j · 0.26
−0.22− j · 0.08
−0.12− j · 0.04
0.007+ j · 0.34

 (14)

were used. On the other hand, if dex was transmitted instead,
the received signals would be

ŷex = Hex · dex + α−1ex · nex =


−2.44− j · 0.11
0.61− j · 0.73
1.47+ j · 0.39
2.25− j · 1.53

, (15)

where α−1ex =
√
‖dex‖2 = 1.79 and the noise vector of (14)

were used.
Then, a modulo-τ operation is performed upon each

received signal, as illustrated in Fig. 2. The modulo-τ oper-
ation is used for mapping the received symbol of the shifted
constellation modified by the perturbation vector of the BS,
to its corresponding position in the original constellation,
effectively performing the inverse operation of Fig. 3. The
modulo-τ operation carried out at the uth user results in the
signal yu, as stated in

yu = modτ
(
ŷu
)

= ŷu −

⌊
<
{
ŷu
}
+τ/2

τ

⌋
τ − j

⌊
=
{
ŷu
}
+τ/2

τ

⌋
τ. (16)

Let us now further process the received signals in the two
scenarios of our tutorial example. According to (16), if no
perturbation vector was used and hence ŷex,w={0}U of (13)
was received by the users, then we would have

yex,w={0}U = ŷex,w={0}U =


0.12− j · 0.32
−0.15+ j · 0.33
−0.62+ j · 0.23
−0.41+ j · 1.03

. (17)

By employing hard detection at each user’s terminal, the
detected symbols would be

x̂ex,w={0}U =


0.71− j · 0.71
−0.71+ j · 0.71
−0.71+ j · 0.71
−0.71+ j · 0.71

, (18)

resulting in a symbol error for the second user, when
compared to the information symbols of (3). However, if
the perturbation vector of (9) was applied, the received
signal after the modulo-τ operation of (16) would be
equal to

yex =


0.39− j · 0.11
0.61− j · 0.73
−1.36+ j · 0.39
−0.58+ j · 1.30

, (19)
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resulting in an error-free symbol detection of

x̂ex =


0.71− j · 0.71
0.71− j · 0.71
−0.71+ j · 0.71
−0.71+ j · 0.71

. (20)

In this contribution, the Soft-Input Soft-Output (SISO)
Maximum A Posteriori probability (MAP) detector [2] is
employed at each user, as seen in Fig. 2. The MAP detector
performs soft symbol detection on a per subcarrier basis,
which yields the bit-based Log-Likelihood Ratios (LLR).
Focusing on the uth user’s mth bit on the qth subcarrier, its
a posteriori LLR Lm,po

(
b(m)u

)
may be described as

Lm,po
(
b(m)u

)
= ln

∑
x∈χ (m,0)

P (yu|x)P(x)∑
x∈χ (m,1)

P (yu|x)P(x)
, (21)

where χ (m, v) represents the specific symbols of the original
constellation for which the mth bit is equal to v, P(x) is
the a priori probability of the symbol x and P(yu|x) is the
probability of obtaining yu, given that x was transmitted,
which may be formulated as

P(yu|x) =
1

a−1σn
√
2π

exp
(
−
‖yu − x‖2

2σ 2
n a−2

)
, (22)

where the 2σ 2
n a
−2 is the effective noise variance. The extrin-

sic LLRs Lm,e
(
b(m)u

)
are then fed to the deinterleaver, after

being calculated as in

Lm,e
(
b(m)u

)
= Lm,po

(
b(m)u

)
− ln

P
(
b(m)u = 0

)
P
(
b(m)u = 1

) . (23)

In our investigated systems, the transmitted bits are equiprob-

able, therefore we have P
(
b(m)u = 0

)
= P

(
b(m)u = 1

)
= 0.5

and hence Lm,e
(
b(m)u

)
= Lm,po

(
b(m)u

)
. Once the extrinsic

LLRs have been deinterleaved, the resultant a priori LLRs
are fed into the turbo decoders. The estimated information
bits of each user are obtained by performing a hard decision
at the output LLRs of the decoders in Fig. 2.

A. VECTOR PERTURBATION USING THE MBER CRITERION
The analytical BER functions differ, depending on the modu-
lation scheme selected. Let us analyse the vector perturbation
process of finding d of (1), relying on the QPSK modulation
scheme, since this is used in our simulation results. It should
be noted that the methodology is the same for all modulation
schemes, when the corresponding functions of error prob-
ability are used. Let us initially focus our attention on the
uth user’s symbol and again, omit the subcarrier’s subscript.
The error probability for the in-phase component after the
modulo-τ operation of (16), when a vector d is transmitted

by the BS’s transmit antennas, becomes equal to [30]

Pe,I ,u (d) ≈ Q

(
c(u)R + 3τ
a−1σn

)
+ Q

(
−

5
2τ − c

(u)
R

a−1σn

)

−Q

(
−2τ − c(u)R
a−1σn

)
+ Q

(
−

3
2τ − c

(u)
R

a−1σn

)

−Q

(
−τ − c(u)R
a−1σn

)
+ Q

(
−

1
2τ − c

(u)
R

a−1σn

)

−Q

(
−c(u)R
a−1σn

)
+ Q

(
1
2τ − c

(u)
R

a−1σn

)

−Q

(
τ − c(u)R
a−1σn

)
+ Q

(
3
2τ − c

(u)
R

a−1σn

)

−Q

(
2τ − c(u)R
a−1σn

)
+ Q

(
5
2τ − c

(u)
R

a−1σn

)

−Q

(
3τ − c(u)R
a−1σn

)
, (24)

where Q(·) is the tail probability of the normal distribution
and the user-specific c(u)R is a function of d, representing the
mean value of the variable

(
sign (< {xu})<

{
ŷu
})
, as encap-

sulated in

c(u)R = sign (< {xu})< {hud} , (25)

where hu is the uth row of the qth subcarrier’s FD-CHTF
matrix H. The error probability Pe,Q,u(d) of the uth user’s
quadrature-phase bit is the same as in (24), we just replace
c(u)R by c(u)I , which may be formulated as

c(u)I = sign (= {xu})= {hud} . (26)

By combining (24) for the in-phase and quadrature-phase
components, the average BER of the uth user becomes
equal to

Pe,u(d) =
Pe,I ,u(d)+ Pe,Q,u(d)

2
. (27)

Finally, the average BER of all users, as a function of the
transmitted signal d is encapsulated in

Pe(d) =
1
U

U∑
u=1

Pe,u(d). (28)

The error probability of (28) may be considered as the Cost
Function (CF) of the search for the discrete- and complex-
valued perturbation vector w, given the precoding matrix P,
since that search is performed with the goal of minimizing
the total average error probability of (28). In other words, the
search aims for finding the optimal transmission vector dopt ,
whichminimizes the error probability of (28), as stated in [30]

dopt = argmin
d

[Pe (d)] . (29)

More specifically, having calculated the precoding
matrix P by using the MMSE criterion, we perform
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a discrete- and complex-valued search by using the proposed
DHA-aided dPSO algorithm for finding the optimal MBER
perturbation vector w of (1), which minimizes the MBER
metric of (28). The output transmission vector d of that
search will then be used as an initial input for a subsequent
continuous- and complex-valued search for d of (1) by using
the proposed DHA-aided cPSO algorithm, again based on
the MBER criterion of (28). The aim of the second search
is to ‘‘fine tune’’ the output of the discrete search within
its neighbourhood, with the discrete search being the most
crucial one for optimizing the system’s performance, as it
is exemplified in Section V. Since the search space of w =
[w1, . . . ,wU ]T is infinite, we will limit the search space to
<{wu} ∈ {−2,−1, 0, 1, 2} and ={wu} ∈ {−2,−1, 0, 1, 2},
which - based on our statistical simulations - includes∼100%
of the cases.

It should be noted here that any modulation schememay be
used in conjunction with VP based on the MBER criterion,
as long as its associated MBER function is used as a cost
function, since (24) corresponds to the QPSK modulation.
Our proposed quantum-assisted algorithm may also be used
in conjunction with any modulation scheme. The motivation
behind opting for QPSK in our paper is the ease of presen-
tation and simulation complexity due to the naturally high
complexity required for simulating quantum algorithms on
classical computers.

