
Received June 7, 2016, accepted June 30, 2016, date of publication July 18, 2016, date of current version November 18, 2016.

Digital Object Identifier 10.1109/ACCESS.2016.2591903

Joint Quantum-Assisted Channel
Estimation and Data Detection
PANAGIOTIS BOTSINIS, (Member, IEEE), DIMITRIOS ALANIS, (Student Member, IEEE),
ZUNAIRA BABAR, SOON XIN NG, (Senior Member, IEEE),
AND LAJOS HANZO, (Fellow, IEEE)
School of Electronics and Computer Science, University of Southampton, Southampton SO17 1BJ, U.K.

Corresponding author: L. Hanzo (lh@ecs.soton.ac.uk)

This work was supported in part by the European Research Council through the Advanced Fellow Grant, in part by the Royal Society’s
Wolfson Research Merit Award, and in part by the Engineering and Physical Sciences Research Council under Grant EP/L018659/1. All
data supporting this study are openly available from the University of Southampton repository athttp://dx.doi.org/10.5258/SOTON/396549.

ABSTRACT Joint channel estimation (CE) and multi-user detection (MUD) have become a crucial
part of iterative receivers. In this paper, we propose a quantum-assisted repeated weighted boosting
search (QRWBS) algorithm for CE and we employ it in the uplink of multiple-input multiple-output
orthogonal frequency division multiplexing systems, in conjunction with the maximum a posteriori
probability (MAP) MUD and a near-optimal quantum-assisted MUD (QMUD). The performance of
the QRWBS-aided CE is evaluated in rank-deficient systems, where the number of receive antenna
elements (AEs) at the base station (BS) is lower than the number of supported users. The effect of the
channel impulse response prediction filters, of the power delay profile of the channels, and of the Doppler
frequency on the attainable system performance is also quantified. The proposed QRWBS-aided CE is shown
to outperform the RWBS-aided CE, despite requiring a lower complexity, in systems where iterations are
invoked between the MUD, the CE, and the channel decoders at the receiver. In a system, where U = 7
users are supported with the aid of P = 4 receive AEs, the joint QRWBS-aided CE and QMUD achieves
a 2-dB gain, when compared with the joint RWBS-aided CE and MAP MUD, despite imposing 43% lower
complexity.

INDEX TERMS Channel estimation, computational complexity, Dürr-Høyer algorithm, Grover’s quantum
search algorithm, multiuser detection, orthogonal frequency divisionmultiplexing, prediction filter, quantum
computing, repeated weighted boosting search.

LIST OF ABBREVIATIONS

ACO Ant Colony Optimization
AE Antenna Element
AWGN Additive White Gaussian Noise
BS Base Station
CDMA Code Division Multiple Access
CE Channel Estimation
CF Cost Function
CFE Cost Function Evaluation
CIR Channel Impulse Response
CRC Cyclic Redundancy Check
DDCE Decision-Directed Channel Estimation
DEA Differential Evolution Algorithm
DEC Decoder
DHA Dürr-Høyer Algorithm
ES Early Stopping
ETU Extended Typical Urban

EVA Extended Vehicular A
FD-CHTF Frequency-Domain CHannel Transfer

Function
FFT Fast Fourier Transform
FKT Forward Knowledge Transfer
GA Genetic Algorithm
HIHO Hard-Input Hard-Output
IDMA Interleave Division Multiple Access
IFFT Inverse Fast Fourier Transform
JCEMUD Joint Channel Estimation and Multi-User

Detection
LLR Log Likelihood Ratio
LS Least Squares
MAP Maximum A posteriori Probability
MIMO Multiple-Input Multiple-Output
MMSE Minimum Mean Square Error
MSE Mean Square Error
MUA MUlti-input Approximation
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MUD Multi-User Detection
MUI Multi-User Interference
OFDM Orthogonal Frequency Division Multiplexing
OHRSA Optimised Hierarchy Reduced Search

Algorithm
PDP Power Delay Profile
PSO Particle Swarm Optimization
QMUD Quantum-assisted Multi-User Detection
QRWBS Quantum-assisted Repeated Weighted

Boosting Search
QSA Quantum Search Algorithm
RWBS Repeated Weighted Boosting Search
SDMA Spatial Division Multiple Access
SISO Soft-Input Soft-Output
WBS Weighted Boosting Search
ZF Zero-Forcing.

I. INTRODUCTION
In the uplink of high-velocity multi-user, multi-carrier sys-
tems, the complexity imposed by accurately estimating the
channels, as well as detecting the transmitted symbols may
become excessive. Hence the performance of complexity-
limited systems may degrade, especially when associated
with a low number of receive Antenna Elements (AE) at
the Base Station (BS), which results in rank-deficient sce-
narios [1], [2]. Various techniques have been proposed for
providing Channel Estimation (CE) with the aid of pilot
training symbols [3], [4] as well as low-complexity Multi-
User Detection (MUD) [2], [5]–[7]. In [4], Li also proposed
an optimal pilot sequence for minimizing the Mean Square
Error (MSE) of the CE process.

The performance of a Multiple-Input Multiple-
Output (MIMO) Orthogonal Frequency Division Multi-
plexing (OFDM) system was found to be improved when
joint channel estimation and multi-user detection was
used [8]–[15]. During the process of Decision-Directed
Channel Estimation (DDCE) [1], [11] the CE benefits by
exploiting the confidently detected high-reliability symbols
of the MUD for improving the channel estimates. Soft-
decision aided joint channel estimation and data detec-
tion [11], [16], [17] provide improved symbol and channel
estimates, when compared to their hard-decision aided equiv-
alents, where iterations exchanging soft extrinsic information
are invoked between the MUD, the CE and the decoders.
Since the search space of the channel estimation problem
is continuous, joint turbo CE and MUD may be assisted by
evolutionary algorithms, resulting in CEs such as the Genetic
Algorithm (GA)-aided CE [10], [18], [19], and the Repeated
Weighted Boosting Search (RWBS)-aided CE [17], as well
as the Particle Swarm Optimization (PSO) aided CE [19] and
the Differential Evolution Algorithm (DEA) aided
CE [19], [20]. In [19], Zhang et al. employed discrete-space
and continuous-space evolutionary algorithms in the MUD
and the CE, respectively, for performing joint channel estima-
tion and multi-user detection. Jiang et al. in [18] combined a
GA-aided CE with the Optimised Hierarchy Reduced Search

Algorithm (OHRSA) assisted MUD for providing joint CE
andMUD. Themain contributions in the field of joint channel
estimation and data detection are summarized in Table 1.

Quantum computing [21]–[23] may support the process
of joint CE and MUD by exploiting its inherent par-
allelism for reducing the complexity and for improving
the data detection’s and channel estimation’s performance.
Grover’s Quantum Search Algorithm (QSA) [24], [25]
succeeds in finding a wanted value in an unsorted database
having N entries with as few as O(

√
N ) queries to

the database, provided that the number of times this
wanted entry appears in the database is known a priori.
Boyer et al. [26] improved Grover’s QSA by finding the
wanted value in the database without any prior knowledge
of the number of times this ‘‘solution’’ appears in it, at the
same order of complexity of O(

√
N ) queries to the database.

Furthermore, the Dürr-Høyer Algorithm (DHA) [27], which
finds the specific argument that minimizes a function by
using O(

√
N ) function evaluations. In [28], Malossini et al.

proposed the quantum-assisted genetic optimization algo-
rithm and compared it to the GA. In our previous work
we have proposed quantum-assisted algorithms for provid-
ing near-optimal hard-input hard-output (HIHO) Quantum-
asissted MUDs (QMUD) [7], [29], as well as soft-input
soft-output (SISO) QMUDs [7], [30]–[32], which may be
employed in iterative receivers and indeed were found to
be superior both to the conventional Zero-Forcing (ZF) and
Minimum Mean Square Error (MMSE) detectors, as well
as to the Ant Colony Optimization (ACO) [30]. In [33], we
presented a non-coherent quantum-assisted multiple symbol
differential detector, which may be used in systems, where
channel estimation is not employed. Quantum computing
may also be used in other fields of wireless communications,
such as in routing [34], [35], as well as in quantum-domain
based communications [36]–[39]. Quantum error correction
is essential for extending the coherence-time of quantum
circuits.
Against this background, our novel contributions are:
1) We propose the novel Quantum-assisted Repeated

Weighted Boosting Search (QRWBS), by amalgamating
the DHA as well as the classical RWBS and we employ
it in the context of providing accurate quantum-assisted
CE in iterative receivers. We show our QRWBS-
aided CE achieves a better performance than the
classic RWBS-aided CE, despite its lower complexity.
We demonstrate that the proposed quantum-assisted
algorithm may be integrated with iterative receivers
and we investigate various scenarios of multiple iter-
ations between the MUD, the CE and the decoders,
while identifying which specific iterations are more
beneficial for the system’s BER performance.

2) We intrinsically amalgamate the QRWBS-aided CE
with the SISODHA-aidedQMUD relying on theMUlti-
input Approximation and Forward Knowledge Trans-
fer (DHA-MUA-FKT) based QMUD of [30] and [32]
for conceiving a quantum-assisted joint channel
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TABLE 1. Selected contributions in joint channel estimation & data detection.

estimator and multi-user detector. We then compare it
to a system, where either the optimal Maximum A pos-
teriori Probability (MAP)MUDor the RWBS-aided CE
are employed, demonstrating that the quantum-assisted
joint CE and MUD achieve both a better performance
and lower complexity. We evaluate our quantum-
assisted algorithm’s performance with the aid of the CE
MSE curves, as well as BER plots, while comparing it to
systems, where perfect channel estimation is available.
We characterise the performance of rank-deficient sce-
narios, of Channel Impulse Response (CIR) predic-
tion filters, the effects of the channels’ Power Delay
Profile (PDP) and of the Doppler frequency on the
proposed algorithm’s performance and complexity.

3) We also suggest a modification for the weighted boost-
ing search component of the RWBS and subsequently
of the QRWBS and then analyse the associated perfor-
mance improvement.

The paper is structured as described in Fig. 1. In Section II
we present the SDMA-OFDM system’s model, including the
pilot-assisted channel estimation, the CIR prediction filter,
as well as the joint MUD and CE operations. In Section III
the iterative processes of the MUD, of the CE and of the
decoders are detailed. In Section IV a rudimentary intro-
duction to quantum computing is provided, along with the
quantum algorithms that will be employed by our QRWBS.

Furthermore, in Section V we design the QRWBS and
compare its algorithmic steps to those of the RWBS, while
in Section VI their complexity is quantified. Moreover,
in Section VII we employ the QRWBS-aided CE in the
context of various MIMO-OFDM systems and evaluate its
performance both with the aid of the CE MSE and the
system’s BER. Finally, our conclusions are offered
in Section VIII.

II. SYSTEM MODEL
Let us consider the uplink of an SDMA-OFDM system [2],
where the uth user, u = 1, 2, . . . ,U , initially encodes his/her
information bits {bu} using a turbo channel encoder, as illus-
trated in Fig. 2. The resultant encoded bits {cu} are then
interleaved and mapped to M -ary symbols {xu}. The same
interleaving sequence is used for each user. The symbols are
converted from a single serial stream to W parallel streams,
where W is the number of subcarriers that each user will
transmit in, out of Q available subcarriers. Let us assume
the worst-case scenario, which leads to the maximum pos-
sible Multi-User Interference (MUI), where each user always
transmits on all the available subcarriers, leading to W = Q.
Each parallel stream is then modulated by using a Q-point
Inverse Fast Fourier Transform (IFFT) and the Q modulated
symbols are transmitted over the wireless Rayleigh fading
channel.
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FIGURE 1. Summary of the sections of the paper.

The P receive AEs of the BS receive the U faded transmit-
ted signals. Let us consider a synchronous system, where the
U transmitted signals arrive simultaneously to the P receive
AEs, therefore they are added together at each receive AE,
along with the Additive White Gaussian Noise (AWGN),
which is a random, Gaussian-distributed, complex-valued
variable with a zero mean and a variance of N0 = 2σ 2. The
proposed joint quantum-assisted channel estimator andmulti-
user detector is expected to be able to work in the presence
of both time and/or frequency synchronization mismatch, by
suitably changing the search space of the quantum search
algorithms. In more detail, the QMUD would search for the
most probable multi-level symbol in more than one delay taps
and more than one subcarrier simultaneously, by allowing a
legitimate multi-level symbol to take a different form, where
a user’s symbol may have been received in all probable time
and/or frequency resources. This would increase the number
of legitimate multi-level symbols and hence the complexity
of both the full search and of the quantum search algorithms.
Time synchronization may also be achieved with the use
of midambles. This would also result in requiring a lower
complexity in the joint channel estimator and multi-user

detector, when the midamble is included in different parts of
a user’s transmission burst during a time slot. Furthermore, it
would allow a detection of the number of users U supported
by the system, when this number is not known a priori at
the BS. In any case, since the process would remain a search
problem, the quantum search algorithms are still expected to
require a lower complexity than the full search.

Focusing on the qth subcarrier of the oth OFDM symbol,
the received signal at the BS is

yo,q = Ho,q · xo,q + no,q, (1)

where yo,q = [y1,o,q, y2,o,q, . . . , yP,o,q]T is the (P×1)-
element received signal vector and Ho,q is the Frequency-
Domain CHannel Transfer Function (FD-CHTF) on the
qth subcarrier of the oth OFDM symbol, which may be
represented by a (P×U )-element matrix as in

Ho,q =


H (1)
1,o,q H (2)

1,o,q · · · H (U )
1,o,q

H (1)
2,o,q H (2)

2,o,q · · · H (U )
2,o,q

...
...

. . .
...

H (1)
P,o,q H (2)

P,o,q · · · H (U )
P,o,q

, (2)

where H (u)
p,o,q is the complex-valued channel coefficient

between the uth user and the pth receive AE on the
qth subcarrier of the oth OFDM symbol. Moreover, still
referring to (1), xo,q = [x(1)o,q, x

(2)
o,q, . . . , x

(U )
o,q ]T is the

(U×1)-element symbol vector of the U users on the
qth subcarrier of the oth OFDM symbol and no,q =

[n1,o,q, n2,o,q, . . . , nP,o,q]T is the (P×1)-element noise
vector.

The FD-CHTF coefficients between the uth user and the
pth receive AE are generated by the Q-point Fast Fourier
Transform (FFT) of the time-domain CIR h(u)p,o for the
oth OFDM symbol, where

h(u)p,o =
[
h(u)p,o,1, h

(u)
p,o,2, . . . , h

(u)
p,o,L

]T
. (3)

In (3), h(u)p,o,l is the Rayleigh-distributed complex-valued time-
domain channel coefficient of the lth multipath delay tap,
l = 1, 2, . . . ,L, of the channel between the uth user and the
pth receive AE during the oth OFDM symbol and L is the
index of the channel’s last delay tap. In this paper we have
assumed that each channel has a time-invariant CIR, therefore
the specific delay tap indices of each channel remain unal-
tered for all the transmitted OFDM symbols, as encapsulated
in L[o] = L. On the other hand, the channel of each delay path
is independently fading following the Rayleigh distribution
and having a normalized Doppler frequency of fd , as in
h(u)p,o 6= h(u)p,o−1. Let us emphasize that L is not the number
of paths of a channel, but the index of the last delay tap of a
channel. More importantly, we do not assume any knowledge
about the number of paths of a channel. For example, in a
scenario, where a channel’s power delay profile consists of
4 paths, according to which the first three paths are repre-
sented by the first three CIR taps and the last path arrives at
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FIGURE 2. SDMA-OFDM uplink communication system’s block diagram supporting U users employing Turbo coding as well as iterative, joint
Quantum-assited CE and soft-input soft-output QMUD at the BS.

the 20th delay tap, we have L = 20, without assuming any
knowledge about the total number of paths. Based on (3), we
may obtain the FD-CHTF between the uth user and the pth
receive AE during the oth OFDM symbol as in [17]

H(u)
p,o = FQ,L · h(u)p,o, (4)

where

H(u)
p,o =

[
H (u)
p,o,1,H

(u)
p,o,2, . . . ,H

(u)
p,o,Q

]T
(5)

is the Q-element FD-CHTF vector and FQ,L is the
(Q × L)-element FFT matrix, which may be obtained by
taking the first L columns of the (Q × Q)-element FFT
matrix FQ,Q, where Fq,l = exp [−j2π (q− 1)(l − 1)/Q] with
q = 1, 2, . . . ,Q and l = 1, 2, . . . ,L.
In this contribution, we have adopted the assumption of

all users having the same Doppler frequency, for achieving
homogeneity and fairness between the users’ performance.
For the same reasons, we opted for all multi-path channels to
have the same number of delay paths L. In practice, when the
multi-path channels between a user and a receive antenna ele-
ment have different number of paths, L will be a function of
u and p. Please note that the proposed joint quantum-assisted
channel estimation and multi-user detection algorithm will
not differ in those scenarios, but the performance of each user
would be unique. Furthermore, all receive antenna elements
and all users are assumed to be sufficiently separated in space,
so that there is no spatial correlation between two channels.
Nevertheless, if spatial correlation was present, the proposed
algorithm would still operate normally. However, the perfor-
mance of any classical or quantum-assisted algorithm per-
forming joint channel estimation and multi-user detection
would be degraded, since spatial correlation at the receive
antenna elements would lower the diversity order and spatial

correlation between two users’ antennas would increase their
multi-user interference.

A. PILOT CHANNEL ESTIMATION
Channel estimation is performed for obtaining the chan-
nel coefficients of each OFDM symbol. More specifically,
starting from the first OFDM symbol and every 1t OFDM
symbols, an OFDM symbol is transmitted by each user
with user-specific pilot symbols transmitted on each subcar-
rier [18], resulting in a preamble arrangement of the training
symbols. Please note that the proposed joint channel esti-
mation and multi-user detection algorithm may also be used
in systems, where a scattered pilot arrangement is adopted,
by suitably adjusting the pilot-based channel estimation and
prediction. All the pilot symbols are assumed to be known
at the BS. The difference with respect to the pilot symbols
in [18] is that in our scenarios the signals are not assumed
to be separated with the aid of orthogonal spreading codes
on each subcarrier, but rather only in the spatial domain. By
doing this, we may allow the MUI to contaminate in the CE,
but the required bandwidth is smaller and the transmission
process remains the same as that of the subsequent OFDM
symbols. Let us distinguish the symbols as data OFDM sym-
bols and pilot OFDM symbols, depending on whether infor-
mation symbols or pilot symbols are transmitted on each of
their subcarriers, respectively. The user-specific pilot symbol
sequence may either be random, or optimized with respect to
the number of users U and the number of subcarriers Q [4],
for achieving the lowest possible MUI.

The CE relying on a pilot OFDM symbol is performed in
the time domain, by using the Least Squares (LS) channel
estimator on a per receive AE basis [1], [17], [19], since each
AE has received a unique signal, where the pilot signals are
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superimposed and contaminated by the AWGN. Therefore,
based solely on the received signal at the pth receive AE,
the employment of the LS CE yields an (L × U )-element
complex-valued vector with the CIRs of the channels between
all U users and the pth receive AE described as

ĥp,o =
[
ĥ(1)Tp,o , ĥ

(2)T
p,o , . . . , ĥ

(U )T
p,o

]T
, (6)

where ĥ(u)p,o is the estimate of h(u)p,o, which is given in (3).
The reason we opted for a time domain CE performed

on a per receive AE basis instead of a frequency domain
CE performed on a per subcarrier basis is the exploitation
of the correlation between the frequency domain samples
of a channel due to the FFT, which is acquired during a
time domain CE, but ignored during a frequency domain CE.
Furthermore, we opted for estimating the CIR of each channel
instead of straightforwardly estimating its FD-CHTF due to
the fact that (L × U ) variables have to be estimated in the
CIR CE scenario, in contrast to (Q × U ) variables for the
latter case. In practice we have L < Q, hence we have to
estimate fewer continuous, complex-valued variables if we
aim for estimating the CIRs instead of the FD-CHTFs. Please
note that in our system the symbols transmitted by multiple
users on the same subcarrier may only be separated in the
spatial domain.

B. CIR PREDICTION FILTER
As illustrated in Fig. 2, before the initial MUD on every data
OFDM symbol, the CIR prediction filter [1] is employed for
providing a better initial CIR estimate ĥpr,p,o, where

ĥpr,p,o =
[
ĥ(1)Tpr,p,o, ĥ

(2)T
pr,p,o, . . . , ĥ

(U )T
pr,p,o

]T
, (7)

and ĥ(u)pr,p,o is the predicted CIR during the oth OFDM symbol
of the channel between the uth user and the pth receive AE.
The CIR prediction filter is based on the estimated CIRs of
the Ntap previous OFDM symbols, ĥp,o−1, . . . , ĥp,o−Ntap , the
number of subcarriers Q, the normalized effective Doppler
frequency Fd = Q · fd , the modulation scheme, the number
of users U , the index of the last delay path L of the channel’s
power delay profile and the noise power N0. The prediction
filter’s order is equal to Ntap. During each use of the CIR
prediction filter, the filter’s coefficients have to be estimated.

It is expected that a filter with a higher order will provide
a better initial CIR estimate, since it will depend on more
CIRs related to past OFDM symbols. Since we assume that
all the users experience the same Doppler frequency and they
use the same modulation scheme, the same filter coefficients
will be used by all the users [1]. In addition, the same filter
coefficients will be used for predicting the channel on each
of the L delay paths.

C. JOINT CHANNEL ESTIMATION AND
MULTI-USER DETECTION
The CIRs of Section II-B, predicted during a data OFDM
symbol are used for performing MUD during the same data

OFDM symbol.More specifically, having obtained ĥ(u)pr,p,o for
u = 1, 2, . . . ,U , p = 1, 2, . . . ,P, we initially assume

ĥ(u)p,o = ĥ(u)pr,p,o, (8)

where ĥ(u)p,o is described in (6), and we may calculate Ĥ(u)
p,o

based on (4), finally resulting in an estimate of the
FD-CHTF on the qth subcarrier Ĥo,q, by combining (2)
and (5). Therefore, starting from the FD-CHTF predicted for
the current OFDM symbol based on the previous OFDM
symbols, we perform Joint Channel Estimation and Multi-
User Detection (JCEMUD) [11], [17]–[19].

Firstly, we performMUD on a per subcarrier basis, assum-
ing the initially estimated FD-CHTF to be Ĥo,q for each
subcarrier. Please note that the initially estimated FD-CHTF
is predicted based on the previous OFDM symbols, therefore
it may differ significantly from the actual FD-CHTF of (2)
if the effective Doppler frequency Fd = Q · fd , which is
the Doppler frequency that each subcarrier effectively expe-
riences from one OFDM symbol to the next, is too high,
or the prediction filter order Ntap is not sufficiently high.
We will demonstrate that we may obtain erroneous initial
symbol estimates by the MUD even in noiseless scenarios, if
Fd is too high in association with a low prediction filter order
Ntap, since the initial channel estimates generated during the
previous OFDM symbol have low correlation with the actual
ones in the current OFDM symbol. The MUD may provide
soft or hard outputs, and it may receive soft inputs from the
channel decoder in the form of a priori LLRs. The perfor-
mance is expected to be improved when a SISO MUD is
employed. In this treatise we will investigate the employment
of a SISO QMUD.

Having obtained the symbol estimates xo,q for each
subcarrier q of the oth OFDM symbol, we use them in
DDCE [1], [17], [19], with the aid of the proposed quantum-
assisted repeated weighted boosting search.