III. QUANTUM SEARCH ALGORITHMS
Contrary to classical computing, where a bit may only assume
the values 0 or 1, a quantum bit [32], or qubit1, |q〉 in
quantum computing may be found in a superposition of the
states |0〉 or |1〉, as in |q〉 = α|0〉 + β|1〉, where α, β ∈ C
and |α|2 + |β|2 = 1. When a qubit is measured, or observed,
in the computational basis [32] {|0〉, |1〉}, then the proba-
bility of obtaining |q〉 = |0〉 is |α|2, while that of observ-
ing |q〉 = |1〉 is |β|2. A qubit’s state is evolved by using
unitary operators. For example, the Hadamard gate H is a
unitary operator, which carries out the mapping of H |0〉 =
|+〉 = (|0〉 + |1〉)/

√
2 and H |1〉 = |−〉 = (|0〉 − |1〉)/

√
2.

By employing multiple qubits, we may create quantum reg-
isters. For instance, by using two qubits initially at the zero
state |q1〉|q2〉 = |00〉 and Hadamard operators, we may create
an equiprobable superposition of four statesH |q2〉⊗H |q2〉 =
(|0〉+|1〉)/

√
2⊗(|0〉+|1〉)/

√
2 = (|00〉+|01〉+|10〉+|11〉)/2.

If the states of two or more qubits cannot be described sep-
arately, as in the aforementioned equiprobable superposition
of states, these qubits are termed as entangled qubits. Two
qubits in the Bell state [32] (|00〉+|11〉)/

√
2 form an example

of quantum entanglement.

A. GROVER’s QUANTUM SEARCH ALGORITHM
Grover’s QSA [36], [37] succeeds in finding the address x
of a desired entry δ in an N -sized database f , so that

1For an extensive tutorial on quantum computing and quantum search
algorithms employed in wireless communications, please refer to [35].

f (x) = δ, with ∼100% success probability after as few
as O(

√
N ) queries in the database, while the optimal brute-

force search requiresO(N ) Cost Function Evaluations (CFE).
Grover’s QSA initially prepares an equiprobable superposi-
tion of N states, by employing n = log2 N qubits, as in

|ψ1〉 =
1
√
N

(
N∑
x=0

|x〉

)
|0〉⊗8, (30)

where the first n qubits represent the index register and the
last 8 number of qubits form the value register. The value
register, initially in the all-zero state |0〉⊗8, will contain
the CF values of all x inputs simultaneously, while being
entangled to their respective input value of the index register,
after a single operation of a unitaryUf gate [49]. TheUf gate
receives as inputs both the index register, as well as the value
register, and evaluates the CF f (x) of (28), entangling the
qubits of the index register to those of the value register.
In our scenarios, f (x) is equal to Pe(d) of (28), where the
relationship between x and d or the associated perturbation
vector w may also be specifically arranged for ensuring that
x acts as the increasing index of the vector d or w, as it
will be further analysed in Section IV, where the QPSO is
investigated. After a single application of the Uf gate, the
quantum system will be in the following superposition of
states

|ψ1,Uf 〉 =
1
√
N

N∑
x=0

|x〉|f (x)〉, (31)

where a potential observation of the n-qubit index register |i〉
will also yield the corresponding CF value as the content of
the 8-qubit value register.

Grover’s QSA then employs a unitary operator termed as
the Oracle O, which is a quantum bit string comparator [50]
conceived for checking whether a specific combination of 8
qubits in the value register is equal to the desired entry δ.2

The Oracle flips the sign of the specific quantum state in the
index register, which has a CF value equal to δ, with the aid
of another auxiliary qubit initially found in the |−〉 state [36].
After the operation of the Oracle, the diffusion operator,
which consists of three unitary operators D = HP0H is
applied to the index register. The gate P0 flips the amplitude’s
sign of all quantum states, except for the all-zero state. The
effect that the diffusion operator has on the index register is
that it reflects the amplitudes of all its states with respect to
their average amplitude after the operation of the Oracle.

The operation of the Oracle O, followed by the diffusion
operator D describes the Grover operator G = D · O. The
Grover operator is applied to the equiprobable superposition

of states Lopt =
⌊
π
4

√
N
S

⌋
number of times, which is neces-

sary for∼100% success probability [38] with S representing
the number of times that δ appears in the database and hence

2The value of δ is also created by using8 qubits, without them being in a
superposition of states, since δ is a known scalar value.
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FIGURE 4. The evolution of the quantum amplitudes of Grover’s algorithm, when employed in a database with N = 8 entries,
where the single solution (S = 1) lies in the quantum state |3〉 = |011〉 A pair of Grover iterations are applied, before observing
the resultant quantum register |i5〉. (a) Initialization. (b) First Oracle Operation. (c) First Diffusion Operation. (d) Second Oracle
Operation. (e) Second Diffusion Operation.

also in the value register |f (x)〉. After observing the resultant
state GLopt |ψ2〉, there is a success probability of

Psuccess = sin2
[
(2Lopt + 1) · arcsin

(√
S
N

)]
(32)

for obtaining a solution |x〉. However, Grover’s QSA requires
prior knowledge of S, which may not always be possible in
engineering applications.

Since a universal quantum computer, which would be able
to implement Grover’s QSA does not exist at the time of
writing, the actual complexity of each gate will depend on
the specific technology that will be used to design such a
machine. Therefore, following the pioneers of QSAs [36],
[38], [39], [51], even though Uf may be employed only once
in the initialization stage, assuming that strong quantum error
correction codes are employed for stabilizing the quantum
system [52], let us proceed by stipulating the simplifying
assumption that the complexity of a single Grover iteration is
equivalent to that of a single CFE performed in the classical
domain.

Figure 4 describes an example ofGrover’s QSA,when used
for finding the one and only solution (S = 1) in a database
havingN = 8 entries. Since the number of solutions is known
prior to the quantum search, the optimal number of times that

Grover’s operator G should be applied is Lopt=
⌊
π
4

√
N
S

⌋
=2.

Initially, the system’s quantum state is prepared in the super-
position of states |ψ1,Uf 〉 as described in (31). At that stage,

the index register |i〉 is entangled with the value register, as
encapsulated in

|ψ1,Uf 〉 = 0.354 · (|000〉|f (000)〉 + |001〉|f (001)〉
+ |010〉|f (010)〉 + |011〉|f (011)〉
+ |100〉|f (100)〉 + |101〉|f (101)〉
+ |110〉|f (110)〉 + |111〉|f (111)〉)

= 0.3536 · (|0〉|f (0)〉 + |1〉|f (1)〉 + |2〉|f (2)〉
+ |3〉|f (3)〉 + |4〉|f (4)〉 + |5〉|f (5)〉

+ |6〉|f (6)〉 + |7〉|f (7)〉). (33)

In our scenario, we are searching for the specific value δ,
which - as it eventually turns out, but is not known to us
a priori - is only found in f (3). Therefore, |3〉 = |011〉 is the
desired solution. For simplicity, let us omit the value register
from the subsequent steps of Grover’s QSA, as well as from
Fig. 4, but keeping in mind that it will remain entangled
to the corresponding states of the index register throughout
Grover’s QSA. If quantum noise was applied to the circuit,
both the index and the value registers should be jointly anal-
ysed and quantum error correction codes should be employed.
Since in this contribution we assume noiseless and error-free
quantum operations, we may proceed by investigating only
the index register, which may be described as

|i1〉 = 0.354 · (|0〉 + |1〉 + |2〉 + |3〉

+ |4〉 + |5〉 + |6〉 + |7〉). (34)

Figure 4a shows the initial equiprobable superposition of the
N = 8 states. When the Oracle operator is applied during
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the first Grover iteration, the sign of the solution index |3〉 is
flipped, as presented in Fig. 4b and encapsulated in

|i2〉 = O|i1〉 = 0.3536 · (|0〉 + |1〉 + |2〉 − |3〉

+ |4〉 + |5〉 + |6〉 + |7〉). (35)

The diffusion operator D = HP0H is then applied to |i2〉,
resulting in a reflection of all the superimposed states with
respect to their average quantum amplitude, which is equal
to µi2 = (0.354 · 7 − 0.354)/8 = 0.266, as it is graphically
captured in Fig. 4c. The amplitude of the solution index is
reflected from−0.3536 to 2 ·µi2 − (−0.354) = 0.885, while
the amplitudes of the rest of the states are evolved from 0.354
to 2 · µi2 − (0.354) = 0.179, resulting in

|i3〉 = HP0H · O|i2〉 = G|i1〉
= 0.179 · |0〉 + 0.179 · |1〉 + 0.179 · |2〉 + 0.885 · |3〉

+ 0.179 · |4〉 + 0.179 · |5〉 + 0.179 · |6〉+0.179 · |7〉.