1) MULTI-USER DETECTION
The MUD is performed on a per subcarrier basis, therefore
the Cost Function (CF) may be described as [2], [30], [32]

fMUD
(
Ĥo,q, xo,q

)
= exp

−
∥∥∥yo,q − Ĥo,q · xo,q

∥∥∥2
N0

P(xo,q),
(9)

where P(xo,q) is the a priori symbol probability of the multi-
level symbol xo,q, which is fed back to the MUD from the
channel decoders of Fig. 2. Initially we assume that P(xo,q) =
M−U , for all legitimate xo,q. A HIHOMUDfinds the specific
symbol vector x̂o,q,max that maximizes the CF fMUD of (9),
as in

x̂o,q,max = argmax
xo,q∈MU

{
fMUD

(
Ĥo,q, xo,q

)}
. (10)

On the other hand, a SISO MUD estimates the bit-based
a posteriori Log Likelihood Ratios (LLR) of the multi-user
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symbol, as encapsulated in [2], [7], [30], [32]

Lm,po
(
b(m)u

)
= ln

∑
x∈χ (u,m,0)

fMUD
(
Ĥo,q, xo,q

)
∑

x∈χ (u,m,1)
fMUD

(
Ĥo,q, xo,q

) , (11)

where Lm,po
(
b(m)u

)
is the a posteriori LLR of the uth user’s

mth bit and χ (u,m, v) is the subset of legitimate symbols that
have the uth user’s mth bit equal to v.

Regardless of the specific nature of the selected MUD,
a hard decision is made on the output of the MUD and the
resultant symbol is forwarded to the DDCE. The CE will be
based on the symbols detected on all the subcarriers of the oth
OFDM symbol and it will provide an improved estimate of
the FD-CHTF, which may in turn be exploited by the MUD
of the current OFDM symbol for detecting a more reliable
multi-level symbol, or by the MUD of the (o + 1)th OFDM
symbol, which will use it as its initial channel estimate, in
the same way as the oth OFDM symbol initially used the
FD-CHTF estimated during the (o − 1)th OFDM
symbol.

Still referring to the oth OFDM symbol, after a predeter-
mined number of IMUDCE iterations between the MUD and the
CE [11], [19], the resultant hard estimates in the case of a
HIHO MUD, or the extrinsic LLRs, which are obtained by
the a posteriori LLRs of (11) based on

Lm,e
(
b(m)u

)
= Lm,po

(
b(m)u

)
− ln

P
(
b(m)u = 0

)
P
(
b(m)u = 1

) , (12)

are deinterleaved and forwarded to the channel decoders
as a priori LLRs. Following the decoding procedure, the
extrinsic LLRs at the output of the channel decoders
may be fed back to the MUD after the interleaving pro-
cedure for aiding it to provide a better symbol esti-
mate. After IMUD−CEDEC iterations between the JCEMUD and
the decoders of Fig. 2, a hard decision is performed at
the extrinsic LLRs at the output of the decoders, pro-
viding us with the estimated information bits {b̂u}, for
u = 1, 2, . . . ,U .

2) DECISION DIRECTED CHANNEL ESTIMATION
The DDCE is performed on a per receive AE basis by allow-
ing the hard decision at the output of the MUD to direct and
guide the search for finding the CIR that minimizes the MSE
between the received signals on each subcarrier of a receive
AE and the corresponding detected symbols at the output of
the MUD [1], [17], [19]. Hence, the CF of the DDCE may be
defined as

fCE
(
hp,o, X̂o

)
=

∥∥∥Yp,o − X̂T
o · FQ,L · hp,o

∥∥∥2, (13)

where hp,o is the (UL × 1)-element CIR vector described
in (6), X̂o is a (UQ × Q)-element matrix constructed by the

detected symbols at the MUD as in

X̂o =

[
X̂(1)
o , X̂

(2)
o , . . . , X̂

(U )
o

]T
, (14)

X̂(u)
o = diag

{
x̂(u)o,1, x̂

(u)
o,2, . . . , x̂

(u)
o,Q

}
, (15)

Yp,o is the (Q×1)-element vector, which contains the signals
received on the Q subcarriers at the pth receive AE as in

Yp,o =
[
yp,o,1, yp,o,2, . . . , yp,o,Q

]T
, (16)

and FQ,L is the FFT matrix as stated in Section II.
The output of the DDCE is the specific hp,o,min that

satisfies

hp,o,min = argmin
hp,o∈CUL

{fCE }. (17)

The CIR of (17) estimated at each receive AE is used by the
MUD of Section II-C1 of the current oth OFDM symbol, if
further MUD-CE iterations are allowed, or as an input CIR in
the CIR prediction filter of the subsequent, (o+ 1)th OFDM
symbol. In this paper, we propose the QRWBS algorithm for
performing fast and accurate DDCE.

III. CE INTEGRATION IN ITERATIVE RECEIVERS
As illustrated in Fig. 2 and briefly stated in Section II, the CE
process may be integrated in receivers, where iterations are
allowed between the MUD, the CE and the DEC processing
blocks. More specifically, in our systems iterations may be
performed between the MUD and the CE, as well as between
the MUD, the CE and the decoders.

A. MUD-CE ITERATIONS
In our scenario, IMUDCE number of iterations may be allowed
between the MUD and the CE before the information at the
output of the MUD is passed to the decoders. In more detail,
the initialMUDprocess on anOFDMsymbol is performed on
a per subcarrier basis during the iMUDCE = 1st MUD-CE itera-
tion, relying on the predicted channel estimates of the current
OFDM symbol’s CIR prediction filter. After determining the
detected symbol, the CE is taking over on a per receive AE
basis, for updating the CIR, which corresponds to a lowMSE
in (13). During the iMUDCE = 2ndMUD-CE iteration, theMUD
is activated again for detecting a multi-level symbol on each
subcarrier, by using the updated channel estimates.

After IMUDCE iterations, the extrinsic LLRs at the output of
the MUD are fed to the U channel decoders. It should be
mentioned that the CE is also performed at the IMUDCE th itera-
tion, even though the channel decoders will use the extrinsic
LLRs of the MUD, which were calculated based on the CIRs
estimated during the (IMUDCE − 1)th iteration. The reason for
performing the CE even during the last MUD-CE iteration
is that these updated channel estimates will be used by the
CIR prediction filter of the next OFDM symbol. However,
they may also be used for the current OFDM symbol, when
iterations are allowed between the MUD and the decoders, as
analysed in Section III-B.
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FIGURE 3. The sequence of block activations at the base station, as well as the IMUD
CE and IMUD−CE

DEC iterations.

FIGURE 4. Abstract system model of an uplink receiver in a
Non-Orthogonal Multiple Access (NOMA) system, employing Joint
Quantum-assisted Channel Estimation and Multi-User Detection.

B. MUD-CE-DEC ITERATIONS
As described in Fig. 3, before the iMUD−CEDEC = 1st MUD-CE-
Decoders (DEC) iteration, the initial channel estimates used
in the MUD of an OFDM symbol are the ones estimated by
the CIR prediction filter of the current OFDMsymbol. During
the iMUD−CEDEC thMUD-CE-DEC iteration, with iMUD−CEDEC > 1,
the CIRs used by the MUD during the iMUDCE = 1st
MUD-CE iteration are the ones estimated during the last
MUD-CE iteration of the previous, (iMUD−CEDEC − 1)th,
MUD-CE-DEC iteration. Therefore, the channel estimates
are not only saved for use by the CIR prediction filters
of the subsequent OFDM symbols, but also for subsequent
MUD-CE-DEC iterations of the current OFDM symbols. The
reason for opting for this methodology is that the estimated
CIRs during the previous MUD-CE-DEC iteration for the
oth OFDM symbol are expected to offer a lower MSE than
the predicted CIRs of the same OFDM symbol, since they
have been estimated for that specific OFDM symbol, having
already closed the remaining gap created by the effective
normalized Doppler frequency Fd and the AWGN, as well as
having already taken into consideration the previous a priori
LLRs provided by the channel decoders of Fig. 2 for the oth
OFDM symbol. An abstract version of the block activations
and information exchange is summarized in Fig. 4.

IV. QUANTUM SEARCH ALGORITHMS
Quantum computing employs quantum bits or qubits.1

In contrast to a classical bit, which may assume the
values 0 or 1, a qubit |q〉 may be in a superposition of these
two states, as in

|q〉 = α|0〉 + β|1〉, (18)

where |α|2 and |β|2 are the probabilities of observing the
qubit in the |0〉 and |1〉 states, respectively, with α, β ∈ C
and |α|2 + |β|2 = 1. When a so-called measurement or
observation is performed on a qubit, its state collapses to
one of the measurement’s bases. In the investigated QSAs,
the measurement basis employed is the computational basis
{|0〉, |1〉} [21]–[23].

Quantum registers may be formed by using more than
one qubits. The qubits may be independent, or entan-
gled [21]–[23]. For example, a quantum register |q1〉|q2〉 =
(|00〉 + |01〉)/

√
2 = |0〉(|0〉 + |1〉)/

√
2 includes the two

independent qubits |q1〉 = |0〉 and |q2〉 = (|0〉 + |1〉)/
√
2,

since observing any of them does not affect the quantum state
of the other one. However, a quantum register associated with
|φ1〉|φ2〉 = (|00〉 + |11〉)/

√
2 includes two entangled qubits,

since the individual qubits cannot be represented separately
and measuring one affects the state of the other.

The quantum states of the qubits are evolved by using uni-
tary operators, such as the Hadamard operator H [21]–[23],
which creates an equiprobable superposition of the computa-
tional basis states, as in |+〉 = H |0〉 = (|0〉 + |1〉)/

√
2 and

|−〉 = H |1〉 = (|0〉 − |1〉)/
√
2.

In the analysis of the following QSAs and their applica-
tions, we only use real-valued amplitudesα andβ for a qubit’s
states. Furthermore, when a decimal number appears in a
ket |·〉, that number is the decimal representation of the binary
string created by the quantum register’s qubits. For instance,
we have |5〉 = |101〉 = |1〉|0〉|1〉.

A. GROVER’S QUANTUM SEARCH ALGORITHM
The average complexity, quantified in terms of the average
number of Cost Function Evaluations (CFE), for searching

1For an extensive tutorial on quantum computing and quantum search
algorithms, please refer to [7].
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FIGURE 5. Example of Grover’s QSA in a database with N = 4 entries and
S = 1 solution. The solution state is |1〉.

with classical computing for the index xs which leads to
f (xs) = δ for a desired value δ and function f with N
legitimate entries is O(N/S), where S is the number of dif-
ferent indices that have the same output δ, also termed as
solutions. By contrast, Grover’s QSA is able to find the index
|xs〉 that corresponds to f (xs) = δ with as few as O(

√
N/S)

CFEs [24], [25].
Grover’s QSA initially creates an equiprobable superposi-

tion of all N legitimate states, as in

|x〉 =
1
√
N

N−1∑
x=0

|x〉, (19)

by using n = log2(N ) qubits. Afterwards, the Grover
operator [24]

G = HP0H · O (20)

is applied Lopt number of times to the initial quantum state
of (19), where H is the Hadamard operator, P0 is a unitary
operator that evolves |x〉 to−|x〉 if and only if |x〉 = |0〉, O is
a unitary operator termed as the Oracle [25], which evolves
|x〉 to −|x〉, when f (x) = δ, and Lopt is equal to

Lopt =
⌊
π/4

√
N/S

⌋
. (21)

The Oracle evaluates the function f for all superimposed
quantum states and marks the specific solution indices xs,
which satisfy f (xs) = δ, by flipping their quantum
state’s sign. By doing so, when the resultant quantum state
|x ′〉 = GLopt |x〉 is observed, there is an ∼100% success
probability of obtaining a state |xs〉 that satisfies f (xs) = δ.
In order for Grover’s QSA to be employed, the specific
value δ, as well as the number of solutions S and the number
of legitimate inputs N have to be known a priori.