(36)

Observing the index register at this point would yield a
probability of success equal to the probability of observing
the state |3〉, which is 0.8852 = 0.783, or 78.3%. Since
the optimal number of Grover iterations was calculated to
be equal to Lopt = 2, we can expect for the probability of
success to be even higher after another application ofGrover’s
operator. Indeed, by applying the Oracle operator for a second
time, followed by the diffusion operator yields

|i4〉 = O|i3〉

= 0.179 · |0〉 + 0.179 · |1〉 + 0.179 · |2〉 − 0.885 · |3〉

+ 0.179 · |4〉 + 0.179 · |5〉 + 0.179 · |6〉 + 0.179 · |7〉

(37)

and

|i5〉 = HP0H · O|i4〉 = G|i3〉 = G2
|i1〉

= −0.087 · |0〉 − 0.087 · |1〉 − 0.087 · |2〉 + 0.977 · |3〉

− 0.087 · |4〉 − 0.087 · |5〉−0.087 · |6〉−0.087 · |7〉,

(38)

as illustrated in Fig. 4d and Fig. 4e, respectively. In (38),
the average value µi4 = (0.179 · 7 − 0.885)/8 = 0.046
of the quantum amplitudes of |i4〉 was used for evolving
the amplitude of the solution state from −0.885 to 2µi4 −
(−0.885) = 0.977 and those of the non-solution states from
0.179 to 2µi4 − 0.179 = −0.087.

Therefore, if the quantum index register was observed
in the state |i5〉, the success probability would be equal to
0.9772 = 0.955 or 95.5%. When Grover’s QSA is employed
in databases having a higher size N , the success probability
approaches 100%, but more Grover iterations are required to
achieve that.

B. BOYER-BRASSARD-HØYER-TAPP QSA
Boyer et al. in [38] proposed a variant of Grover’s QSA,
removing the requirement of having prior knowledge of S.

The only difference with respect to Grover’s QSA of
Section III-A is that since the optimal number of times that
the Grover operator should be applied is now unknown, it
is applied a pseudorandom number of times, following a
specific methodology that guarantees ∼ 100% success prob-
ability before reaching 4.5

√
N number of Grover iterations.

C. DÜRR-HøYER ALGORITHM
Dürr and Høyer [39] presented another variant of Grover’s
QSA, which also relies on the variant proposed by
Boyer et al. in [38]. The so-called DHA succeeds in finding
the specific index that corresponds to the minimum value of
the function after O(

√
N ) with ∼100% success probability.

Starting from a randomly chosen index, we set δ equal to
that index’s CF value. Then, the BBHT QSA is invoked for
finding an index that has a CF value lower than δ. This may be
readily implemented by using a quantum bit string compara-
tor circuit in the Oracle that may output whether a value is
greater than, smaller than, or equal to δ, as described in [50].
Once such an index has been found, its CF value becomes the
new δ and the same process is repeated until no index with
a CF value smaller than the last updated δ is found. In [8]
we showed that a complexity reduction may be achieved if a
carefully picked CF value is used for initializing δ, instead of
choosing a random index’s CF value.

IV. QUANTUM-ASSISTED PARTICLE
SWARM OPTIMIZATION
The PSO employs Z number of particles over 4 generations.
In our application, a particle’s position is represented by the
discrete-valued perturbation vector w of (1) in the discrete-
valued QPSO and by the continuous-valued signal vector
in the continuous-valued QPSO. Both are appraised with
respect to the CF value associated with it, where the CF is
the error probability of (28). During the ξ th generation of the
dQPSO, ξ ∈ {1, 2, . . . , 4}, the ζ th particle, ζ ∈ {1, 2, . . . ,Z }

has a U -element position w(ξ )
ζ =

[
w(ξ )
ζ,1, . . . ,w

(ξ )
ζ,U

]T
and a

U -element velocity v(ξ )ζ =
[
v(ξ )ζ,1, v

(ξ )
ζ,1, . . . , v

(ξ )
ζ,U

]T
. Similarly,

during the ξ th generation of the cQPSO, ξ ∈ {1, 2, . . . , 4},
the ζ th particle, ζ ∈ {1, 2, . . . ,Z } has anNT -element position

d(ξ )ζ =
[
d (ξ )ζ,1, d

(ξ )
ζ,1, . . . , d

(ξ )
ζ,NT

]T
and an NT -element velocity

v(ξ )ζ =

[
v(ξ )ζ,1, v

(ξ )
ζ,1, . . . , v

(ξ )
ζ,NT

]T
. Throughout the genera-

tions, each particle adjusts its personal position and velocity,
based on its own ‘‘best so-far’’ position, as well as on the
best so-far global position, up to that generation. It may be
considered as the operation of a society with a common goal,
where each individual adjusts its behaviour relying on its own
experience, as well as on that of the community.

In this contribution, we propose a pair of QPSO algorithms
by employing the DHA for performing quantum search in the
population of each generation of both the discrete-valued and
of the continuous-valued PSO algorithms. It should be noted
that in contrast to Grover’s QSA, both the BBHT QSA and
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FIGURE 5. Flow chart of the QPSO, describing the operation of both the
dQPSO and the cQPSO.

the DHA constitute trial-and-error based algorithms, since
the optimal number of Grover iterations Lopt is unknown.
Therefore, a number K of the N legitimate indices x and
their corresponding CF values f (x) will become available
in the classical domain, including the solution to the search
problem, for K < N . We may exploit this fact, by using the
DHA for finding the ‘‘better’’, or more ‘‘suitable’’, particles
in every generation of the PSO and allow them to survive and
be updated for the subsequent generations. When compared
to the classical PSO, the QPSO may require a lower number
of CFEs for achieving an equivalent performance, when the
population size of these two algorithms is the same, or yield
an improved BER performance associated with the same
computational complexity, when a higher population size is
searched through during each generation of the QPSO. The
flow chart of the QPSO is presented in Fig. 5, which describes
the operation of both the dQPSO and the cQPSO.

For ease of presentation, let us proceed by portraying the
proposed dQPSO algorithm, while applying it to a rank-
deficient multi-carrier and multi-user scenario, where a BS
having NT = 1 transmit AE supports U = 2 users by
transmitting QPSK symbols with the aid of Q = 1024
subcarriers. The normalized user load is UL = U/NT = 2,
the (U × NT ) = (2 × 1)-element FD-CHTF Hsc at the first
subcarrier is

Hsc =

[
−1.47+ j · 0.81
0.82− j · 0.96

]
, (39)

while the symbol vector xsc of the scenario, that has to be
conveyed to the users is

xsc =
[
−0.71+ j · 0.71
−0.71− j · 0.71

]
. (40)

FIGURE 6. Three-dimensional contour plot of the theoretical average
MBER calculated by (28) with respect to the signal vector for the
specific scenario of Section IV.

Assuming that the system is operating at an average SNR
of 15 dB, which corresponds to σ 2

n = 0.032, the precoding
matrix is calculated based on (2) as

Psc = HH
sc

(
HscHH

sc + σ
2
n IU

)−1
= [−0.33− j · 0.18, 0.18+ j · 0.21]. (41)

Therefore the signal vector without vector perturbation would
be equal to

dsc,w={0}U = Psc · xsc = [0.38− j · 0.39]. (42)

The proposed quantum-assisted dPSO aims for finding the
specific perturbation vector w, and therefore dsc that would
minimize the BER criterion of (28). Figure 6 shows the
theoretical average BER of (28) calculated for a range of
dsc = [−6, 6] + j[−6, 6]. We may observe the multiple
local minima that occur, since our scenario is rank-deficient.
The optimal NT = 1-element signal vector dsc seems to
be close to dsc = [−1.68 + j · 0.55]. This is more vis-
ible in the two-dimensional contour plot of the theoretical
average BER of (28), which is plotted in Fig. 7a, along
with the associated colorbar. Based on Fig. 7a we should
also note the apparent symmetry of the theoretical average
BER with respect to [0 + j · 0], due to the fact that when
a signal vector dsc is expected to yield a low BER, the
exact opposite signal vector d′sc = −dsc will be expected to
result in a degraded performance according to (28). Let us
now proceed to the analysis of the dQPSO, while applying
it to our scenario with the aid of Zd = 64 particles and
4d = 2 generations.