Figure 5 presents an example, when Grover’s QSA is
employed in a database with N = 4 entries and there
is S = 1 solution. In our example, the state |1〉 is the
solution, therefore, Grover’s QSA will be successful
if it eventually observes that state. Initially, we cre-
ate an equiprobable superposition of states, |x1〉 =
1
2 (|0〉 + |1〉 + |2〉 + |3〉). In Fig. 5 we have plotted |x1〉 with

respect to the orthogonal quantum states |s〉 = |1〉, which
represents the solution state and |ns〉 = 1

√
3
(|0〉 + |2〉 + |3〉),

which represents the equiprobable superposition of states
that are not solutions. The angle between |x1〉 and |ns〉 is
equal to arcsin

(√
S/N

)
= 30o. After the application of

the Oracle, the solution state is reflected with respect to
the quantum state |ns〉, since the Oracle only flips the sign
of the solution state |1〉. Afterwards, the diffusion operator
D = HP0H reflects the state |x2〉 with respect to the initial
superposition of states |x1〉, resulting in the state G|x1〉 =
|s〉 = |1〉. Since Lopt = 1 according to (21), we stop here
and observe the resultant state. Since G|x1〉 = |1〉, we will
observe the solution state with certainty. It should be noted
that if N/S 6= 4, the optimal resultant state GLopt |x1〉 after
Lopt Grover iterations will not be equal to |s〉, but very close
to it. This is the reason why Grover’s QSA has a ∼100%
probability of success.

FIGURE 6. Flow chart of the BBHT QSA [32].

B. BOYER-BRASSARD-HØYER-TAPP QSA
When the number of solutions S is not known, but δ and N
are available, a variant of Grover’s QSA, namely the BBHT
QSA [26] may be used. The BBHT QSA uses the Grover
operator G of Section IV-A, but since Lopt of (21) cannot be
calculated due to the uncertainty of S, the Grover operator
G is applied to the initial state a pseudo-random number
of times. After observing the resultant quantum state, it is
verified whether a solution |xs〉 was obtained or not. If not,
the Grover operator is applied again to the initial state of (19)
another pseudo-random number of times, as seen in the flow-
chart of Fig. 6 [32]. It was proved in [26] that the BBHTQSA
finds a solution |xs〉 after O(

√
N/S) CFEs with a ∼ 100%

success probability. If no solution has been observed during
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the BBHT QSA after 4.5
√
N CFEs in the quantum domain,

it is concluded that there are no solutions.

C. DÜRR-HØYER ALGORITHM
When both the number of solutions S and the value δ are
unavailable, then neither the BBHT QSA nor Grover’s QSA
may be used. If, however, a known desired attribute of the
searched value is available, alternate QSAsmay be employed.
For example, if the specific xmin that minimizes the function
f (xmin) ≤ f (x), for all legitimate x, has to be found, but the
specific δ = f (xmin) is not available, the DHA [27] may be
used. The DHA succeeds in finding xmin after O(

√
N ) CFEs

with ∼100% success probability.
The DHA is initialized by using the CF value of either a

random index [27], or of a carefully selected index xi [29].
The DHA then applies a unitary operator to the equiprobable
quantum state of (19) a pseudo-random number of times with
the aim of finding an index xs that has a lower CF value than
the index xi, as encapsulated in

f (xs) < f (xi). (22)

Grover’s operator of (20) with an alternate Oracle ODHA
is applied a pseudo-random number of times, because the
number of indices S that satisfy (22) is unavailable and Lopt
of (21) cannot be calculated.More specifically, DHA’s Oracle
ODHA marks as solutions the specific states |xs〉 that satisfy
f (xs) < f (xi) by flipping their quantum state’s sign. Once
a solution xs is found, that specific state becomes xi = xs,
its CF value becomes the new δ = f (xi) = f (xs) and the
process restarts. If no solution has been found after 4.5

√
N

CFEs following the last update of δ, it is concluded that we
have xmin = xi and the DHA stops. As investigated in [30],
the DHA starts from an initial state and finally finds xmin by
evaluating the CF for continuously ‘‘better’’ indices x during
its operation. The flow chart of the DHA is presented in
Fig. 7 [32].

FIGURE 7. Flow chart of the DHA [32].

Algorithm 1 Repeated Weighted Boosting Search for Chan-
nel Estimation

1: Set hbest,0 ← hp,o−1,min, fbest,0 ← fCE
(
hp,o−1,min, X̂o

)
.

2: Set ξ ← 1.
3: while ξ 6 4 AND fbest,ξ−1 − fbest,ξ > 14 do
4: Let hξ,1 ← hbest,ξ−1 be the first individual of the ξ th

generation.
5: Create Z − 1 individuals, hξ,ζ , ζ = 2, 3, . . . ,Z , based on

hbest,ξ−1 and according to (23).
6: Evaluate the CE CF of (13) for those Z − 1 individuals.
7: Update hbest,ξ based on (24), along with fbest,ξ .
8: Update hworst,ξ , h2nd worst,ξ based on (25) and (26), respec-

tively, along with fworst,ξ and f2nd worst,ξ .

9: Set the weight factors δ(1)ξ,ζ to 1/Z for all ζ = 1, 2, . . . ,Z .
10: for tWBS = 1, 2, . . . ,TWBS do
11: Normalize the CF values based on (28).
12: Calculate the weight factors δ(t)ξ,ζ for ζ = 1, 2, . . . ,Z

based on (31) and (32).
13: Create two new individuals hξ,Z+1 and hξ,Z+2 based

on (33) and (34), respectively.
14: Evaluate the CE CF of (13) for the two new individuals,

obtaining fξ,Z+1 and fξ,Z+2, respectively.
15: if fξ,Z+1 < fξ,Z+2 AND fξ,Z+1 < fworst,ξ then
16: Replace hworst,ξ with hξ,Z+1.
17: if fξ,Z+2 < f2nd worst,ξ then
18: Replace h2nd worst,ξ with hξ,Z+2.
19: end if
20: else if fξ,Z+2 < fξ,Z+1 AND fξ,Z+2 < fworst,ξ then
21: Replace hworst,ξ with hξ,Z+2.
22: if fξ,Z+1 < f2nd worst,ξ then
23: Replace h2nd worst,ξ with hξ,Z+1.
24: end if
25: end if
26: Update hbest,ξ , hworst,ξ and h2nd worst,ξ , alongwith fbest,ξ ,

fworst,ξ and f2nd worst,ξ , based on (24), (25) and (26).
27: end for
28: ξ ← ξ + 1.
29: end while
30: Output hbest,ξ and fbest,ξ .

The minimum number of CFEs in the DHA is 4.5
√
N and

the maximum number of CFEs is 22.5
√
N [27]. In [29], we

presented an Early Stopping (ES) modification for the DHA,
where we may terminate the DHA before the last 4.5

√
N

unnecessary CFEs, where xmin, which it will turn out to be
equal to xi, has already been found, but this knowledge is
not available to us. In this paper, we will use the ES criterion
of [29] in the DHA processes of the proposed QRWBS.

V. QRWBS VERSUS RWBS
Themain difference between theRWBSof [17], [19], and [40]
and the QRWBS is the methodology adopted for creating
the individuals’ population Z during each generation ξ with
ξ = 1, 2, . . . , 4, where the ξ th ‘‘generation’’ refers to the
number of times the initial individuals’ population has been
updated. The steps of the RWBS are summarized in Alg. 1,
while those of the QRWBS may be found in Alg. 2. The flow
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Algorithm 2 Quantum Repeated Weighted Boosting Search
for Channel Estimation

1: Set hbest,0 ← hp,o−1,min, fbest,0 ← fCE
(
hp,o−1,min, X̂o

)
.

2: Set ξ ← 1.
3: while ξ 6 4 AND fbest,ξ−1 − fbest,ξ > 14 do
4: Create ZDHA individuals, hξ,ζ , ζ = 1, 2, . . . ,ZDHA, based

on hbest,ξ−1 and according to (23), where ZDHA is a power
of 2 and is much higher than the number of individuals in
Alg. 1.

5: Employ the DHA on the ZDHA individuals and search for
hbest,ξ , starting from a random hξ,ζ of the ZDHA individuals,
based on (13). Stop the DHA after ES number of CFEs.

6: The CE CF values of Zξ < ES individuals will have been
obtained after early stopping the DHA. Include hbest,ξ−1 for
having a total of Zξ + 1 individuals.

7: Z ← Zξ + 1.
8: Update hbest,ξ based on (24), along with fbest,ξ .
9: Update hworst,ξ , h2nd worst,ξ based on (25) and (26), respec-

tively, along with fworst,ξ and f2nd worst,ξ .

10: Set the weight factors δ(1)ξ,ζ to 1/Z for all ζ = 1, 2, . . . ,Z .
11: for tWBS = 1, 2, . . . ,TWBS do
12: Normalize the CF values based on (28)
13: Calculate the weight factors δ(t)ξ,ζ for ζ = 1, 2, . . . ,Z

based on (31) and (32).
14: Create two new individuals hξ,Z+1 and hξ,Z+2 based

on (33) and (34), respectively.
15: Evaluate the CE CF of (13) for the two new individuals,

obtaining fξ,Z+1 and fξ,Z+2, respectively.
16: if fξ,Z+1 < fξ,Z+2 AND fξ,Z+1 < fworst,ξ then
17: Replace hworst,ξ with hξ,Z+1.
18: if fξ,Z+2 < f2nd worst,ξ then
19: Replace h2nd worst,ξ with hξ,Z+2.
20: end if
21: else if fξ,Z+2 < fξ,Z+1 AND fξ,Z+2 < fworst,ξ then
22: Replace hworst,ξ with hξ,Z+2.
23: if fξ,Z+1 < f2nd worst,ξ then
24: Replace h2nd worst,ξ with hξ,Z+1.
25: end if
26: end if
27: Update hbest,ξ , hworst,ξ and h2nd worst,ξ , alongwith fbest,ξ ,

fworst,ξ and f2nd worst,ξ , based on (24), (25) and (26).
28: end for
29: ξ ← ξ + 1.
30: end while
31: Output hbest,ξ and fbest,ξ .

chart of the QRWBS is presented in Fig. 8. Let us investigate
in more depth the stages and differences of the QRWBS
and the RWBS, while referring to the channel estimation
procedure of the oth OFDM symbol. Both the RWBS and
the QRWBS require the number of individuals Z , the number
of generations 4, the number of weighted boosting searches
per generation TWBS , as well as a mutation parameter γ and
the required accuracy 14 from one generation to the next.
The mutation parameter γ scales the effect of the necessary
randomness during the update of an individual, while the
required accuracy 14 determines the threshold difference

FIGURE 8. Flow chart of the QRWBS.

between the CF value of the best individual of the previous
generation and that of the best individual of the present
generation, that is accepted, before stopping the search algo-
rithm earlier than 4 generations. In addition, the RWBS asks
for the number of individuals per generation Z , while the
QRWBS needs both the number of individuals ZDHA, which
will form the search pool of the DHA during each generation
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and the maximum allowed number of CF evaluations in
the DHA ES.

A. STAGE 1 - INITIALIZATION AND
POPULATION GENERATION
Initially, both algorithms exploit the predicted CIR of the
current oth OFDM symbol hpr,p,o of (7) and (8), along with

its corresponding CE CF value fCE
(
hpr,p,o, X̂o

)
, by making

them the best so-far found individuals hbest,0 and fbest,0,
respectively. From this point on, Stage 1 differs between the
RWBS and the QRWBS. The different steps 4, 5 and 6 are
marked in blue color in Alg. 1 and Alg. 2.

1) RWBS
During the ξ th generation, the best found CIR of the previous
(ξ − 1)th generation is included as one of the Z individuals.
The remaining (Z −1) individuals hξ,ζ are generated accord-
ing to

hξ,ζ =hbest,ξ−1+γ · [randn (UL, 1)+ j · randn (UL, 1)] ,

(23)

where γ ∈ R is a mutation parameter and randn(m, n)
creates an (m, n)-elementmatrix with random numbers drawn
based on the normal distribution with a zero mean and a
unity variance [17]. Having created the population of the
ξ th generation, the CE CF is evaluated for each of the new
(Z − 1) individuals according to Step 5 of Alg. 1, resulting in
(Z − 1) CFEs.

2) QRWBS
However, in the proposed QRWBSwe commence by creating
ZDHA individuals based on (23) and hbest,ξ−1, where ZDHA is
a power of 2 and it is higher than the number of individuals
in the RWBS. The reason we have opted for creating a much
larger pool of individuals is that we perform a quantum search
in it using the DHA, for the sake of finding a subset of
individuals that are more suitable for our CE search problem.
Therefore, ZDHA may assume high values such as 256, 1024
or even 8192 and 32 768. Please note that even though the
ZDHA individuals were created by exploiting hbest,ξ−1, we
have opted for not including this specific CIR vector in the
ZDHA individuals, since we have already evaluated its CE CF.

The DHA of Section IV-C is then employed in the set of
ZDHA individuals for finding the one that corresponds to the
minimum CE CF value of (13), while starting from a random
individual. The DHA requires 7.5

√
ZDHA CFEs on average

in the quantum domain for finding the wanted individual,
when commencing from a random individual [7], [29]. This is
why we have included an early stopping criterion [29], where
the DHA is terminated after a predetermined number of ES
CFEs. The individuals and their corresponding CE CF values
that will be available to us are the Zξ individuals that were
evaluated in the classical domain during the DHA. Since ES
represents the total number of CFEs of a single DHA search,
we may expect Zξ < ES < ZDHA. As the subscript ξ of

Zξ suggests, we should expect Zξ to be different during each
generation, since it depends on the probabilistic nature of the
DHA and the initial random individual.

Therefore, in the QRWBSwe perform ES CFEs for obtain-
ing Zξ < ES individuals. Even though this may seem dis-
advantageous, we should note that those Zξ individuals are
expected to have lower CF values among them than in the
case, where they were randomly generated as in the RWBS,
since they may be described as a ‘‘good’’ subset of the ZDHA
randomly generated individuals. For example, consider the
scenario, where Z − 1 = 99 individuals were randomly
generated based on (23) in RWBS and their CF value was
calculated. At the same time, the QRWBS creates ZDHA =
512 individuals and employs the DHA for them. It should
be expected that the probability of having a better individual
when the population consists of ZDHA = 5.12 · Z individuals
is higher. By investing ES = 99 CFEs, the QRWBS has the
same complexity as this scenario’s RWBS, but it will have
obtained on average Zξ = [40, 50] individuals, based on our
simulations. However, more individuals of the Zξ individuals
in the QRWBS may exhibit low CF values, when compared
to the Z individuals of the RWBS. Moreover, we will discuss
that the Weighted Boosting Search (WBS) process is faster
when the population Z is smaller and when the selected
Z individuals have a lower CF value, which is the case in the
QRWBS when compared to the RWBS. The Zξ individuals
found by the DHA and the best individual of the previous
generation hbest,ξ−1 will take part in the WBS process of
the QRWBS.

From this point onwards, let us omit the subscript ξ from
the population of Zξ individuals in the QRWBS for simplify-
ing our analysis, and let us denote the number of individuals
that take part in the WBS of both the RWBS and the QRWBS
as Z , as described in Step 7 of Alg. 2.

In both the RWBS and QRWBS, based on the CF values of
the Z individuals, we update hbest,ξ , hworst,ξ and h2nd worst,ξ
along with their respective fbest,ξ , fworst,ξ and f2nd worst,ξ , as in

hbest,ξ = argmin
ζ=1,2,...,Z

{
fξ,ζ

}
(24)

hworst,ξ = argmax
ζ=1,2,...,Z

{
fξ,ζ

}
(25)

h2nd worst,ξ = argmax
ζ=1,2,...,Z &hξ,ζ 6=hworst,ξ

{
fξ,ζ

}
, (26)

where

fξ,ζ = fCE
(
hξ,ζ , X̂o

)
. (27)

B. STAGE 2 - WEIGHTED BOOSTING SEARCH
The WBS process is the same for both the RWBS and the
QRWBS. The WBS may be considered as a local optimiza-
tion search, where new, low-CE CF individuals are generated
based on the existing ones in the population. The WBS is
repeated TWBS number of times. Before the first iteration, the
weight factors, which are used for generating new individuals
are initialized as δ(t=0)ξ,ζ = 1/Z . During the tth iteration, with
t = 1, 2, . . . ,TWBS , the following steps are followed:
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1) NORMALIZATION
Initially, the CF values that correspond to the population are
normalized according to

f̄ξ,ζ =
fξ,ζ

Z∑
ζ=1

(
fξ,ζ

) , ζ = 1, 2, . . . ,Z . (28)

2) UPDATE OF THE WEIGHT FACTORS
Using the normalized CF values of (28) and the weight factors
of the previous WBS iteration δ(t−1)ξ,ζ , we compute

η
(t)
ξ =

Z∑
ζ=1

(
δ
(t−1)
ξ,ζ · f̄ξ,ζ

)
, (29)

β
(t)
ξ =

η
(t)
ξ

1− η(t)ξ
. (30)

The weight factors δ(t)ξ,ζ are updated according to [17], [19]

δ
(t)
ξ,ζ =

δ
(t−1)
ξ,ζ ·

(
β
(t)
ξ

)f̄ξ,ζ
β
(t)
ξ 6 1

δ
(t−1)
ξ,ζ ·

(
β
(t)
ξ

)1−f̄ξ,ζ
β
(t)
ξ > 1.

(31)

Finally, the updated weight factors are normalized as in

δ
(t)
ξ,ζ =

δ
(t)
ξ,ζ

Z∑
ζ=1

δ
(t)
ξ,ζ

. (32)

Let us provide some intuition about the variables η(t)ξ ,

β
(t)
ξ and δ(t)ξ,ζ . The variable η(t)ξ provides a weighted sum of

the normalized CF values of the population. Since initially
each individual has the same weight δ(0)ξ,ζ = 1/Z for ζ =
1, 2, . . . ,Z and

∑Z
ζ=1

(
f̄ξ,ζ

)
= 1 is always true, we have

η
(1)
ξ = 1/Z and hence β(1)ξ = 1/(Z − 1) for every generation

ξ = 1, 2, . . . , 4. Therefore, the higher Z , the lower the initial
values of η(1)ξ and β(1)ξ . Commencing from these values of

η
(1)
ξ and β(1)ξ , both the QRWBS and the RWBS are started

by updating the weight factors δ(t)ξ,ζ . Since the normalized CF

values are also used for updating the weight factors δ(t)ξ,ζ , we
may expect that the higher Z is, the smaller the differences
between f̄ξ,ζ , ζ = 1, 2, . . . ,Z become, indicating a slower

dissociation of δ(t)ξ =
[
δ
(t)
ξ,1, . . . , δ

(t)
ξ,Z

]T
with respect to the

uniform distribution of δ(0)ξ .
It should be noted that a ‘‘better’’ individual is associated

with a lower CF value and hence a higher weight factor
according to (31) and (32). Hence, as the WBS iteration
index t increases, η(t)ξ depends more on the ‘‘better’’ individ-

uals, which have a lower CF value and a higher weight factor
by then.

3) CONVEX COMBINATION
Having updated the weight factors δ(t)ξ,ζ during the tth WBS
iteration, we create two new individuals, namely hξ,Z+1 and
hξ,Z+2, based on a convex combination of the Z existing
individuals, as in

hξ,Z+1 =
Z∑
ζ=1

δ
(t)
ξ,ζ · hξ,ζ (33)

hξ,Z+2 = hbest,ξ +
(
hbest,ξ − hξ,Z+1

)
, (34)

where (34) may be considered as the mirrored individual with
respect to the ‘‘best so far found’’ individual hbest,ξ . Referring
to (33), we may observe that the specific individuals, which
are associated with a higher weight factor are more involved
in the creation of the (Z + 1)th individual.

4) UPDATING THE POPULATION
The new pair of individuals may replace existing individuals
in the population. In the literature [17], [19], [40], the specific
new individual, which is associated with a higher CF value,
replaces the worst individual in the population, regardless of
the CF value of the latter. Both the previouslyworst individual
in the population and the worse individual of the new pair are
then discarded.

In this paper we propose a different approach for updat-
ing the population during each WBS iteration. Firstly, we
replace the worst individual in the population with the better
individual of the new pair of individuals, only if this new
individual is also better than the worst individual in the exist-
ing population. Moreover, if this replacement was successful,
we proceed by replacing the second worst individual in the
existing population with the worse individual of the new pair
of individuals, only if that worse individual of the new pair of
individuals is associatedwith a lower CF value than that of the
second worst individual in the population. This methodology
is summarized in Steps 16 − 26 of Alg. 2 and in the flow
chart of Fig. 8. By potentially exploiting both new individuals
we expect to exhibit a faster convergence of the WBS, or
equivalently, anticipate arriving at a better individual hbest,ξ
after a predetermined number TWBS of WBS iterations.

Finally, before starting the next (t + 1)th WBS iteration,
we update the best, worst and second worst individuals of the
population according to (24), (25) and (26).

C. STAGE 3 - TERMINATION
After TWBS iterations of the WBS in the ξ th generation, the
‘‘best so-far found’’ individual hbest,ξ is saved and the WBS
loop is terminated. Based on the predetermined maximum
number of generations 4 and also on the predetermined
CF accuracy 14 between generations, we employ a pair of
termination criteria:

1) If ξ = 4, we have created and investigated the maxi-
mum number of allowed generations.

2) If the best CE CF value of the current ξ th generation is
close to the best CE CF value of the previous (ξ − 1)th
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generation, as encapsulated in fbest,ξ−1 − fbest,ξ 6 14,
the required accuracy has been reached.

If neither of the above criteria is activated, we incre-
ment the value of ξ by one and start the next generation
of the RWBS or QRWBS as stated in Section V-A1 or
Section V-A2, respectively. If either of the above criteria is
fulfilled, then the RWBS or the QRWBS outputs hp,o,min =

hbest,ξ as the best found CIR and terminates.

VI. COMPLEXITY OF THE QRWBS AND RWBS
Initially, both the RWBS and the QRWBS perform a single
CFE for determining the CF value of the initial CE and the
output of the MUD. During every generation, the RWBS
performs (Z − 1) CFEs for creating the new population of
individuals, and 2 · TWBS additional CFEs, since a pair of
new individuals is created during each of the TWBS iterations.
Therefore, the number of CFEs per OFDM symbol of the
RWBS after the 4th generation is [17], [19]

CRWBS = [1+4 · (Z − 1+ 2 · TWBS)] · P. (35)

Therefore, the complexity of the RWBS depends on the num-
ber of generations 4, on the number of individuals Z and on
the number of WBS iterations TWBS .
Similarly, the DHA in every generation of the QRWBS is

stopped after a predetermined number of ES CFEs. Further-
more, the QRWBS also requires 2 · TWBS CFEs in the WBS
stage, as the RWBS. In total, the number of CFEs per OFDM
symbol of the QRWBS after the 4th generation is

CQRWBS = [1+4 · (ES + 2 · TWBS)] · P. (36)

By comparing (35) to (36), we may observe that if we set
ES = Z − 1, the QRWBS imposes the same complexity as
the RWBS.