A. DISCRETE-VALUED QPSO
The dQPSO is invoked after the MMSE-based calculation of
the precoding matrix P.
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FIGURE 7. Two-dimensional contour plot of the theoretical average BER calculated by (28) with respect to the signal vector dsc for the
specific scenario of Section IV, along with positions of the particles during the first generation of the dQPSO. (a) The global minimum BER is
in the area around dsc = [−1.68+ j · 0.55]. (b) The full search space of the discrete perturbation vector search, represented by the resultant
signal vectors (white crosses), when the 625 legitimate perturbation vectors are employed, as described in (44). (c) The positions of the
Zd = 64 particles during the first generation of the dQPSO (white dots). (d) The positions of the Zd = 64 particles during the first generation
of the dQPSO (white dots), as well as the positions of the Kd ,1 = 12 particles that were observed by the DHA (red dots) after Ad = 15 CFEs
during the first generation. The best evaluated particle (green dot) is the second best particle of the generation.

1) INITIALIZATION
The position of the ζ th particle during the first generationw(1)

ζ

is randomly initialized in the search space

W = {−2,−1, 0, 1, 2}⊗U + j · {−2,−1, 0, 1, 2}⊗U . (43)

Again, as mentioned in Section II, the search space W
has been obtained via extensive simulations of different
scenarios, where we tracked the minimum and maximum
values of the optimal discrete perturbation vector with
respect to the MBER criterion. We have found that the set
{−2, −1, 0, 1, 2} for both the real and imaginary part
of each user’s perturbation includes ∼100% of the optimal
discrete perturbation vectors. Therefore, the resultant signal

vector d lies in the search space D, where D is

D = P

x+

 {−2,−1, 0, 1, 2} + j{−2,−1, 0, 1, 2}...

{−2,−1, 0, 1, 2} + j{−2,−1, 0, 1, 2}


.
(44)

The velocity of each particle is initially set to 0. More pre-
cisely, the position of a particle in the dQPSO represents
a legitimate complex perturbation selected for each user’s
symbol within the set {−2,−1, 0, 1, 2} + j{−2,−1, 0, 1, 2}.
Note that even though d(ξ )ζ is used as the position of
a particle during the evaluation stage, the discrete-valued
position will be described by its associated discrete-valued
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perturbation vector w(ξ )
ζ , as encapsulated in the search space

of (44).
In our scenario, the full search space is illustrated in

Fig. 7b, while the positions of the Zd = 64 number of
particles during the first generation, randomly created in the
search spaceD of (44) are presented in Fig. 7c. Since we have
opted for Zd = 64 particles, log2 (Zd ) = 6 qubits are required
for creating the population of the first generation. The number
of required qubits only depends on the desired population
size during each generation. The higher the population size
is, the higher the probability of a better particle appearing in
the population becomes. However, at the same time, more
qubits are required for representing the population in the
quantum domain and a higher complexity has to be invoked
for searching in a higher search space.

2) DHA-BASED EVALUATION
Even though in the classical PSO the positions of all Zd
particles would be evaluated during each generation based
on the CF value of (28), hence resulting in Zd CFEs, in
the proposed QPSO the DHA is employed for searching for
the specific particle having the position that corresponds to
the minimum CF value of (28) in the ξ th generation. Since
the DHA is a probabilistic algorithm exhibiting a variable
complexity, we opt for stopping the operation of the DHA
after a predetermined number of Ad Grover iterations, or,
equivalently, CFEs.

The complexity of the proposed QPSO does not depend on
the population size Zd , but rather on the adjustable number of
Grover iterations allowed before the termination of the DHA.
Therefore, a higher population size Zd would increase the
pool size and hence improves the performance, but it would
also require more particle position and velocity updates dur-
ing each generation. It should be noted that choosing a low
number Ad may result in stopping the search algorithm before
finding the best particle, while selecting a high Ad may result
in requiring unnecessary extra complexity. As discussed in
Section IV, after the DHA’s operation we will have obtained
Kd,ξ particles’ CF values in the classical domain, with Kd,ξ
having a different value during each generation, due to the
probabilistic nature of the DHA.

In our scenario, after Ad = 15 CFEs, the DHA observed
Kd,1 = 12 particles, which are represented by a red dot in
Fig. 7d. Therefore, the positions and CF values of only those
Kd,1 = 12 particles are available. The position of the best
evaluated particle, shown as a green dot in Fig. 7d, is the
ζ = 10th particle of the generation, which is associated with
the discrete-valued perturbation vector wsc, best = [2 + j ·
2, 2 + j · 2]T , resulting in the distance vector dsc, best =
[−0.62 − j · 1.04] and a theoretical average BER of 0.19.
We should note that this is actually the second best particle of
the generation. This means that if we had allowed more CFEs
in the DHA, associated with a higher Ad , the best particle of
the generation would have been observed. Nevertheless, as
seen in Fig. 7c, none of the particles in the first generation
has a position in the area of the global minimum.

3) POSITION & VELOCITY UPDATE
After the evaluation step during the ξ th generation, the
personal best position of the ζ th particle pb(ξ )ζ =[
pb(ξ )ζ,1, . . . , pb

(ξ )
ζ,U

]T
is updated, but only if that particle was

one of the Kd,ξ particles, which were observed by the DHA,
according to

pb(ξ )ζ =

w
(ξ )
ζ if Pe

(
d(ξ )ζ

)
< Pe

(
d(ξ−1)ζ,pb

)
pb(ξ−1)ζ if Pe

(
d(ξ )ζ

)
≥ Pe

(
d(ξ−1)ζ,pb

)
,

(45)

where d(ξ )ζ = P ·
(
x+ w(ξ )

ζ

)
and d(ξ−1)ζ,pb = P ·

(
x+ pb(ξ−1)ζ

)
.

In our scenario, only the specific Kd,1 = 12 particles’
positions will be updated during the first generation, while
the personal best position of the rest will remain unavailable.
For example, the personal best position of the best evaluated
particle, associated with wsc, best = [2 + j · 2, 2 + j · 2]T ,
which is the ζ = 10th particle of the generation, is updated
as in

pb(1)10 = w(1)
10 =

[
2+ j · 2
2+ j · 2

]
. (46)

The rest of the evaluated particles are similarly updated.
Then, the global best position of the ξ th generation gb(ξ ) =[
gb(ξ )1 , . . . , gb

(ξ )
U

]T
is calculated based on

gb(ξ ) =

pb
(ξ )
ζbest

if Pe
(
d(ξ )ζbest ,pb

)
< Pe

(
d(ξ−1)gb

)
gb(ξ−1) if Pe

(
d(ξ )ζbest ,pb

)
≥ Pe

(
d(ξ−1)gb

)
,

(47)

where pb(ξ )ζbest is the personal best position of the best particle

of the ξ th generation, d(ξ )ζbest ,pb = P ·
(
x+ pb(ξ )ζbest

)
and

d(ξ−1)gb = P ·
(
x+ gb(ξ−1)

)
.