It should be mentioned that unless stated otherwise, we
allow multiple MUD-CE iterations only during the first
MUD-CE-DEC iteration. Therefore, in a system the MUD
and the CE are activated IMUDCE times only during the first
iMUD−CEDEC = 1 MUD-CE-DEC iteration and only once during
the subsequent MUD-CE-DEC iterations. The reason for fol-
lowing this methodology is that of reducing the complexity of
the system, since it will be demonstrated in Fig. 21, that after
the decoders have started operating, performing more than
one MUD-CE iterations during a subsequent MUD-CE-DEC
iteration may not be sufficiently beneficial for justifying the
additional complexity. Moreover, during the last MUD-CE-
DEC iteration, there is no need for performing the CE again,
because its CIR estimates will not be exploited, since they
would only be used by the MUD of a potentially subsequent
MUD-CE-DEC iteration. Therefore, unless stated otherwise,
in a system with IMUDCE MUD-CE iterations and IMUD−CEDEC
MUD-CE-DEC iterations, in total the MUD is employed
(IMUDCE + IMUD−CEDEC − 1) times, the CE is invoked (IMUDCE +

IMUD−CEDEC − 2) times and the decoders IMUD−CEDEC times.

TABLE 2. Parameters of the multi-user SDMA-OFDM systems.

TABLE 3. Parameters of the RWBS and QRWBS.

VII. SIMULATION RESULTS
The parameters of the systems that will be investigated are
summarized in Table 2. The default parameters of the RWBS
and the QRWBS employed in our systems are summarized in
Table 3. Let us commence in Section VII-A by investigating
the MSE performance of (13), when no iterations are allowed
between the MUD, the CE and the decoders, corresponding
to IMUDCE = 1 and IMUD−CEDEC = 1. Let us compare the
performance of the QRWBS to that of the RWBS, while
characterizing the impact of the proposed generation update
methodology, of the normalized effective Doppler frequency
Fd , of the power delay profile of the channels, of the number
of users, of the signal to noise ratio, of the prediction filter’s
length and finally of the initial population of the QRWBS
have on the resultant MSE. In Section VII-B we will discuss
the BER performance of the selected multi-user systems for
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comparing the QRWBS to the RWBS based on the aforemen-
tioned parameters.

FIGURE 9. Average MSE performance of the first data OFDM symbol,
following the pilot OFDM symbol in a noiseless scenario, when the
RWBS-aided and the QRWBS-aided CE have been employed with the
original population update [17], [19], [40], as well as the proposed
population update. The system supports U = 4 users transmitting over the
ETU channel with Fd = 0.02 and an Ntap = 1 tap CIR predictor was used.
There were 60 symbol errors at the output of the MAP MUD, due to the
high normalized effective Doppler frequency Fd . The MSE corresponds to
the CE of the channels of the P = 2 receive AEs. The MSE performance in
the hypothetical scenario, where the symbols at the output of the MAP
MUD were correct is also included as a best case scenario reference.

A. MSE PERFORMANCE
In Fig. 9 we depict the MSE performance of (13) for the
channels that correspond to the P = 2 receive AEs, when
the proposed population update or the original population
update [17], [19], [40] are used, in noiseless scenarios where
U = 4 users are supported who transmit over ETU chan-
nels having a normalized effective Doppler frequency of
Fd = 0.02. A single-tap CIR prediction filter is selected for
providing an initial estimate of the CIR in the data symbol.
At the output of the MAP MUD, which operated with the
aid of the predicted CIR, which in turn was based on the
estimated channels of the previous pilot OFDM symbol, there
were 60 symbol errors, due to the high effective normalized
Doppler frequency Fd . The idealized unrealistic scenario
where error-free symbol references are available at the output
of the MAP MUD is also illustrated in Fig. 9. We may
observe that the QRWBS-aided CE performs better than the
RWBS-aided CE in all three scenarios in terms of converg-
ing to a CIR with a lower MSE. Furthermore, both the
RWBS-aided CE and the QRWBS-aided CE relying on the
proposed population update outperform their counterparts,
which use the original population update. Moreover, in the
early generations, the QRWBS-aided CE associated with
the original population update succeeds in finding a CIR
with lower MSE than that found by the RWBS-aided CE in
conjunction with the proposed population update. As it was
expected, when error-free symbol references are available at
the input of the CE, the estimated CIRs exhibit a lower MSE.

Note that if we do not apply iterations between the MUD and
the CE, the 60 erroneous symbols will not be corrected at this
stage, they will be forwarded to the decoder, and the channel
estimate of the OFDM symbol will be calculated based on an
erroneous symbol vector X , which may result in avalanche-
like error propagation during the subsequent OFDM symbols.

FIGURE 10. Average MSE performance of the first data OFDM symbol,
following the pilot OFDM symbol in a noiseless scenario, when the
RWBS-aided and the QRWBS-aided CE have been employed in EVA and
ETU channels, both experiencing the same effective normalized Doppler
frequency of Fd = 0.0046, which corresponds to a user velocity of
v = 30 km/h. The system supports U = 4 users and the MSE corresponds
to the CE of the channels of the P = 2 available receive AEs at the BS.
An Ntap = 1 tap CIR predictor was used. There were 0 errors at the output
of the MAP MUD in both scenarios. The last path in the EVA channel
arrives at the L = 40th delay tap, while that of the ETU channel
arrives at the L = 78th delay tap.

Following the same system setup as in Fig. 9 with the only
difference that the vehicular speed is now v = 30 km/h, cor-
responding to Fd = 0.0046, Fig. 10 shows the MSE of (13)
when two channels associated with different power delay
profile are used, namely the Extended Vehicular A (EVA) and
the Extended Typical Urban (ETU) channels [41]. The last
paths in the EVA and ETU channels arrive at the LEVA = 40th
and LETU = 78th delay tap, respectively. Again, the MSE
in Fig. 10 was calculated for noiseless scenarios supporting
U = 4 users and it corresponds to the CIR estimated for the
P = 2 receive AEs at the BS, while a single tap (Ntap = 1)
CIR predictor was employed for the a priori estimation of
the CIR based on the data OFDM symbol. It should be noted
that in contrast to Fig. 9, the MAPMUD in Fig. 10 offered an
error-free symbol sequence at its output, since the normalized
effective Doppler frequency Fd is sufficiently low in these
scenarios. The QRWBS-aided CE performs better than the
RWBS-aided CE and the gain is higher, when we have more
unknown variables, as in the case of the ETU channel, where
U ·LETU = 312 unknown CIR variables have to be estimated,
in contrast to the U · LEVA = 160 unknown variables of the
EVA channel.

The MSE performance illustrated in Fig. 11 was simulated
based on the same noiseless scenarios, with the difference
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FIGURE 11. Average MSE performance of the first data OFDM symbol,
following the pilot OFDM symbol in a noiseless scenario, when the
RWBS-aided and the QRWBS-aided CE have been employed in ETU
channels, when the effective normalized Doppler frequency varies
between Fd = 0.0054, 0.02, 0.03. The system supports U = 4 users and
the MSE corresponds to the CE of the channels of the P = 2 available
receive AEs at the BS. An Ntap = 1 tap CIR predictor was used. There
were 0, 60 and 268 symbol errors on average at the output of the
MAP MUD, when Fd = 0.0054, 0.02 and 0.03, respectively.

that only the ETU channel is employed and the normal-
ized effective Doppler frequency Fd varies between Fd =
0.0054, 0.02, 0.03. It is reasonable for the MSE to increase
when Fd increases, even in noiseless scenarios, since the
initial channel estimate, which was used in the MAP MUD
was predicted based on the previous OFDM symbol and the
higher the system’s Fd , the more different the CIRs of two
consecutive OFDM symbols are. This phenomenon makes
the CIR prediction more difficult and it may lead to error
propagation. In the particular example of Fig. 11, there were
0, 60 and 268 erroneously detected symbols on average at
the output of the MAP MUD when Fd = 0.0054, 0.02, 0.03,
respectively. Nevertheless, regardless of the value of Fd , the
QRWBS-aided CE succeeds in finding a CIR associated with
a lower MSE, when compared to the RWBS-aided CE.

In Fig. 12 the MSE performance of a similar system is
presented, where EVA channels associated with Fd = 0.005
are used and Eb/N0 varies from 0 dB to 12 dB. The MSE
corresponds to the first data OFDM symbol and to the P = 2
receive AEs, when U = 4 users are supported by the system.
The MSE becomes lower as Eb/N0 increases. The QRWBS
always performs better than the RWBS, by converging faster
to a usually better CIR.When Eb/N0 increases, the MSE gain
of both the QRWBS and the RWBS is decreased, but the num-
ber of CFEs required by the QRWBS for convergence is still
lower than that of the RWBS. Please note that the estimated
CIRs correspond to the erroneous symbol vectors detected
by the MAP MUD, which may lead to error propagation, as
reserved in Fig. 13.

In Fig. 13, we present the instantaneous MSE performance
of the RWBS-aided and QRWBS-aided CEs in the same
system as that investigated in Fig. 12, when operating at

FIGURE 12. Average MSE performance of the first data OFDM symbol,
following the pilot OFDM symbol, when the RWBS-aided and the
QRWBS-aided CE have been employed in EVA channels with Fd = 0.005
for various Eb/N0 values. The system supports U = 4 users and the MSE
corresponds to the CE of the channels of the P = 2 receive AEs. An
Ntap = 1 tap CIR predictor was used. There were 1836, 1730, 1616, 1529,
1381, 1245, 1103, 919, 724, 582, 421, 339 and 236 symbol errors on
average at the output of the MAP MUD, when Eb/N0 = 0, 1, . . . , 12,
respectively.

FIGURE 13. Instantaneous MSE performance of the first 9 data OFDM
symbols, with the first one following the pilot OFDM symbol, when the
RWBS-aided and the QRWBS-aided CE have been employed in EVA
channels with Fd = 0.005 for Eb/N0 = 8 dB and 4 = 50 generations per
search. The system supports U = 4 users and the MSE corresponds to
the CE of the channels of the first receive AE among the P = 2 available
receive AEs at the BS. No CIR predictor was used in this system.

Eb/N0 = 8 dB for the first 9 data OFDM symbols, without
using a CIR prediction filter. At the first data OFDM symbol,
the QRWBS converges faster than the RWBS and to a CIR
associated with lower MSE. It should be noted that both the
RWBS and the QRWBS estimated a CIR for the first OFDM
symbol based on an erroneous detected symbol vector at the
output of the MAP MUD. During the second data OFDM
symbol, both the detected symbol vectors of the two systems
include symbol errors and they are different from each other.
This may lead to error propagation and it may not be capable
of exploiting the fast convergence speed of the QRWBS to
a better CIR, as it may be seen in the third data OFDM
symbol, where the QRWBS starts from and also converges
to a CIR with a higher MSE value than that of the RWBS.
Recall that the RWBS and the QRWBS performed CE based
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on a different symbol vector X. Therefore, the power of the
QRWBS is demonstrated to be better in scenarios, where
the detected symbol vector contains a few symbol errors,
for avoiding error propagation. An interesting example is
constituted by the 9th data OFDM symbol, where the MSE
of the initial CIR in the QRWBS system has a higher MSE
value than the respective one of the RWBS system, again
while using a different detected symbol vector. Eventually,
the QRWBS finds a CIR with a lower MSE than the CIR that
the RWBS converges to. Using a CIR prediction filter would
have improved the initial CIR estimate of a data OFDM
symbol, which in turn might have resulted in a better symbol
vector detected by the MAP MUD and hence a better CE
performance.

FIGURE 14. Instantaneous MSE performance of the first data OFDM
symbol, following the pilot OFDM symbol, when the RWBS-aided and the
QRWBS-aided CE have been employed in EVA channels with Fd = 0.005,
while Eb/N0 = 10 dB for both receive AEs. The system supports U = 4
users and an Ntap = 1 tap CIR predictor was employed.

Fig. 14 compares the instantaneous MSE performance of
the CE concerning the first data OFDM symbol for the chan-
nels related to the first and second receive AE, when the
RWBS and QRWBS are employed, while Eb/N0 = 10 dB
and a single-tap CIR predictor is used. Since the instanta-
neous AWGN at each receive AE is different, the initial MSE
is also expected to differ. However, the trend of the MSE with
respect to the number of generations 4 in the RWBS and
the QRWBS is similar, indicating that the QRWBS converges
faster than the RWBS, regardless of the channels that are
estimated.

If we vary the number of individuals that take part in the
DHA ZDHA in the QRWBS, while using the same early stop-
ping criterion in terms of the number of affordable CFEs ES
in each generation’s DHA, we may expect to obtain a better
CIR when the ZDHA is increased, since a larger population
will have been searched. At the same time, the complexity of
the QRWBS should remain the same, since, according to (36),
it does not depend on ZDHA, but rather on ES. By observing
Fig. 15, wemay conclude that the gain is higher when the pool

FIGURE 15. Average MSE performance of the first data OFDM symbol,
following the pilot OFDM symbol, when the RWBS-aided and the
QRWBS-aided CE have been employed in EVA channels with Fd = 0.005
for Eb/N0 = 10 dB for the channels of the P = 2 receive AEs, when the
number of individuals in the QRWBS varies between
ZDHA = 128, 256, 512, 1024, 2048. The system supports U = 4 users
and the DHA in each generation of the QRWBS is stopped after
ES = 99 CFEs. Therefore, the complexity of each of the depicted QRWBS,
as well as that of the RWBS is the same and equal to 139 CFEs per
generation. An Ntap = 1 tap CIR predictor was employed.

of searched individuals ZDHA increases. The exact gain value
is expected to vary depending on the selected value of ES. Let
us choose ZDHA = 512 for our next simulations.

FIGURE 16. Average MSE performance of the first data OFDM symbol,
following the pilot OFDM symbol in a noiseless scenario, when the
RWBS-aided and the QRWBS-aided CE have been employed in EVA
channels with Fd = 0.005. The systems support U = 4, 6 or 8 users and
the MSE corresponds to the CE of the channels of the P = 2 receive AEs.
An Ntap = 1 tap CIR predictor was employed. The pilot and data OFDM
symbols transmitted by the first 4 users in all systems are the same.
Similarly, the pilot and data OFDM symbols of the fifth and sixth users in
the systems, where U = 6 and U = 8 users are supported, are also the
same. The number of symbol errors at the output of the MAP MUD
is 0, 9 and 93 on average for the systems where U = 4, 6 and 8 users
were supported, respectively.

Fig. 16 presents the MSE performance of the RWBS-aided
andQRWBS-aided CE for the first data OFDM symbol, when
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U = 4, 6 and 8 users are supported by the noiseless systems,
where EVA channels with Fd = 0.005 are used. The MSE
corresponds to the P = 2 receive AEs and a Ntap = 1 tap
CIR predictor was used. In all systems the QRWBS performs
better than the RWBS, since it converges to a CIRwith a lower
MSE value. As expected, the MSE gain of the system, where
U = 8 users are supported is higher, since U · L = 320
unknown variables have to be estimated, compared to the 240
and 160 CIR variables that have to be estimated when U = 6
and U = 4 users are supported, respectively. In fact, even
though the estimated CIRs of the systems, where U = 6 and
U = 8 users are supported, are found based on an erroneous
symbol vector at the output of the MAP MUD, their MSE is
very close to that of the CIR estimated by the RWBS in the
system, where U = 4 users are supported.

FIGURE 17. Average MSE performance of the first data OFDM symbol,
following the pilot OFDM symbol in a noiseless scenario, when the
RWBS-aided and the QRWBS-aided CE have been employed in ETU
channels. The systems support U = 4, 6 or 8 users and the MSE
corresponds to the CE of the channels of the P = 2 receive AEs. An
Ntap = 1 tap CIR predictor was employed. The pilot and data OFDM
symbols transmitted by the first 4 users in all systems are the same.
Similarly, the pilot and data OFDM symbols of the fifth and sixth users in
the systems, where U = 6 and U = 8 users are supported, are also the
same. The number of symbol errors at the output of the MAP MUD
is 60, 784 and 3208 on average for the systems where U = 4, 6
and 8 users are supported, respectively.

In Fig. 17 we characterize the same systems as in Fig. 16,
with the difference that the users transmit over ETU channels
associated with Fd = 0.02. As in Fig. 16, in all the systems
characterized in Fig. 17 the QRWBS performs better than
the RWBS, since it converges to a CIR with a lower MSE
value. The initial MSE of the systems, where U = 4 and
U = 6 users are supported is higher in the ETU channel than
in the EVA channels of Fig. 16, since the normalized effective
Doppler frequency is higher in these scenarios and the CE
was based on a detected symbol vector with more symbol
errors. On the other hand, the initial MSE value of the system,
where U = 8 users are supported is slightly lower than that
of Fig. 16, due to the fact that the number of symbol errors
was already high in the EVA channels. Comparing the MSE

behaviour of the QRWBS and the RWBS in the ETU channels
of Fig. 17 and EVA channels of Fig. 16, both algorithms
converge more slowly, since 312, 468 and 634 continuous
random variables have to be estimated when U = 4, 6 and
8 users, respectively, transmit over ETU channels. Therefore,
for a fixed number of users, the number of CIR variables that
have to be estimated when ETU channels are used is almost
twice as high as the number of continuous CIR variables that
have to be found when EVA channels are used. Furthermore,
in the systems communicating over the ETU channels, the
convergence results in a higher MSE value, since the symbol
vector at the output of the MAP MUD contains more symbol
errors. The number of symbol errors becomes even higher
when more users are supported.

FIGURE 18. BER performance of an SDMA-OFDM system supporting
U = 4 users with P = 2 receive AEs, transmitting over EVA channels, when
perfect CE is available, as well as when the RWBS and the QRWBS are
employed for CE. The CIR prediction filter’s order is equal to Ntap = 4,
IMUD
CE = 2 iterations are allowed between the MAP MUD and the CE and

IMUD−CE
DEC = 2 iterations are allowed between the MUD-CE and the

decoders. The interleaver length is 17 408 bits and a pilot OFDM symbol is
transmitted every 17 data OFDM symbols. The rest of the parameters are
stated in Table 2 and Table 3.

B. BER PERFORMANCE
In Fig. 18 we compare the performance of the RWBS-aided
and QRWBS-aided CEs in a rank-deficient system, where
U = 4 users are supported and P = 2 receive AEs are
available at the BS, when transmitting over EVA channels.
We have opted for a CIR prediction filter of Ntap = 4th order
and IMUDCE = 2 iterations are allowed between theMAPMUD
and the CE, while IMUD−CEDEC = 2 iterations are performed
between the MUD-CE and the decoders, as illustrated in
Fig. 2. The generation accuracy14 has been set to 10−4 and
the maximum number of generations is 4 = 300. The rest of
the parameters are summarized in Table 2 and Table 3. The
CIR prediction filter provides a sufficiently accurate initial
estimate for the EVA channels, which are associated with a
relatively low normalized Doppler frequency Fd .

The QRWBS-aided CE performs better than the
RWBS-aided CE, especially in the low-BER region, where
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there is a 0.2 dB gain for the QRWBS-aided CE. Even though
this performance improvement is not substantial, it is worth
noticing that it is associated with a lower complexity for the
QRWBS-aided CE, when compared to that of the RWBS-
aided CE. In more detail, according to Section VI, after
one MUD-CE-DEC iteration, the CE has been employed
IMUDCE = 2 times for each of the P = 2 receive AEs, resulting
in a total of 16 667 CFEs per data OFDM symbol for the
QRWBS-aided CE and 20 114 CFEs per data OFDM symbol
for the RWBS-aided CE, when operating at an Eb/N0 value
that corresponds to a BER of 10−5. Therefore, the QRWBS-
aided CE achieves a slightly better BER performance than
the RWBS-aided CE in the system of Fig. 18, at 83% of the
complexity imposed by the RWBS-aided CE.

When compared to the performance of the system, assum-
ing that perfect CIR estimates are available, there is a∼0.8 dB
Eb/N0 loss between the system using the QRWBS-aided CE
and the system associated with perfect CE and J = 1 iteration
between the MUD and the decoders, where J is the number
of MUD-DEC iterations when perfect CE is available. The
associated performance discrepancy becomes 3 dB when
2 MUD-DEC iterations are allowed in the system having
perfect CE. This was expected, since when imperfect CE
is available and DDCE is employed, error propagation will
occur, hence resulting in a degraded performance compared
to that of the system having perfect CE.

FIGURE 19. BER performance of an SDMA-OFDM system supporting
U = 4 users with P = 2 receive AEs, transmitting over ETU channels, when
perfect CE is available, as well as when the RWBS and the QRWBS are
employed for CE. The CIR prediction filter’s order varies between
Ntap = 0, 1, 2, 4, 8, IMUD

CE = 3 iterations are allowed between the MAP

MUD and the CE and IMUD−CE
DEC = 2 iterations are allowed between the

MUD-CE and the decoders. The interleaver length is 8 192 bits and a pilot
OFDM symbol is transmitted every 8 data OFDM symbols. The rest of the
parameters are stated in Table 2 and Table 3.

In Fig. 19, the same system is employed, with the dif-
ferences that now ETU channels are used, associated with
Fd = 0.02, the interleaver length is 8 192 bits, IMUD−CEDEC = 2
and the number of iterations between the MAPMUD and the
CE during the first MUD-CE-DEC iteration is IMUDCE = 3.

We may observe that the QRWBS-aided CE always performs
better than the RWBS-aided CE. More precisely, in the sce-
narios, where either no CIR prediction filter or a first-order
CIR prediction filter is employed, the QRWBS-aided CE
systems reach a BER of 10−5 at Eb/N0 = 15 dB, while
the RWBS-aided CE systems experience an error floor at a
BER of 10−3. This shows that the QRWBS-aided CE is more
resilient to a high normalized effective Doppler frequency Fd
than the RWBS-aided CE. When the order Ntap of the CIR
prediction filter is increased, the performance is improved,
with the RWBS-aided CE systems benefiting more. In other
words, the QRWBS-aided system performs better than the
RWBS-aided system by a margin of 2.2 dB when a second
order CIR prediction filter is used, while there is a 1 dB per-
formance gain for the QRWBS-aided systems, when fourth
or eighth order CIR prediction filters are employed.

TABLE 4. MAP MUD and CE complexity (CFEs/bit) of the scenarios in
Fig. 19 at BER = 10−5.

The improved performance of the QRWBS-aided systems
over the RWBS-aided systems is achieved at a lower com-
plexity, as seen in Table 4. In Table 4 the joint complexity
of the MAP MUD and the selected CE is presented for each
scenario of Fig. 19, rather than showing only the complex-
ity of the CE, since provided that the frame is correctly
decoded during the first MUD-CE-DEC iteration, the Cyclic
Redundancy Check (CRC) assumed will realize it and no
further MUD-CE-DEC iterations will be needed. Therefore,
the performance of the CE employed may affect the overall
complexity of the system.

Let us now select Ntap = 4 for the order of the CIR
prediction filter and vary the IMUDCE and IMUD−CEDEC number
of iterations in our scenarios. Referring to the discussions
in Section VI, in Fig. 20 we allow multiple MUD-CE itera-
tions during every MUD-CE-DEC iteration, where we may
observe that the performance is very similar to the cor-
responding scenarios, where multiple MUD-CE iterations
are only allowed during the first MUD-CE-DEC iteration,
but the complexity is increased according to Table 5, since
more MUD and CE operations are performed. The QRWBS-
aided CE performs better than the RWBS-aided CE in all
the demonstrated scenarios, with the associated gain varying
from 1.1 dB up to 2.5 dB, depending on the specific scenario.
As it was expected, according to Fig. 20, when we allow

more iterations between the MUD and the CE, or the
MUD-CE and the decoders, the performance is improved.
It is also worth comparing the scenarios which have
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FIGURE 20. BER performance of an SDMA-OFDM system supporting
U = 4 users with P = 2 receive AEs, transmitting over ETU channels, when
perfect CE is available, as well as when the RWBS and the QRWBS are
employed for CE. The CIR prediction filter’s order is Ntap = 4 and various
combinations of IMUD

CE and IMUD−CE
DEC iterations are allowed between the

MAP MUD, the CE and the decoders. The interleaver length is 8 192 bits
and a pilot OFDM symbol is transmitted every 8 data OFDM symbols. The
rest of the parameters are stated in Table 2 and Table 3.