In our scenario, the global best position of the ξ =
1st generation is updated as in

gb(1) = pb(1)10 =

[
2+ j · 2
2+ j · 2

]
, (48)

since the ζbest = 10th particle is the best particle of the first
generation.
Having updated the particles’ personal best position, as

well as the global best position, wemay update the velocity of
each particle in a different way from that of the classical PSO,
depending on whether that particle was measured during the
ξ th generation by the DHA, or not. More specifically, if
the ζ th particle during the ξ th generation was observed by the
DHA, then the velocity of its uth dimension, which is associ-

ated with v(ξ )ζ =
[
v(ξ )ζ,1, . . . , v

(ξ )
ζ,U

]T
and u ∈ {1, 2, . . . ,U}, is

updated similarly to the PSO according to

v(ξ )ζ,u = g · v(ξ−1)ζ,u + u1 · c1 · <
{
pb(ξ )ζ,u − w

(ξ )
ζ,u

}
+ j · u2 · c2 · =

{
pb(ξ )ζ,u − w

(ξ )
ζ,u

}
+ u3 · c1 · <

{
gb(ξ )u − w

(ξ )
ζ,u

}
+ j · u4 · c2 · =

{
gb(ξ )u − w

(ξ )
ζ,u

}
, (49)
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where u1, u2, u3, u4 ∈ U(0, 1) are numbers randomly gen-
erated from the uniform distribution, while c1 = c2 = 0.5
were found to provide a good performance based on our
empirical simulations, where many values were selected for
c1 and c2. The generation-based inertia weight g is calculated
as [53]

g = gmin + (gmax − gmin) ·
4− ξ

4
, (50)

with gmin = 0.4 and gmax = 0.9. If the ζ th particle’s
CF value during the ξ th generation was not obtained during
the DHA’s operation, the velocity of its uth dimension, for
u ∈ {1, 2, . . . ,U} is updated relying only on its (ξ − 1)st
generation’s velocity and on the global best position of the
current ξ th generation, as encapsulated in

v(ξ )ζ,u = g · v(ξ−1)ζ,u + u3 · c2 · <
{
gb(ξ )u − w

(ξ )
ζ,u

}
+ j · u4 · c2 · =

{
gb(ξ )u − w

(ξ )
ζ,u

}
. (51)

The reasoning behind updating the velocity of a particle,
which was not observed, without relying on its personal best
position is that - with a high probability - this particle was
not picked by the DHA, because its personal position was not
good enough. Therefore, we opted for ‘‘moving’’ it towards
the neighbourhood of the global best solution of the ξ th
generation, where it may have a position corresponding to
a lower error probability. In Section V we compare different
choices for the update of the particles’ velocities, with respect
to the resultant BER performance.

In our scenario, the velocity of all Zd = 64 particles will
be updated. During the ξ = 1st generation, the velocities of
the Kd,1 = 12 observed particles will be updated according
to (49), while the remaining Zd − Kd,1 = 52 particles’
velocities will be updated according to (51). Since we are
considering the ξ = 1st generation and there will be a total
of 4 = 2 generations, according to (50) we have g = 0.65.
Let us describe the velocity update of the ζ = 50th particle,
which was observed by the DHA, and the ζ = 2nd particle,
which was not. Since the ζ = 50th particle was observed and
we have U = 2 users, its velocity v(1)50 = [v(1)50,1, v

(1)
50,2]

T will
be updated based on (49) and it would result in

v(1)50,1 = 0.65 · (0+ j · 0)+ 0.88 · 0.5 · (1− 1)

+ j · 0.44 · 0.5 · (1− 1)

+ 0.44 · 0.5 · (2− 1)

+ j · 0.80 · 0.5 · (2− 1)

= 0.17+ j · 0.40 (52)

v(1)50,2 = 0.65 · (0+ j · 0)+ 0.81 · 0.5 · (−2+ 2)

+ j · 0.58 · 0.5 · (−1+ 1)

+ 0.22 · 0.5 · (2+ 2)

+ j · 0.13 · 0.5 · (2+ 1)

= 0.44+ j · 0.19. (53)

On the other hand, since the ζ = 2nd particle was
not observed during the first generation, its velocity
v(1)2 = [v(1)2,1, v

(1)
2,2]

T will be updated according to (51), as
encapsulated in

v(1)2,1 = 0.65 · (0+ j · 0)+ 0.58 · 0.5 · (2− 1)

+ j · 0.19 · 0.5 · (2− 0)

= 0.29+ j · 0.19 (54)

v(1)2,2 = 0.65 · (0+ j · 0)+ 0.64 · 0.5 · (2+ 2)

+ j · 0.64 · 0.5 · (2− 2)

= 1.28+ j · 0. (55)

In order to update the discrete-valued position of the
ζ th particle during the ξ th generation, we first convert its
associated velocity to the [0,M − 1] interval by using the
sigmoid function advocated in [54]

sig
(
<

{
v(ξ )ζ

})
=

M − 1

1+ e
−<

{
v(ξ )ζ

} ,
sig
(
=

{
v(ξ )ζ

})
=

M − 1

1+ e
−=

{
v(ξ )ζ

} , (56)

where M = 5 is the range of the single-dimensional dis-
crete search space {−2, 1, 0, 1, 2}. The uth dimension of the
ζ th particle’s position during the ξ th generation is updated
according to

w(ξ )
ζ,u =

⌊
sig
(
<

{
v(ξ )ζ,u

})
+ (M − 1) · ρ · r1

⌉
+ j ·

⌊
sig
(
=

{
v(ξ )ζ

})
+ (M − 1) · ρ · r2

⌉
, (57)

where the choice of ρ = 0.1 offers a good performance and
r1, r2 ∈ N (0, 1) are randomly generated numbers from the
zero-mean and unit-variance normal distribution. Therefore,
all particles’ positions are updated following the same rule,
regardless of whether they were observed during the ξ th
generation by the DHA. In order to guarantee that the position
of a particle is in the search range of (44), after (57) we
apply

<

{
w(ξ )
ζ,u

}
=


−
M−1
2

, <

{
w(ξ )
ζ,u

}
< −

M − 1
2

<

{
w(ξ )
ζ,u

}
, −

M − 1
2
≤ <

{
w(ξ )
ζ,u

}
≤
M−1
2

M−1
2

, <

{
w(ξ )
ζ,u

}
>
M − 1

2

=

{
w(ξ )
ζ,u

}
=


−
M−1
2

, =

{
w(ξ )
ζ,u

}
< −

M − 1
2

=

{
w(ξ )
ζ,u

}
, −

M − 1
2
≤ =

{
w(ξ )
ζ,u

}
≤
M−1
2

M−1
2

, =

{
w(ξ )
ζ,u

}
>
M − 1

2
.

(58)

In our scenario, all particles’ position will be updated
according to (56), (57) and (58). Let us describe the update
of the ζ = 50th particle’s position. Initially, we convert its

VOLUME 4, 2016 7415



P. Botsinis et al.: Quantum-Aided MUT in NOMA Systems

FIGURE 8. Two-dimensional contour plot of the theoretical average BER calculated by (28) with respect to the signal vector dsc for the
specific scenario of Section IV, along with positions of the particles during the second generation of the dQPSO. (a) The positions of the
Zd = 64 particles during the second generation of the dQPSO (white dots). (b) The positions of the Zd = 64 particles during the second
generation of the dQPSO (white dots), as well as the positions of the Kd ,2 = 11 particles that were observed by the DHA (red dots) after
Ad = 15 CFEs during the second generation. The best evaluated particle (green dot) is the global best particle of the discrete
optimization problem.

velocity by using the sigmoid function of (56), resulting in

sig
(
<

{
v(1)50

})
=

4

1+ e
−<

{
v(1)50

} = [ 2.17
2.42

]
,

sig
(
=

{
v(1)50

})
=

4

1+ e
−=

{
v(1)50

} = [ 2.39
2.19

]
. (59)

Finally, according to (57), the updated position of the
ζ = 50th particle in the ξ = 1st generation is

w(1)
50,1 = b2.17+ 4 · 0.1 · (−0.39)e

+ j · b2.39+ 4 · 0.1 · (−0.33)e ,

= 2+ j · 2, (60)

w(1)
50,2 = b2.42+ 4 · 0.1 · (−1.39)e

+ j · b2.19+ 4 · 0.1 · 0.31e ,

= 2+ j · 2. (61)

4) DHA INITIALIZATION
During the ξ th generation, the initial δ for the DHA’s search
is chosen to be the best particle’s CF value from the (ξ − 1)st
generation, but only if that particle is also the global best
particle up to the ξ th generation. Otherwise, the DHA is
randomly initialized with the CF value of a random particle’s
position. This methodology succeeds in reducing the com-
plexity required for finding the best particle of the generation,
when a worthy particle is present, while allowing a wider
search, when the evolution is inaccurately navigated. During
the first generation, the DHA is randomly initialized.

Naturally, there is a particle during the first generation
that has the globally best position, therefore δ for the DHA’s

search in the ξ = 2nd generation is initialized to that par-
ticle’s CF value. In our scenario, this corresponds to the CF
value of the ζ = 10th particle, which is equal to δ = 0.19.
During the ξ = 2nd generation, all Zd = 64 particles’
positions are depicted in Fig. 8a. The specific particles of
the second generation that were observed by the DHA are
plotted in Fig. 8b, along with the best found particle, asso-
ciated with wsc, best = [1 − j · 1, 0 + j · 1]T and linked to
dsc, best = [−1.68+ j · 0.55].

5) TERMINATION
After a predetermined number of generations 4d ,
the QPSO is terminated and we conclude that
dopt,discrete = Psc ·

(
xsc + gb(4d )

)
.

In our scenario, since 4d = 2, only the globally best
value is updated after the DHA search in the second gener-
ation. Finally, the dQPSO stops and outputs dopt,discrete =
Psc ·

(
xsc + gb(4d )

)
= [−1.67 + 0.55], which is associated

with a theoretical average BER value of 0.0033. The dQPSO
arrived at the MBER-optimal discrete-valued perturbation
vector after Ad ·4d = 30 CFEs. At the same time, employing
the classical dPSO associated with Zd = 6 and 4d = 6 in
the same scenario outputs the suboptimal perturbation vector
wsc,PSO = [0 + j · 0, 0 + j · 0]T after Zd · 4d = 36 CFEs,
which is associated with the higher theoretical average BER
value of 0.054.

B. CONTINUOUS-VALUED QPSO
The cQPSO aims for further improving the output of the
dQPSO dopt,discrete, by searching in selected areas, where the
discrete optimization could not reach.
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1) INITIALIZATION
The cQPSO starts from the point, where the dQPSO ended,
by using its output dopt,discrete in its initial population as the
first particle’s position d(ξ )ζ = dopt,discrete. The remaining
(Zc − 1) particles’ positions are randomly generated in the
search space SNT , where

S = [−Smax, Smax]+ j · [−Smax, Smax]. (62)

The search range depends on the specific nature of the opti-
mization problem, therefore relying on our empirical results,
we opt for Smax = 2. Please note that in the cQPSO
the position of the particle is the continuous-valued signal
vector d(ξ )ζ and not the discrete-valued perturbation vector

w(ξ )
ζ as in the dQPSO. Hence the position and the velocity

of each particle becomes NT -dimensional in the cQPSO, as
opposed to the U -dimensional vectors of the dQPSO.

2) DHA-BASED EVALUATION
The evaluation stage of the cQPSO is the same as that of
the dQPSO described in Section IV-A.2, with Zc number of
particles and a predetermined Ac number of Grover iterations
during each generation.

3) POSITION & VELOCITY UPDATE
The personal best positions of each particle pb(ξ )ζ , as well
as the global best position gb(ξ ) of the ξ th generation in the
cQPSO are updated by using the rules of

pb(ξ )ζ =

d
(ξ )
ζ if Pe

(
d(ξ )ζ

)
< Pe

(
pb(ξ−1)ζ

)
pb(ξ−1)ζ if Pe

(
d(ξ )ζ

)
≥ Pe

(
pb(ξ−1)ζ

)
.

(63)

Then, the global best position of the ξ th generation gb(ξ ) =[
gb(ξ )1 , . . . , gb

(ξ )
NT

]T
is calculated based on

gb(ξ ) =

pb
(ξ )
ζbest

if Pe
(
pb(ξ )ζbest

)
< Pe

(
gb(ξ−1)

)
gb(ξ−1) if Pe

(
pb(ξ )ζbest

)
≥ Pe

(
gb(ξ−1)

)
.
(64)

Furthermore, the velocity of the ζ th particle during the
ξ th generation is also updated similarly to the dQPSO,
according to

v(ξ )ζ,nT = g · v(ξ−1)ζ,nT + u1 · c1 · <
{
pb(ξ )ζ,nT − d

(ξ )
ζ,nT

}
+ j · u2 · c2 · =

{
pb(ξ )ζ,nT − d

(ξ )
ζ,nT

}
+ u3 · c1 · <

{
gb(ξ )nT − d

(ξ )
ζ,nT

}
+ j · u4 · c2 · =

{
gb(ξ )nT − d

(ξ )
ζ,nT

}
, (65)

if the ζ th particle was observed by the DHA during the
ξ th generation, or

v(ξ )ζ,nT = g · v(ξ−1)ζ,nT + u3 · c2 · <
{
gb(ξ )nT − d

(ξ )
ζ,nT

}
+ j · u4 · c2 · =

{
gb(ξ )nT − d

(ξ )
ζ,nT

}
. (66)

if it was not, with the difference that the parameters c1, c2 are
now generation-based [55], as encapsulated in

c1 = −2(ξ/4)+ 2.5 (67)

c2 = 2(ξ/4)+ 0.5. (68)

With the aid of the sigmoid function of (56) in the dQPSO,
each particle’s velocity was confined to the [0,M − 1] range.
In the cQPSO the velocity range for each particle’s dimension
is

V = [−Vmax,Vmax]+ j · [−Vmax,Vmax], (69)

where we have opted for Vmax = 1.2, and the updated
velocity of the ζ th particle’s nT th dimension during the
ξ th generation is guaranteed to be in that range by applying

<

{
v(ξ )ζ,nT

}
=


−Vmax, <

{
v(ξ )ζ,nT

}
< −Vmax

<

{
v(ξ )ζ,nT

}
, −Vmax ≤ <

{
v(ξ )ζ,nT

}
≤ Vmax

Vmax, <

{
v(ξ )ζ,nT

}
> Vmax

=

{
v(ξ )ζ,nT

}
=


−Vmax, =

{
v(ξ )ζ,nT

}
< −Vmax

=

{
v(ξ )ζ,nT

}
, −Vmax ≤ =

{
v(ξ )ζ,nT

}
≤ Vmax

Vmax, =

{
v(ξ )ζ,nT

}
> Vmax

Furthermore, if an updated velocity is equal to zero, then it is
randomly selected as in

v(ξ )ζ,nT = 2 · (u− 0.5) · γ · (Vmax + j · Vmax), (70)

where u ∈ U(0, 1) is randomly selected based on the uniform
distribution and γ = 0.1 [30].
Another difference between the dQPSO and the cQPSO

is the update of a particle’s position, which is updated with
the aid of a different methodology in the cQPSO, based on
whether the particle was obtained during the operation of the
DHA or not. More specifically, if a particle was not obtained
during the DHA, then its position during the next generation
is randomly selected in the search space SNT . Otherwise, its
position is updated as in

d(ξ )ζ = d(ξ )ζ + v(ξ )ζ . (71)

Again, the position is limited to the search space SNT of (62),
when applying (58) of the dQPSO by replacing (M − 1)/2
with Smax.

4) DHA INITIALIZATION
During the first generation, the reference value δ in the DHA
is initialized with the CF value of the output of the dQPSO
Pe(dopt,discrete), since it is the best found transmission vector
up to that point. During the ξ > 1 generation, δ is initialized
with the CF value of the best particle of the previous gen-
eration, regardless of whether it was the global best particle
or not. The reason that we opted for a different methodology
in the cQPSO, with respect to that of the dQPSO described
in Section IV-B4 is due to the infinite search space that the
cQPSO deals with. It was more likely to find an improved
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transmission vector d by starting from the best particle in
hand, than from a randomly selected one in the cQPSO.

5) TERMINATION
Similarly to the dQPSO, the cQPSO is terminated after 4c
generations, when we have dopt,cont. = gb(4c).
The complexity of the classical PSO, quantified in terms

of the number of CFES, is equal to

CPSO = Z ·4, (72)

while that of the QPSO is equal to

CQPSO = A ·4. (73)

TABLE 2. Parameters of the 8-user MC-IDMA downlink.

V. SIMULATION RESULTS
In order to characterize the performance of the proposed
dQPSO and cQPSO algorithms in our MUT application,
let us consider a rank-deficient system supporting U =

8 single-antenna users, while the BS is equipped with
NT = 4 transmit antennas, resulting in a normalized user
load of UL = 2. The modulation scheme is QPSK, while the
channel code employed is a turbo convolutional code having
a rate of R = 1/2, 8 trellis states and I = 4 inner decoding
iterations. The number of subcarriers is equal to Q = 1024
and the interleaver length is 2048 bits per user. The system
parameters are gathered in Table 2.