TABLE 5. MAP MUD and CE complexity (CFEs/bit) of the scenarios in
Fig. 20 at BER = 10−5.

similar complexity. For example, the system associated with
IMUDCE = 3 and IMUD−CEDEC = 2 employs the MAP MUD
4 times, the CE 3 times and the decoders twice, while the
system using IMUDCE = 2 and IMUDCE = 3 employs the MAP
MUD 4 times, the CE 3 times and the decoders 3 times.
Therefore, the latter system employs the decoders one more
time than the former system, but exhibits a performance loss
of 0.2 dB, as illustrated in Fig. 20. This phenomenon is related
to the essence of the DDCE, which is shown to perform better,
when a better symbol estimate is available at the output of the
MUD before we start the MUD-CE-DEC iterations. Hence,
it may be worth investing more complexity in the MUD-CE
iterations of the first MUD-CE-DEC iterations for increasing
the chances of obtaining a multi-level symbol vector with
fewer errors, which will allow the channel decoders to correct
the remaining errors.

FIGURE 21. BER performance of an SDMA-OFDM system supporting
U = 4 users with P = 4 receive AEs, transmitting over ETU channels, when
perfect CE is available, as well as when the RWBS and the QRWBS are
employed for CE. The CIR prediction filter’s order is Ntap = 4, IMUD

CE = 1

iteration is allowed between the MAP MUD and the CE and IMUD−CE
DEC = 1

iteration is allowed between the MUD-CE and the decoders. The
interleaver length is 8 192 bits and a pilot OFDM symbol is transmitted
every 8 data OFDM symbols. The rest of the parameters are stated
in Table 2 and Table 3.

Next we demonstrate that the high power loss that the
investigated RWBS-aided and QRWBS-aided CE scenarios
exhibit with respect to the perfect CE scenarios is not a
deficiency of the algorithms employed, but rather due to the
systems being rank-deficient. Accordingly, in Fig. 21 we
present the BER performance of the same system support-
ing U = 4 users transmitting over ETU channels, when
P = 4 receive AEs are available at the BS, making it a
full-rank system, when relying on a single activation of the
MAP MUD. The same CE and the same decoders are used.
The performance of the QRWBS-aided CE is slightly better
than that of the RWBS-aided CE and the power loss with
respect to the perfect CE scenario is approximately 3 dB.
If multiple iterations were allowed between the MUD, the
CE and the decoders, we should have expected the power
loss to have been lower. The number of CFEs required by the
QRWBS-aided CE was 8.89 CFEs per bit, while that of the
RWBS-aided CE was 12 CFEs per bit, highlighting again the
ability of the QRWBS-aided CE not only to perform better,
but also to impose a lower complexity.

In Fig. 22 we investigate the effect that erroneous detected
multi-level symbol vectors at the output of the MUD have
on the performance of the system, as well as the effect that
multiple iterations between the MUD and the CE during the
first MUD-CE-DEC iteration have on the same performance.
More specifically, Fig. 22 depicts the BER performance of
a system, where U = 4 users are supported with the aid of
P = 2 receive AEs at the BS, when transmitting over ETU
channels associated with Fd = 0.02. A fourth-order CIR
prediction filter has been employed and the performance of
the hypothetical scenarios, when perfect CE is available or
when error-free symbol vectors are available at the input of
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FIGURE 22. BER performance of an SDMA-OFDM system supporting
U = 4 users with P = 2 receive AEs, transmitting over ETU channels, when
perfect CE is available, as well as when the RWBS and the QRWBS are
employed for CE with and without error-free symbol references. The CIR
prediction filter’s order is Ntap = 4 and various IMUD

CE iterations are
allowed between the MAP MUD and the CE, while only a single
MUD-CE-DEC iteration is performed. The interleaver length is 8 192 bits
and a pilot OFDM symbol is transmitted every 8 data OFDM symbols.
The rest of the parameters are stated in Table 2 and Table 3.

the RWBS-aided and QRWBS-aided CE, are also presented.
It should be noted that the error-free symbol references only
affect the CE employed. Therefore, the MUD may output
erroneous symbol vectors, based on the predicted CIR esti-
mates, which are based on the previous OFDM symbols’ CIR
estimates.

In all the scenarios, the QRWBS-aided CE outperforms
the RWBS-aided CE. Their complexity is similar, mainly
because of the selection of 14 = 10−4, which indicates that
in these scenarios both the RWBS and the QRWBS converge
at a similar speed, albeit the QRWBS-aided CE converges to a
better CIR. Furthermore, at BER of 10−5, the QRWBS-aided
CE performs better in a scenario, where IMUDCE = 1 iterations
are allowed between the MAP MUD and the CE, than the
RWBS-aided CE in a scenario, where IMUDCE = 2 MUD-CE
iterations are performed. Similarly, the QRWBS-aided CE
operating in a scenario of IMUDCE = 2 outperforms the RWBS-
aided CE relying on IMUDCE = 3. This affects the complexity
of the scenarios, since an extra CE operation plus the extra
MUD operation will highly increase the system’s complexity,
as exemplified in Table 6. Finally, the QRWBS-aided CE
outperforms the RWBS-aided CE in the same scenarios by
approximately 2.5 dB.
In the specific scenario, where no iterations are performed

between the MAP MUD, the CE and the decoders, the
QRWBS-aided CE requires 2.5 dB less power than the
RWBS-aided scheme for achieving a BER of 10−5. How-
ever, in the hypothetical scenario, where error-free symbol
references were available at the input of the CE, a gain of
6 dB would be acquired at a BER of 10−5, when compared
to the QRWBS-aided CE scenario at the absence of error-free
references.

TABLE 6. MAP MUD and CE complexity (CFEs/bit) of the scenarios in
Fig. 22 at BER = 10−5.

FIGURE 23. BER performance of an SDMA-OFDM system supporting
U = 7 users with P = 4 receive AEs, transmitting over ETU channels, when
perfect CE is available, as well as when the RWBS and the QRWBS are
employed for CE. The CIR prediction filter’s order is Ntap = 4 and
IMUD
CE = 3 iterations are allowed between the MAP MUD and the CE,

while IMUD−CE
DEC = 2 MUD-CE-DEC iterations are performed. The

interleaver length is 8 192 bits and a pilot OFDM symbol is transmitted
every 8 data OFDM symbols. The rest of the parameters are stated
in Table 2 and Table 3.

Let us now investigate the BER performance of a rank-
deficient system in Fig. 23, where U = 7 users are sup-
ported using P = 4 receive AEs available at the BS, when
transmitting over ETU channels associated with Fd = 0.02.
The MAP MUD and the DHA-MUA-FKT QMUD [30], [32]
are employed, along with the RWBS-aided and the QRWBS-
aided CE.Wemay observe that the DHA-MUA-FKTQMUD
associated with perfect CE, as well as with RWBS-aided CE
and QRWBS-aided CE performs near-optimally with respect
to the MAP MUD, while requiring a lower number of CFEs
according to Table 6. The QRWBS-aided CE provides a gain
of approximately 2 dB with respect to the RWBS-aided CE,
regardless of the choice of MUD, while it is 5 dB away
of the scenario, where perfect CE is available. By compar-
ing the difference in the computational complexities seen in
Table 7 between the scenarios, where the RWBS-aided and
QRWBS-aided CEs are used, to those of Table 4, Table 5 and
Table 6, wemay observe that the complexity gain between the
classical CE and the quantum-assisted CE becomes higher
when more users are supported by the system. It is worth
mentioning that a purely quantum-assisted system, associated
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TABLE 7. MAP MUD and CE complexity (CFEs/bit) of the scenarios in
Fig. 23 at BER = 10−5.

TABLE 8. BER performance and complexity summary of Fig. 23 at
BER = 10−5.

with theDHA-MUA-FKTQMUDand theQRWBS-aided CE
not only achieves a 2 dB gain at a BER of 10−5 with respect
to a purely classical system associated with the MAP MUD
and the RWBS-aided CE, but also requires only 57.3% of its
complexity, as observed in Table 7.

VIII. CONCLUSIONS
The QRWBS-aided DDCE was proposed and employed in
the uplink of SDMA-OFDM systems. Its MSE and BER
performance was compared to that of the RWBS-aided
DDCE [17], [19] in conjunction with the MAP MUD and
the DHA-MUA-FKT QMUD [30], [32]. In Fig. 9 we demon-
strated that the proposed weighted boosting search performs
better than the conventional weighted boosting search [17],
while in Fig. 10 we compared the MSE performance of the
proposed joint CE and MUD in EVA and ETU channels.
The effect that the Doppler frequency has on the system’s
MSE performance in noiseless scenarios was characterized
in Fig. 11, while Fig. 12 illustrates the MSE of the CE. Addi-
tionally, the effects of error propagation were demonstrated
in Fig. 13, while the proposed QRWBS-aided DDCE was
found to be superior, regardless of the number of received
AEs in Fig. 14. In Fig. 15, we investigated the employment
of the QRWBS in conjunction with various initial number of
individuals. When increasing the number of users supported
by the system, Fig. 16 and Fig. 17 showed that the QRWBS-
aided CE still outperforms the RWBS-aided CE.

Based on Fig. 18, we may conclude that the QRWBS-aided
and RWBS-aided CE is capable of exhibiting a performance
closer to that of an idealized system, where perfect CE is
available, provided that the Doppler frequency is low and
the channels’ PDP includes a low number of paths. Fig. 19
demonstrates that employing a CIR prediction filter improves

the system’s overall performance, regardless of the choice of
the CE used and that the QRWBS-aided CE performs well
even with a low-order CIR prediction filter or even in the
absence of a CIR prediction filter, whilst the RWBS-aided
CE experiences an error-floor due to error propagation. Fur-
thermore, the effect that various combinations of iterations
between the MUD and the CE, as well as the MUD, the
CE and the DEC has on the system’s BER performance was
illustrated in Fig. 20. Based on Fig. 20, it may be beneficial to
allow more MUD-CE iterations before employing the chan-
nel decoders for the first time.

Fig. 21 helps us conclude that the presented CE processes
perform closer to the idealized systems, where perfect CE
is available, when the number of receive AEs is equal to
the number of users supported. By allowing only a single
MUD-CE-DEC iteration, but multiple MUD-CE iterations,
the QRWBS-aided CE still performs closer to the idealized
system, where perfect CE is available, than the RWBS-aided
CE, as evidenced by Fig. 22. In the same figure, the perfor-
mance of the RWBS-aided and QRWBS-aided CEs are also
quantified, when error-free symbol references are available at
the input of the CE.

Finally, in Fig. 23 we characterized a rank-deficient sys-
tem, where U = 7 users are supported and the DHA-MUA-
FKT QMUDwas employed. By using the QRWBS-aided CE
a 2 dB gain is achieved with respect to the RWBS-aided CE,
while the DHA-MUA-FKT QMUD achieves near-optimal
performance, with respect to the MAP MUD, despite impos-
ing a lower complexity. According to Table 4, Table 5, Table 6
and Table 7, the QRWBS-aided DDCE imposes a lower
complexity than the RWBS-aided DDCE at a BER of 10−5.
Table 8 summarizes the complexity of Table 7 in conjunc-
tion with the BER performance of the rank-deficient multi-
user system, associated with ETU channels and depicted in
Fig. 23. It may be observed that the employment of the
quantum-assisted MUD is the main contributor in lowering
the overall complexity without degrading the performance,
while the use of the quantum-assisted CE results in a perfor-
mance gain with an additional small complexity reduction.
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