Figure 9 compares the BER performance of the dQPSO
to that of the dPSO, when only a discrete-valued search is
allowed for finding the optimal transmission vector in the
downlink of the MC-IDMA system. Various combinations
of the population size Zd , the number of generations 4d and
the number of CFEs per generation for the dQPSO 4d were

FIGURE 9. BER performance with respect to Eb/N0 of the downlink
system of Fig. 2, when only a discrete-valued PSO or QPSO search is used
for finding the transmitted vector, for various combinations of population
size Zd , number of generations 4d and number of CFEs per generation in
the case of dQPSO Ad . The system parameters are summarized in Table 2.

evaluated, with all of them exhibiting similar complexity of
at most 2500 CFEs. For the dQPSO a population size of
Zd = 2048 particles was selected, hence requiring n =
log2(Zd ) = 11 qubits, due to the limited computation
resources that a classical computer offers, when simulat-
ing the behaviour of a quantum computer. In theory, the
population size may be quadrupled without increasing the
algorithm’s computational complexity expressed in terms of
the number of CFEs, by adding two more qubits. At a BER
of 10−5, the average power gain of the dQPSO with respect
to the dPSO is 4.4 dB.
The dPSO characterized in Fig. 9 performs better, when

more generations are allowed, while the dQPSO achieved its
best performance, when the number of generations 4d was
lower than the number of CFEs allowed per generation Ad .
Based on our simulations, this also depends on the size of
the database, or, equivalently, on the population size, since
the DHA may require more CFEs for finding sufficiently
good particles. It should be noted that in a database of
Zd = 2048 entries the DHA described in [39] requires
Ad = 316 CFEs on average. However, based on the Early-
Stopping-aided DHA of [8], which may reduce the complex-
ity of the DHA, it may be found that using Ad = 240 achieves
a 90% success probability of finding the optimal particle in
each generation. Based on Fig. 9, choosing Ad = 100 CFEs
per generation results in the best BER performance, while
succeeding in finding the optimal particle with as low as
27% success probability, when randomly initialized. On the
other hand, when the DHA is deterministically initialized, as
it occurs in the ξ > 1 generations of the dQPSO, the success
probability of finding the optimal particle of the generation
increases for a fixed number of CFEs per search [8], with the
gain depending on the CF value of the particle initializing
the DHA. All investigated rank-deficient scenarios are at
least 2.5 dB away from the single-user single-stream scenario

7418 VOLUME 4, 2016



P. Botsinis et al.: Quantum-Aided MUT in NOMA Systems

at BER = 10−5. Let us proceed in our discussions by using
the specific combinations that offered the average perfor-
mance of the dPSO and the dQPSO in Fig. 9, which are the
[Zd = 50, 4d = 50] and [Zd = 2048, Ad = 133, 4d = 18]
configurations, respectively.

FIGURE 10. Error probability of (28) as a function of the number of CFEs
in dPSO and dQPSO for Eb/N0 = 14 dB and Eb/N0 = 18 dB.

The high power gain of 4.4 dB on average, which was
demonstrated in Fig. 9, in the scenario, where only a discrete-
valued search is used for finding the perturbation vector
may be further explained by investigating the global best CF
value of (28) as a function of the computational complexity
required, as illustrated in Fig. 10 for the Eb/N0 values of
14 and 18 dB, where the dQPSO and the dPSO achieve a
BER of 3 · 10−4, respectively. The results were averaged
over 100 independent simulations of the systems. Based on
Fig. 10, we observe that the dQPSO initially requires a higher
complexity for the first generation, whilst achieving a better
CF value than the dPSO at its own first generation, but a
worse CF value, when compared to that of the dPSO after
three generations, which requires similar complexity. Since
we have Ad = 133 CFEs per generation in the QPSO, after
the first generation the complexity of the dQPSO is 133CFEs.
At the same time, the complexity of the classical dPSO after
the first generation is equal to Zd = 50 CFEs. After two
generations, the complexity of the dPSO is 2·Zd = 100CFEs,
which is still lower than the complexity of the dQPSO after a
single generation. However, an individual with lower average
theoretical BER is found during the first generation of the
dQPSO, than during the first generation of the dPSO. On the
other hand, a better individual is found during the second
generation of the dPSO than the one found during the first
generation of the dQPSO. The fact that the dQPSO finds
a better individual during its second generation (2 · Ad =
266 CFEs) than the best individual found by the dPSO after
its sixth generation (300 CFEs) for both Eb/N0 values proves
that even though the number of CFEs per generation is higher
in the dQPSO, a better perturbation vector is found after
having invested a lower number of CFEs. In other words, the
benefit of the dQPSO manifests itself in terms of a steeper

gradient of finding particles with lower CF values during the
subsequent generations, as shown in Fig. 10, which manages
to find a solution associated with the error probability of (28)
equal to 0.09 by requiring 1835 fewer CFEs than the dPSO,
when Eb/N0 = 14 dB, or, alternatively, only at 26.6% of the
complexity required by the dPSO. Moreover, the dQPSO not
only arrives at a lower error probability floor, when compared
to that of the dSPO, but also requires a lower complexity.
For example, when Eb/N0 = 18 dB, the dQPSO achieves
half the error probability of the dPSO, while imposing 63%
of the dPSO’s complexity. The reason that the average BER
depicted in Fig. 10 for Eb/N0 = 14 and Eb/N0 = 18 dB is not
the same as that in Fig. 9 for the same power levels, is that the
CF of (28), which is plotted in Fig. 10, assumes no channel
coding, while the BER performance of Fig. 9 relies on chan-
nel coding. However, the MBER metric of (28) is sufficient
for selecting the optimal transmission vector and the turbo
convolutional code further reduces the system’s BER. This is
evident by comparing the dPSO’s curve for Eb/N0 = 18 dB
and that of the dQPSO for Eb/N0 = 14 dB in Fig. 10, which
achieve a similar BER of ∼0.06 after 2500 CFEs, to their
corresponding BER performances, when channel coding is
invoked in Fig. 9 (white ‘‘x’’ at Eb/N0 = 18 dB and white
circle at Eb/N0 = 14 dB), which are again similar and
approximately BER = 2.5 · 10−4.

FIGURE 11. BER performance with respect to Eb/N0 of the downlink
system of Fig. 2, when only a discrete-valued QPSO search is used for
finding the transmitted vector for [Zd , 4d , Ad ] = [2048, 18, 133]. Three
methodologies for updating the particles’ velocities are evaluated. The
system parameters are summarized in Table 2.

In Fig. 11 we compare three different methodologies for
updating the velocities of a population’s particles during the
dQPSO. Even though their BER performance difference is
low, we may observe that following the same methodology
as in the classical dPSO yields similar results to the case,
where only the velocities of the evaluated particles were
updated during each generation. This occurs due to the fact
that the position update of (57) has a random factor that
changes the position of a particle even if its velocity remains
the same throughout the generations. By using our proposed
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methodology of (49) and (51), where the velocity of a parti-
cle is always updated based on the global best particle and
also on the personal best particle only if that particle was
evaluated during that generation, the performance improved
by 0.15 dB. This may be explained by describing the pro-
posed methodology as a combination of the previous two
velocity updates. If the particle was evaluated during the
present generation, its velocity should be updated as in the
classical dPSO. Otherwise, its personal best position may be
considered ‘‘untrustworthy’’, since it was not observed by
the DHA, hence that particle should be guided to a ‘‘better’’
territory, by updating its velocity only based on the global best
position. However, the performance gain achieved isminimal,
when compared to the 2.3 dB loss with respect to the single-
user single-stream full-rank scenario, where no precoding is
required, since the system supports a single user.

FIGURE 12. BER performance with respect to Eb/N0 of the downlink
system of Fig. 2, when a continuous-valued QPSO search associated with
[Zc , 4c , Ac ] = [2048, 40, 20] is used after employing a discrete-valued
classical PSO search for finding the transmitted vector. Three
methodologies for updating the particles’ velocities are evaluated.
The system parameters are summarized in Table 2.

Similarly, in Fig. 12 we have evaluated the different
methodologies for velocity updates in the case of cQPSO,
following a classical dPSO search. Since in the continuous-
valued search the position update does not include an inde-
pendent random factor according to (71), if the velocity of
a particle is not updated, then its position will continue to
be beneficially updated towards the same direction, which
may be towards even higher CF values. This is encapsulated
in Fig. 12, where the aforementioned methodology (circle)
performs worse than that of the classical cPSO (cross). More-
over, the cQPSO using the classical PSO’s update method-
ology for the velocities is limited to the performance of
the classical cPSO, since the inclusion of the personal best
positions in the calculation of the velocities of particles that
were not observed by the DHA may lead them to regions
associated with high CF values. Based on this, our method-
ology proposed for the velocity updates of (49) and (51) in
cQPSO, which is the same as in the dQPSO case, seems to

offer a 0.5 dB gain, when compared to the classical cPSO’s
performance. This is attained by exploiting the personal best
position of a particle only when it is worth it.

FIGURE 13. Error probability of (28) as a function of the number of CFEs
in cPSO and cQPSO for Eb/N0 = 14 dB following the operation of the
dPSO or the dQPSO.

FIGURE 14. BER performance with respect to Eb/N0 of the downlink
system of Fig. 2, for evaluating the effect that a continuous-valued PSO
search has to it. The system parameters are summarized in Table 2.

Figure 13 depicts the error probability of (28), when
both discrete-valued and continuous-valued PSOs are used.
We may conclude that the gain achieved by using the dQPSO
instead of the dPSO is higher than that achieved by using
the cQPSO instead of the cPSO. Nevertheless, the effect
of the cQPSO is more evident, when the discrete-valued
search is performed by the classical dPSO. The 0.02 uncoded
BER gain obtained as a result of using a continuous-valued
PSO after the dPSO at Eb/N0 = 14 dB is expected to be
further magnified, when channel coding is invoked. In other
words, even though the effect of using a continuous-valued
PSO seems to be minimal, when observing the uncoded
error probability performance, it is actually more substan-
tial, when investigating the system’s overall performance,
as exemplified in Fig. 14. In that figure, a fully classical
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FIGURE 15. BER performance with respect to Eb/N0 of the downlink
system of Fig. 2, all the different discrete-valued and continuous-valued,
classical and quantum search combinations. The system parameters are
summarized in Table 2.

system employing both a dPSO associated with [Zd , 4d ] =
[50, 66] and a cPSO associated with [Zc, 4c] = [20, 40]
is compared to a classical system, where only the dPSO is
used in conjunction with [Zd , 4d ] = [50, 66]. Both systems
have the same complexity, but even though the [Zd , 4d ] =
[50, 66] dPSO system performs 1.3 dB better than the lower-
complexity [Zd , 4d ] = [50, 50] dPSO system at BER =
10−5, it experiences a performance degraded by 1.07 dB at
the same BER level, when compared to the aforementioned
dPSO/cPSO system. We may conclude that by investing a
higher complexity in the discrete-valued search is indeed
capable of improving the system’s BER performance, but
eventually the discrete-valued search converges to a transmit-
ted vector d that yields a higher BER than that of the vector d
that would have been found by investing the same complexity
as a continuous-valued search following the initial discrete-
valued one. However, according to Fig. 14, by just using
a dQPSO associated with [Zd , Ad , 4d ] = [2048, 133, 18]
we may achieve a performance improved by 1.9 dB, when
compared to the dPSO/cPSO system, while at the same time
requiring fewer CFEs than the least complex dPSO associated
with [Zd , 4d ] = [50, 50].
The BER performances of all investigated scenarios,

namely of the dPSO, dQPSO, dPSO/cPSO, dPSO/cQPSO,
dQPSO/cPSO and dQPSO/cQPSO systems, are illustrated
in Fig. 15. Again, the dQPSO system outperforms all the
three scenarios, which use the classical discrete-valued PSO.
The employment of the continuous-valued QPSO results in
a 0.5 dB gain with respect to the continuous-valued PSO
at BER = 10−5, when the dPSO is selected for the initial
discrete-valued search, while that gain becomes 0.25 dB,
when the dQPSO is used for the discrete-valued search. At the
same time, there is an approximately 1 dB gain achieved by
using the cQPSO at BER= 10−5, when dQPSO is employed
for the discrete-valued search, but 800 additional CFEs are
required. Since all scenarios represent a rank-deficient system

having a normalized user load of UL = 2, they experience a
performance loss with respect to the single-user and single-
stream scenario, with the dQPSO/cQPSO system yielding the
lowest power loss of 2 dB. The complexities of the systems, as
well as their performance degradation compared to the single-
user, single-stream scenario are gathered in Table 3. We may
conclude that the improvement that the dQPSO achieves,
when compared to its classical counterpart dPSO, is much
higher than that of the cQPSO, when compared to the cPSO.
Furthermore, based on Fig. 10, Fig. 13 and Fig. 15 it is evident
that the discrete-valued search dominates the overall system’s
performance, since it finds the ‘‘main’’ transmitted vector d,
the neighbourhood of which is searched by the continuous-
valued PSO.

TABLE 3. Complexity and performance loss.

FIGURE 16. BER performance with respect to Eb/N0 of the downlink
system of Fig. 2, when channel quantization takes place at the mobile
users, who transmit the quantized channel states to the BS through
noiseless feedback channels. The system parameters are
summarized in Table 2.

In Fig. 16 we investigate the sensitivity of the dPSO and
dQPSO to channel quantization. So far, we have been assum-
ing that the BS has perfect channel estimates of all channels.
When FDD is adopted, the mobile users transmit quantized
versions of their CSI to the BS via feedback channels. Let
us assume that the feedback channels are noiseless, in order
to focus our attention on the effect that the quantization
precision has on the system’s BER performance. We have
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opted for using a codebook for quantizing the amplitude of
each time-domain channel state between a single transmit
antenna and a user, as well as a different codebook for quan-
tizing the phases of the aforementioned channels [48], [57].
The k-means clustering algorithm [58], [59] was invoked for
creating the two codebooks, using q number of quantization
bits each, resulting in 2q entries for each codebook. As we
may observe in Fig. 16, when q = 6 or even q = 5
quantization bits are used for creating each of the codebooks,
the associated performance of the resultant system is near-
optimal, approaching the corresponding perfect CSI scenar-
ios. On the other hand, when q = 4 quantization bits are used
for creating each of the codebooks, the resultant performance
is gravely degraded and tends to a BER floor. The proposed
dQPSO experiences a lower sensitivity to the errors intro-
duced by the channel quantization, since it achieves a BER
floor 1.5 orders of magnitude lower than that yielded by the
dPSO. It should be noted that the quantization errors result
in an erroneous error probability expectation of (28) during
the vector perturbation procedure, since the actual channels
will be different. Nevertheless, the resilience to quantization
errors may be viewed as a result of the densely populated
search space that the dQPSO employs, making it possible
to approach the – erroneously assumed – optimal transmit
vector, given the quantized versions of the CSI, while being
close to the true optimal transmit vector, when the actual CSI
is similar to its quantized version.

VI. CONCLUSIONS
In this contribution we proposed two quantum-assisted
bio-inspired algorithms for performing discrete-valued and
continuous-valued heuristic search, namely the dQPSO as
well as the cQPSO, and employed them for the vector per-
turbation procedure in the downlink of rank-deficient NOMA
systems, while employing the MBER criterion for evaluating
the legitimate candidates. Similarly to the classical PSO, the
quality of the dQPSO depends on the allocation of its avail-
able complexity to the number of CFEs per generation and
the number of generations, while the dQPSO substantially
outperforms its classical equivalent according to Fig. 9 for
a similar complexity. In Fig. 11 and Fig. 12 we considered
the proposed methodology for updating a particle’s velocity
in the dQPSO and cQPSO, respectively. Moreover, Fig. 10
and Fig. 13 depicted the reasons why the contribution of the
discrete-valued search is higher than that of the continuous-
valued search, while demonstrating the superiority of the pro-
posed dQPSO over the dPSO and the fact that the proposed
cQPSO achieves a modest performance improvement, when
compared to its classical counterpart.

The benefit of allocating a portion of the available com-
plexity for performing a continuous-valued search after the
discrete-valued search became evident in Fig. 14. Addition-
ally, relying on Fig. 15 we may conclude that the dQPSO
has the highest effect on the NOMA system’s BER, followed
by the presence or absence of a continuous-valued search
for the effective transmit vector. The same conclusions are

drawn based on Table 3, which summarizes the performance
versus complexity of the system in Fig. 15. Finally, we found
in Fig. 16 that the proposed dQPSO-aided search is less
sensitive to quantization errors than the dPSO search, making
the former even more suitable for realistic systems, when a
quantum computer becomes available.

It should be noted that the proposed quantum-assisted algo-
rithms may be tailored for use in other optimization problems
in the field of wireless communications including, but not
limited to, signal detection, channel estimation, or resource
allocation, for achieving near-optimal performance, subject
to the selected criterion, at a low computational complexity.
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